JPS60112854A - Electrically conductive molding material and production thereof - Google Patents

Electrically conductive molding material and production thereof

Info

Publication number
JPS60112854A
JPS60112854A JP22075183A JP22075183A JPS60112854A JP S60112854 A JPS60112854 A JP S60112854A JP 22075183 A JP22075183 A JP 22075183A JP 22075183 A JP22075183 A JP 22075183A JP S60112854 A JPS60112854 A JP S60112854A
Authority
JP
Japan
Prior art keywords
synthetic resin
conductive
pellet
pellets
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22075183A
Other languages
Japanese (ja)
Inventor
Toshio Mayama
間山 歳夫
Hidehiro Iwase
岩瀬 英裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Products Co Ltd
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd, Toshiba Chemical Corp filed Critical Toshiba Chemical Products Co Ltd
Priority to JP22075183A priority Critical patent/JPS60112854A/en
Publication of JPS60112854A publication Critical patent/JPS60112854A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrically conductive molding material having great electromagnetic shielding effect, improved mechanical strength and electrical characteristics and high reliability, by using master pellets prepared by coating the surface of an electrically conductive filament filler bundle having a titanate coupling layer on the surface thereof with a synthetic resin. CONSTITUTION:An electrically conductive molding material consisting of preferably one pts.wt. master pellets obtained by coating the surface of bundled 100-50,000 electrically conductive filament fillers, e.g. metallic fibers, having a titanate coupling layer which is isopropyl tricumyl titanate of formula I and/or isopropyl tri(N-amylethyl-aminoethyl)titanate of formula II without containing P nor S atom on the surface thereof and preferably 10-50mum diameter with a synthetic resin, e.g. polystyrene, integrating the resultant coated fillers, and cutting the integrated fillers and 1-20pts.wt. natural pellets consisting of pelletlike synthetic resin, which may be idential to or the same as the above-mentioned resin or form a blend polymer.

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の技侑分野」 本発明は、合成樹脂の強度を低下さけることなく、導電
性充填材が均一に分散でき、電磁波シールド効果が大ぎ
く、かつ電気Q2j性に優れたイ、′5〆11/lの高
い導電性成形材料及びその製造方法に関Jる。 [発明の技術的背順どその問題貞1 近年、外部の妨害電波から電子回路を保護し、かつ発信
回路等から発生する電波を外部に漏洩りるのを防止する
ために、電子機器の筐体を電磁波シールド月利により形
成することが要求され−Cいる。 このような電10波
シールド材料としては、金属や導電性合成樹脂等が挙げ
られるが、前者の金属は優れた電磁波シールド効果を有
する反面、重い、高価、加工性が悪い等の欠点があるた
め、導電性合成樹脂の使用が主流となりつつある。 合成樹脂製筐体に導電性を付与する方法としては、合成
樹脂で成形後、成形品表面に導電性塗料を塗布したり、
金属を溶射、メッキしたりして導電層を形成する方法と
、合成樹脂内部にカーボンや金属粉末あるいは金属IJ
i維等の導電性の充填材を添加して成形づる内部添加法
がある。 前者の成形品表面に導電層を形成する方法は
、工程が増えて示度性に乏しく、また導電層が長時間の
使用により剥がれてしまうという欠点があるため、接菌
の内部添加法に期待が寄せられている。 しかしながら、後者の内部添加法にも次のような問題が
あった。 Jなわち所望の電磁波シールド効果を有づる
ためには、カーボンや金属粉あるいは金属繊維等の導電
性充填材を多量に配合分散させる必要があり、その結果
分散不良を起こしたり、成形品の機械的強度が低下する
という欠点があった。 ざらに金属等を合成樹脂に充填
した場合、合成&(脂を劣化8゛uるという問題があっ
た。 強度を低下ざlないように導電性充填材にシランカップ
′リング層を設けたちのbあるが導電1生が著しく阻害
されるという欠点があった。 また、金属m紐や柔軟性
に富む繊帷充1fI祠は単体の状態ぐ塊状化しやすく、
合成樹脂との混合のために解きほぐし等の前処理工程を
必要とづる。 史に合成樹脂との比重の違いや形状の違
いから均一に混練づることは、高度の技術と技能を必要
どりる。 また、作業者が充填材の取り扱い時、繊維が皮りI′七
にささったり触れたりして痛み、カユミ等身体的苫痛を
伴うなど環境衛生上の問題も発生しやJい。 従って導電性成形材料の製造は、できる限り知かい工程
で、かつクローズドシステムで稼動でき、そして充填材
の形態も一定(変化しない)のものが望まれていた。 
いいかえれば電磁波シールド効果が人ぎく、合成樹脂ど
の混合が均一にでき、環境衛生上しよい、しかも合成樹
脂の強度を低下又は劣化ざぜたりJることのない導電性
成形材料が317られていないのが実情である。 [発明の目的] 本発明は、このJ:うな点に対処してなされたもので導
電性充填材の形態と量を定量化し安定して供給Jるど共
に合成樹脂に均一に分散することができ、環境衛生上t
)Jζく、電磁波シールド効果が人さく、機械的強度が
高く、かつ電気特性に優れた信頼性の畠い導電性成形材
料を提供することを目的としている。 [発明の概要] 本発明は前記の目的を達成すべく鋭意研究を重ねた結果
、後述のチタネートカップリング層を有づる金属繊維な
どの繊維束表面に合成樹脂層を被覆したマスターペレッ
トを用いることによって、前記の目的が達成されること
を見い出したものである。 即ら、本発明
``Field of the Invention'' The present invention provides a synthetic resin that can uniformly disperse a conductive filler without reducing the strength of the synthetic resin, has a large electromagnetic shielding effect, and has excellent electrical Q2J properties. The present invention relates to a molding material with a high conductivity of 11/l and a method for producing the same. [Problems with the technical nature of the invention] In recent years, electronic equipment casings have been designed to protect electronic circuits from external interference radio waves and to prevent radio waves generated from transmitting circuits from leaking outside. It is required that the body be formed with an electromagnetic shield. Examples of such electric 10 wave shielding materials include metals and conductive synthetic resins, but while the former metals have an excellent electromagnetic wave shielding effect, they have drawbacks such as being heavy, expensive, and having poor workability. , the use of conductive synthetic resins is becoming mainstream. Methods of imparting conductivity to synthetic resin casings include applying conductive paint to the surface of the molded product after molding it with synthetic resin,
A method of forming a conductive layer by thermal spraying or plating metal, and a method of forming a conductive layer by thermal spraying or plating metal, and a method of forming a conductive layer by thermal spraying or plating metal, and a method of forming a conductive layer by thermal spraying or plating metal, and by adding carbon, metal powder, or metal IJ inside the synthetic resin.
There is an internal addition method in which a conductive filler such as i-fiber is added and molded. The former method, in which a conductive layer is formed on the surface of a molded product, requires more steps and has poor reliability, and the conductive layer peels off after long-term use, so there is hope for an internal addition method for inoculation. has been received. However, the latter internal addition method also had the following problems. In other words, in order to achieve the desired electromagnetic shielding effect, it is necessary to mix and disperse a large amount of conductive fillers such as carbon, metal powder, or metal fibers, which may result in poor dispersion or damage to the molded product machine. The disadvantage was that the target strength was reduced. When synthetic resin is filled with metals, etc., there is a problem that the synthetic resin deteriorates by 8゛u.In order to prevent the strength from decreasing, a silane coupling layer is added to the conductive filler. However, it had the disadvantage that the conductivity was significantly inhibited.In addition, metal strings and highly flexible fiber-filled strings tend to form lumps when they are alone.
A pretreatment process such as loosening is required for mixing with synthetic resin. Historically, due to the difference in specific gravity and shape with synthetic resins, it requires advanced technology and skill to mix them uniformly. In addition, when workers handle the filler material, the fibers may get stuck in or touch the skin, causing physical discomfort such as pain and itching, and other environmental health problems are likely to occur. Therefore, it has been desired that the conductive molding material be manufactured using a process that is as familiar as possible, that can be operated in a closed system, and that the form of the filler is constant (does not change).
In other words, there is no conductive molding material that has a good electromagnetic shielding effect, can be mixed uniformly with synthetic resins, is environmentally hygienic, and does not reduce the strength or deteriorate the synthetic resin. is the reality. [Objective of the Invention] The present invention has been made to address this problem, and it is possible to quantify the form and amount of the conductive filler, supply it stably, and uniformly disperse it in the synthetic resin. Yes, it is environmentally hygienic.
) The object of the present invention is to provide a highly reliable conductive molding material that has a good electromagnetic shielding effect, high mechanical strength, and excellent electrical properties. [Summary of the Invention] As a result of intensive research to achieve the above object, the present invention uses a master pellet in which the surface of a fiber bundle such as a metal fiber having a titanate coupling layer described below is coated with a synthetic resin layer. It has been found that the above object can be achieved by this method. That is, the present invention

【よ、リン原子や硫黄原子を含まないヂタ
ネー1〜カップリング層を表面に有する長繊維状導電性
充填材を束ねた束表面に合成樹脂層を被覆−イホ化し、
ペレット状に切断してなるマスターベレットと、ペレッ
ト状の合成樹脂からなるナチュラルペレツ1へとを主成
分とすることを特徴とする導電性成形材料である。 本発明に用いるリン原子や硫黄原子を含まないチタネー
トカップリング層を形成づるチタネー1−ノコツブリン
グ剤としては、イソブト1ビルトリクミルフエニルチタ
ネ−1〜、イソプロピル1〜す(N−アミノエチル−ア
ミノエチル)チタネーh /J稍’ぼられ、単独又は2
種の混合物とし−C用いる。 これらの構造式を次に示
した。 イソプロピル1へリクミルフェニルチタネートイソブロ
ピルトリ〈N〜ルアミノエチルアミノ」−デル)チタネ
ート 本発明に用いる長絨紺状導電性充填材としては、銅、ア
ルミニウム、鉄、ニッケル、亜鉛若しくはそれらの合金
等の金属繊維、炭素繊維、又は銅、ニッケル、スズ等の
金属屑を有するガラスもしくは炭素繊維等がλYげられ
る。 これらの長繊維は細い(よどJζく、直径10〜
50μmが望ましい。 そしてこのにうな細線を通常1
00〜5’0.000本束ねたものを用いる。 長繊維
かつ細いものは単位体積当りの容量が人す・り、かつ、
電磁波シールド効果がにりなるためである。 本発明の前記長繊維状導電性充1i¥i祠の束表面を被
gMる合成樹脂としては、例えばボヘリスチレン樹脂、
ABS樹脂、ポリカーボネート樹脂、変性PPO樹脂等
が半4J”られる。 ここで用いる合成樹脂はナチュラ
ルペレットに用いる合成樹脂と同種又は同一のものでも
よい。 またナチュラルペレッ(−の合成樹脂と混合す
ることによりて界面に形成される第三の合成樹脂が補強
効果をもつもの、覆−なわちブレンドポリマーとなるよ
うなものもよい。 例えばナチュラルベレットがスチレ
ン系の合成街脂である場合には、変性P I) O樹脂
、ポリブタジェン樹脂、ポリカーボネート樹脂等を使用
゛すると好結果が肖られる。 こうすることにより界面
に形成される第三の合成樹脂が補強効果をもち、これら
の成形月利を成形して得ら・れる成形品の狛性を改善す
ることができる。 またナヂュラルペレツl〜はペレット状の所望の合成樹
脂を用い前記マスターペレツ1への樹脂と11)1種も
しくは同一の5のでもあるいは異種のしのC′もよい。  史に前記しlこブレンドポリマーをj13成り−るも
のでもよい。 マスターペレットとナチュラルペレット
の配合割合は通常マスターベレット1重伊部に苅してナ
チュラルペレツ1〜1〜20手品部配合Jることが好ま
しい。 しかし必要に応じてこの範囲外でもよい。 本発明の!I!!造方法にd5いて、マスターペレツ1
゛は、チタネートカップリング液中を通過さlC艮$1
i維状S電性充1i !Aの表面にチタネー1へカップ
リング層を形成させ、次いでこれを束ねた表面に合成樹
脂層を被覆一体化した後、ペレツ1〜状に切断し′Cつ
くる。 そして各工程が一連の連続した工程として、製
造する 以下さらに図面を用いて本発明の導電性成形材料及びそ
の製造方法を説明する。 第1図は本発明に用いる導電
性充填々Aの断面図で長繊維状導電性充j眞材1の表面
にリン原子や硫黄原子を含まないチタネートカップリン
グ層2が形成されている。 この形成は通常充填材1を束ねチタネートカップリング
剤の液中を通過させて充填々11の表面に付?7さUる
。 第2図はマスターベレットの断面図て′、充I眞月
1の表面にチタネートカップリング層2が形成された8
AIi鞘を多数束ねて、その束ねた表面に合成樹脂層3
を形成さじでいる。 第3図はマスターベレットの見取
図で中心に束ねた充填月−4−があり、その東表面に合
成樹脂3が被覆されてマスターペレッ1\Lとし−Cい
る。 製造されるマスターペレッ1〜は通常断面が円形
であるが必ずしし円形でなくとも偏平でもよく、特に形
状に制約されない。 マスターペレッ(・の製造方法を第4図を用いて説明り
れば、長い繊維状導電性充填月10を東ねてチタネート
ノコツブリング剤の溶液1′1中を通過さ−Uて表面処
理を行い、次いで前記充填4Δ′10を押出機12のダ
イス13を通し合成樹脂で被覆成形14し、冷fJI後
これをカッティング15してマスターベレット16とす
る。 合成樹脂で被覆成形後ロール(図星1! ′J’
 )で押出し偏平としカツアイングを行い偏平のマスタ
ーベレッ1〜を製造すること−しできる。 この製造工
程を連続的に(1うことが経済的に便利である。 しか
し場合にJ、り連続的なnA造工程でなくバッチ式なも
のでt)J、い。 本発明の導電性成形月別はマスターペレットどナヂュラ
ルベレッ1〜とを主成分とし必要に応じて他の成分を加
えることができる。 こうし−(1!tられた成形材料
は電磁波シールドを必要ど復る電子検器等の筐体等どし
て使用することができる。 [発明の実施例] 次に本発明の実施例について説明づる。 実施例 1〜2 第1表に示す組成に従い、直径約50μmの長尺銅繊維
を300本束とし、酸洗い乾燥後ヂタネートカップリン
グ液中を通過さUて前記長尺銅繊維の表面処理を行った
。 こうして得られたチタネー1へカップリング層を有
する導電性充填材にポリスチレン樹脂を劫く被覆一体化
して直径約2mmとし、長さ5m1llにカップリング
してマスターペレットを得た。 このンスターベレッ1
〜1容に対し2容のポリスチレン樹脂のナチュラルペレ
ッ]−を機械的に混合して導電性成形月別を製造した。  得られた成形月料を用いて射出成形を行って成形品と
した。 成形品の機械的特性ど電気的特性の試験を行っ
たので第1表に示した。 比較例 1〜2 実施例1〜2ど同様に第1表に示した組成に従い導電性
成形4A別を¥!逸した。 比較例1ではカップリング
処理をしないもの、比較例2ではシランカップリング剤
を用いて処理した以外は同一にし−C成形材】′81、
成形品を得て、機械的特性Jシよび電気的特性を試g6
i L/たので第1表に示した。 第1表 第1表をみれば、本発明の導電性成形材料が電磁波シー
ルド効果が大ぎり、機械的、電気的特性に1暴れている
ことがわかる。 I発明の効果」 以上説明した如く本発明の導電性成形月別及びその製造
方法【よ、ヂタネー1〜カップリング層を有りる長繊維
状導電性充填材の表面に合成樹脂層を形成一体化したマ
スターペレッ1〜を用いたことにより、導電性充」1i
 J4が均一に分散でき、環境衛生上しよい、電磁波シ
ールド効果の大ぎい、電気的Q:r f!Lが優れ、か
つ合成樹脂の強度を低下さけることのない信!!ili
 iaの1白い娘電性成形拐料を1?ることかC−さる
[Yo, the surface of the bundle of long fiber conductive fillers having a coupling layer on the surface is coated with a synthetic resin layer and made into a solid.
This is a conductive molding material characterized by having as main components master pellets cut into pellets and natural pellets 1 made of pellet-shaped synthetic resin. The titanium-1-cot-bringing agents used in the present invention to form a titanate coupling layer that does not contain phosphorus atoms or sulfur atoms include isobut-1-biltricumyl-phenyl titanate-1-, isopropyl-1-(N-aminoethyl-amino Ethyl) Titane h /J稍'borare, alone or 2
-C is used as a mixture of seeds. Their structural formulas are shown below. Isopropyl 1-helicumylphenyl titanate Isopropyl tri<N-ruaminoethylamino”-del) titanate The long dark blue conductive filler used in the present invention includes copper, aluminum, iron, nickel, zinc, or alloys thereof. etc., carbon fibers, or glass or carbon fibers having metal scraps such as copper, nickel, tin, etc. are used as λY. These long fibers are thin (thin, with a diameter of 10~
50 μm is desirable. And this thin line is usually 1
A bundle of 00 to 5'0.000 pieces is used. Long fibers and thin fibers have a capacity per unit volume of one person, and
This is because the electromagnetic shielding effect becomes stronger. Examples of the synthetic resin that covers the surface of the bundle of the long fiber-like electrically conductive resin of the present invention include Boheli styrene resin,
ABS resin, polycarbonate resin, modified PPO resin, etc. are made into semi-4J". The synthetic resin used here may be the same or the same as the synthetic resin used for natural pellets. Also, by mixing with the synthetic resin for natural pellets (-), The third synthetic resin formed at the interface may have a reinforcing effect, that is, it may be a blended polymer. For example, if the natural pellet is a styrene-based synthetic street resin, modified P I) Good results are obtained by using O resin, polybutadiene resin, polycarbonate resin, etc. By doing this, the third synthetic resin formed at the interface has a reinforcing effect, and these molding materials are molded. It is possible to improve the tenacity of the molded product obtained.In addition, the natural pellets 1~ are made of the desired synthetic resin in the form of pellets, and 11) the resin used in the master pellets 1 and 11) are one or the same 5 or different types. Noshin C' is also good. It is also possible to use one made of the above-mentioned Shiko blend polymer. The blending ratio of master pellets and natural pellets is usually 1 layer of master pellets and 1 to 1 layer of natural pellets. It is preferable that the blending ratio is 20. However, it may be outside this range if necessary.
゛ is passed through the titanate coupling liquid lC艮$1
i Fibrous S charge 1i! A coupling layer is formed on the surface of titanium 1, and then a synthetic resin layer is coated and integrated on the surface of the bundled surfaces, and then cut into pellets 1 to 1 to form 'C'. The conductive molding material of the present invention and its manufacturing method will be further described below with reference to the drawings. FIG. 1 is a sectional view of a conductive filler A used in the present invention, in which a titanate coupling layer 2 containing no phosphorus or sulfur atoms is formed on the surface of a long fibrous conductive filler 1. This formation is usually done by bundling the fillers 1 and passing them through a titanate coupling agent solution to attach them to the surface of the fillers 11. 7. Figure 2 is a cross-sectional view of the master pellet, with a titanate coupling layer 2 formed on the surface of the full-length metal 8.
A large number of AIi sheaths are bundled and a synthetic resin layer 3 is applied to the surface of the bundle.
Form with a spoon. Fig. 3 is a sketch of the master pellet, with a bundled filling moon -4- in the center, and a synthetic resin 3 coated on the east surface of the master pellet -C. The master pellets 1 to 1 to be manufactured usually have a circular cross section, but they are not necessarily circular and may be flat, and are not particularly limited in shape. To explain the manufacturing method of master pellets using FIG. 4, a long fibrous electrically conductive filler is passed through a solution of titanate brining agent 1'1 to surface treatment. Then, the filling 4Δ'10 is passed through a die 13 of an extruder 12 and coated with a synthetic resin 14, and after cold fJI is cut 15 to form a master pellet 16. !'J'
) to produce flat master berets 1 through extrusion and cutting. It is economically convenient to carry out this manufacturing process continuously. However, in some cases, it is not a continuous manufacturing process but a batch process. The conductive molding material of the present invention is mainly composed of master pellets and natural pellets, and other components may be added as necessary. The processed molding material can be used for the casing of electronic testers, etc., which require electromagnetic shielding. [Embodiments of the Invention] Next, embodiments of the present invention will be described. Examples 1 to 2 According to the composition shown in Table 1, 300 long copper fibers with a diameter of about 50 μm were made into a bundle, and after pickling and drying, the long copper fibers were passed through a ditanate coupling solution. The fibers were surface-treated. Titanium 1 thus obtained was coated with a conductive filler having a coupling layer and a polystyrene resin to a diameter of about 2 mm, and was coupled to a length of 5 ml to form master pellets. Got this.
Conductive moldings were prepared by mechanically mixing ~1 to 2 volumes of natural pellets of polystyrene resin. Injection molding was performed using the obtained molding material to obtain a molded product. The mechanical and electrical properties of the molded products were tested and are shown in Table 1. Comparative Examples 1-2 Similarly to Examples 1-2, conductive molding 4A was prepared according to the composition shown in Table 1. I missed it. Comparative Example 1 was not subjected to coupling treatment, and Comparative Example 2 was treated with a silane coupling agent.
Obtain the molded product and test its mechanical properties and electrical properties.
i L/, so it is shown in Table 1. Looking at Table 1, it can be seen that the electroconductive molding material of the present invention has a great electromagnetic wave shielding effect, and its mechanical and electrical properties are out of whack. 1. Effects of the Invention As explained above, the conductive molding and manufacturing method of the present invention [1] A synthetic resin layer is formed and integrated on the surface of a long fibrous conductive filler having a coupling layer. By using master pellets 1 to 1, conductive charging was achieved.
J4 can be uniformly dispersed, good for environmental hygiene, has a great electromagnetic shielding effect, and has an electrical Q: r f! Confidence that L is superior and does not reduce the strength of synthetic resin! ! ili
Ia's 1 white daughter electric molding material 1? Kotoka C-Saru.

【図面の簡単な説明】[Brief explanation of the drawing]

411図は本発明に使用゛りるη電+(1−充填Hの断
面図、第2図【Jマスターベレット〜の断面図、第3図
はンスターベレッ1〜の見取図、9′54図は本発明の
製造方法にお(プるマスターベレットの製造方法を示ザ
図である。 1.10・・・導電性充填材、 2・・・チタネートヵ
ツブリング層、 3・・・合成樹脂層、 4・・・束ね
た導電性充填拐、 5,16・・・マスターペレッ1〜
.11・・・チタネー1〜カップリング液、 12・・
・押出機、 13・・・ダイス、 14・・・被覆形成
、 ′15・・・カッティング。
Figure 411 is a cross-sectional view of the η electric + (1-filling H) used in the present invention, Figure 2 is a cross-sectional view of the J master pellet ~, Figure 3 is a sketch of the star pellet 1 ~, Figure 9'54 is the main It is a diagram illustrating a method for manufacturing a pull master pellet according to the manufacturing method of the invention. 1.10... Conductive filler, 2... Titanate cobbling layer, 3... Synthetic resin layer, 4...Bundled conductive filling material, 5,16...Master pellet 1~
.. 11... Titanium 1 ~ Coupling liquid, 12...
・Extruder, 13...Dice, 14...Coating formation, '15...Cutting.

Claims (1)

【特許請求の範囲】 1 リン原子や硫黄原子を含まないヂタネー1〜カップ
リング層を表面に右す゛る長繊維状導電性充填拐を束ね
lc束衣表面合成樹脂層を被覆一体化し、ベレット状に
切断してなるマスターベレットと、ペレット状の合成樹
脂から4jるナヂュラルペレットとを主成分とりること
を特徴ど覆−る導電性成形材料。 2 リン原子や硫黄原子を含まないチクネー1へカップ
リング1gが、イソプロピル1〜リクミルフェニルヂタ
ネ−1〜、イソプロピル1〜す(+)−アミノエヂルー
アミノエヂル)ヂタネー1〜のいずれかによって形成さ
れたしの(゛あることを特徴とする特R’l請求の範囲
第゛I)1″1記載の導電性成形月利。 3 長繊紺状尋電性充屓月は、金属繊維、炭崇繊維、表
面に金属層を有する炭素組紐、又は表面に金属層を有す
るガラス#Ii維であることを特徴とする特許請求の範
囲第1項又は第2項記載の導電1!1成形祠料。 4 マスターペレット合成樹脂層の合成樹脂とナヂュラ
ルベレッ1への合成樹脂とがブレンドポリマーを形成り
る合成樹脂であることを特徴とする特ムリ請求の範囲第
1項ないし第3項いずれか記載の導電性成形月利。 5 マスターベレット合成樹脂層の合成樹脂とナヂュラ
ルペレットの合成樹脂とが同一の合成樹脂であることを
特徴とする特許請求の範囲第1項ないし第4項いずれか
記載の導電性成形月利。 6 リン原子−11JMl黄原子を含まないヂタネート
カップリング1;゛りを表面に有する長繊維状導電性充
填祠を束ねた充填面に合成樹脂層を被覆一体化し、ペレ
ット状に切断してなるマスターペレッ1〜と、ペレット
状の合成樹脂からなるナヂュラルペレットとを主成分と
づ−る導電性成形材料を製造する方法であって、ナタネ
−トカツブリング液中を長繊維状導電性充填材の束を通
過させて該充I!lt材表面にリン原子や硫黄原子を含
まないチタネートカップリング層を形成する工程、長繊
維状導電性充填材を束ねた東表面に合成樹脂層を被覆一
体化Jる工程、及びペレット状に切断する工程からなる
一連の連続した工程でマスターベレツ1〜を製造するこ
とを特徴とターる導電性成形材料の製造方法。
[Scope of Claims] 1. A long fiber-like conductive filling material is bundled on the surface of a ditaneous material 1 to a coupling layer that does not contain phosphorus atoms or sulfur atoms, and a synthetic resin layer is coated on the surface of the LC bundle to form a pellet shape. A conductive molding material characterized in that the main components thereof are a master pellet formed by cutting and natural pellets formed from a pellet-shaped synthetic resin. 2. 1 g of coupling to Chikune 1, which does not contain phosphorus or sulfur atoms, is either isopropyl 1 ~ liquemylphenylditane-1 ~, isopropyl 1 ~ (+)-aminoedyl-aminoedyl) ditane 1 ~ 3. The conductive molded material according to claim 1, characterized in that it is made of metal. The conductive material 1!1 according to claim 1 or 2, which is a fiber, a carbon fiber, a carbon braid having a metal layer on the surface, or a glass #Ii fiber having a metal layer on the surface. Molding abrasive material. 4. Any one of claims 1 to 3 characterized in that the synthetic resin of the master pellet synthetic resin layer and the synthetic resin of the natural pellet 1 are synthetic resins forming a blend polymer. 5. Claims 1 to 4, characterized in that the synthetic resin of the master pellet synthetic resin layer and the synthetic resin of the natural pellet are the same synthetic resin. Conductive molding rate according to any one of the following.6 Phosphorus atom-11JMl yellow atom-free ditanate coupling 1; A synthetic resin layer is formed on the filling surface of a bundle of long fiber-like conductive filling particles having a dimple on the surface. A method for producing a conductive molding material whose main components are master pellets 1 to 1 which are integrally coated and cut into pellets, and natural pellets made of a pellet-shaped synthetic resin, the method comprising: A step of forming a titanate coupling layer that does not contain phosphorus atoms or sulfur atoms on the surface of the material by passing a bundle of long fiber conductive fillers through a tokatuburing liquid, A method for producing a conductive molding material, characterized in that the master beads 1 to 1 are produced through a series of continuous steps consisting of a step of coating and integrating a synthetic resin layer on the east surface of the bundle, and a step of cutting into pellets. .
JP22075183A 1983-11-25 1983-11-25 Electrically conductive molding material and production thereof Pending JPS60112854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22075183A JPS60112854A (en) 1983-11-25 1983-11-25 Electrically conductive molding material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22075183A JPS60112854A (en) 1983-11-25 1983-11-25 Electrically conductive molding material and production thereof

Publications (1)

Publication Number Publication Date
JPS60112854A true JPS60112854A (en) 1985-06-19

Family

ID=16755963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22075183A Pending JPS60112854A (en) 1983-11-25 1983-11-25 Electrically conductive molding material and production thereof

Country Status (1)

Country Link
JP (1) JPS60112854A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245659A (en) * 1985-08-23 1987-02-27 Eng Plast Kk Electrically conductive molding material
JPS62138540A (en) * 1985-12-13 1987-06-22 Toshiba Chem Corp Electrically-conductive elastomer composition
JPS63225657A (en) * 1986-10-28 1988-09-20 Calp Corp Composite polymer composition
US6182486B1 (en) 1997-12-30 2001-02-06 National Science Council Superplastic alloy-containing conductive plastic article for shielding electromagnetic interference and process for manufacturing the same
US6210521B1 (en) 1997-07-25 2001-04-03 National Science Council Process and apparatus for making radially arranged aluminum foil-filled plastic pellets to shield against electromagnetic interference
WO2017070880A1 (en) * 2015-10-29 2017-05-04 Hewlett-Packard Development Company, L.P. Composite structure, preparation method thereof and articles comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790049A (en) * 1980-11-26 1982-06-04 Toyota Central Res & Dev Lab Inc Fiber-reinforced resin composition
JPS58150203A (en) * 1981-12-30 1983-09-06 エヌ・ヴイ・ベカルト・エス・エイ Prastic product with conductive fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790049A (en) * 1980-11-26 1982-06-04 Toyota Central Res & Dev Lab Inc Fiber-reinforced resin composition
JPS58150203A (en) * 1981-12-30 1983-09-06 エヌ・ヴイ・ベカルト・エス・エイ Prastic product with conductive fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245659A (en) * 1985-08-23 1987-02-27 Eng Plast Kk Electrically conductive molding material
JPH0254864B2 (en) * 1985-08-23 1990-11-22 Nippon Jii Ii Purasuchitsukusu Kk
JPS62138540A (en) * 1985-12-13 1987-06-22 Toshiba Chem Corp Electrically-conductive elastomer composition
JPH0657772B2 (en) * 1985-12-13 1994-08-03 東芝ケミカル株式会社 Conductive elastomer composition
JPS63225657A (en) * 1986-10-28 1988-09-20 Calp Corp Composite polymer composition
US6210521B1 (en) 1997-07-25 2001-04-03 National Science Council Process and apparatus for making radially arranged aluminum foil-filled plastic pellets to shield against electromagnetic interference
US6182486B1 (en) 1997-12-30 2001-02-06 National Science Council Superplastic alloy-containing conductive plastic article for shielding electromagnetic interference and process for manufacturing the same
WO2017070880A1 (en) * 2015-10-29 2017-05-04 Hewlett-Packard Development Company, L.P. Composite structure, preparation method thereof and articles comprising the same

Similar Documents

Publication Publication Date Title
EP0131067B1 (en) Conductive synthetic resin molding material
JPS60112854A (en) Electrically conductive molding material and production thereof
JPS61296066A (en) Electrically-conductive molding material
JPS6018315A (en) Conductive molding material
JPS60162604A (en) Manufacture of conductive pellet
JPS60134500A (en) Electromagnetic wave shielding material
JPS5986638A (en) Resin composition having excellent electromagnetic wave shielding property and rigidity
JPH0319862B2 (en)
JP2000252679A (en) Resin molded product superior in electromagnetic wave absorbing characteristic and its manufacture
JPS63297459A (en) Electrically conductive polymer blend
JPS61155457A (en) Electromagnetic wave shielding composition
JPH0361706B2 (en)
JPS63211698A (en) Electromagnetic shielding compound
JPS61155455A (en) Electromagnetic wave shielding composition
JPS6074497A (en) Electromagnetic wave shielding material
JPS6053546A (en) Electrically conductive plastic composition
JP2004027097A (en) Thermoplastic resin composition
JPS6126666A (en) Electromagnetic wave shielding composition
JPS60192762A (en) Electrically conductive molding material and production thereof
JPS63205362A (en) Synthetic resin composition
JPS61155458A (en) Electromagnetic wave shielding composition
JPS6126668A (en) Electromagnetic wave shielding composition
JPS6018314A (en) Conductive molding material
JPS6126669A (en) Electromagnetic wave shielding composition
JPS6081707A (en) Conductive composition for shielding electromagnetic wave