JPS61296066A - Electrically-conductive molding material - Google Patents

Electrically-conductive molding material

Info

Publication number
JPS61296066A
JPS61296066A JP13610185A JP13610185A JPS61296066A JP S61296066 A JPS61296066 A JP S61296066A JP 13610185 A JP13610185 A JP 13610185A JP 13610185 A JP13610185 A JP 13610185A JP S61296066 A JPS61296066 A JP S61296066A
Authority
JP
Japan
Prior art keywords
synthetic resin
pellets
fibers
stainless steel
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13610185A
Other languages
Japanese (ja)
Other versions
JPH055263B2 (en
Inventor
Hidehiro Iwase
岩瀬 英裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP13610185A priority Critical patent/JPS61296066A/en
Publication of JPS61296066A publication Critical patent/JPS61296066A/en
Publication of JPH055263B2 publication Critical patent/JPH055263B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:The titled material having improved electrical conductivity even with a small amount of stainless steel fibers blended, comprising master pellets obtained by bundling filamentous stainless steel fibers, coating the surface of the fibers with a synthetic resin layer to integrate the fibers and pelletizing it and natural pellets. CONSTITUTION:About 1,000-1,500 filamentous stainless steel SVS 304 fibers comprising <=0.08wt% carbon, <=2.0wt% manganese, <=1wt% silicon, 18-20wt% chromium, 8-10.5wt% Ni, <=0.045wt% phosphorus, <=0.03wt% sulfur and the rest of iron are bundled, the surface of the fibers is coated with (B) a synthetic resin such as polystyrene, ABS resin, etc. integrated and cut into pellets to give master pellets. 1-10wt% based on molding material of the master pellets is blended with a synthetic resin (may be the same or different from the component B) in a pellet state.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は、合成樹脂の強度を低下させることなく、S 
tJ S 304ステンレス繊維の充填量が少なく、均
一に分散でき、かつ電磁波シールド効果の大きい導電性
成形材料に関する。
Detailed Description of the Invention [Technical Field of the Invention 1] The present invention is directed to the production of S without reducing the strength of synthetic resin.
tJ S 304 Relates to a conductive molding material that has a small amount of stainless steel fibers, can be uniformly dispersed, and has a large electromagnetic shielding effect.

[発明の技術的背朔とその問題点] 近年、外部の妨害電波から電子回路を保護し、かつ発信
回路等から発生する不要な電波を外部に漏洩するのを防
止するために、電子機器の筐体を電磁波シールド材料で
形成することが要求されている。 このような電磁波シ
ールド材料として、金属や導電性合成樹脂などが挙げら
れ、前者の金属は優れた電磁波シールド効果を有する反
面、重い、高価である、加工+4が悪い等の欠点がある
ため、後者の導電性合成樹脂の使用が主流となりつつあ
る。
[Technical background of the invention and its problems] In recent years, electronic equipment has been developed to protect electronic circuits from external interference radio waves and to prevent unnecessary radio waves generated from transmitting circuits from leaking to the outside. It is required that the housing be made of an electromagnetic shielding material. Examples of such electromagnetic shielding materials include metals and conductive synthetic resins. Although the former metals have excellent electromagnetic shielding effects, they have drawbacks such as being heavy, expensive, and have poor processing +4, so the latter The use of conductive synthetic resins is becoming mainstream.

合成樹脂に導電性を付与する方法としては、合成樹脂を
成形後、導電性塗料を塗布したり、金属を熔射或いはメ
ッキ1ノたりして表面に導電層を形成する方法と、合成
樹脂内部にカーボンや金属の粉末や繊維等の導電性の充
填材を添加する内部添加法等がある。 合成樹脂表面に
導電層を形成する方法は、工程数が増えて量産Mに乏し
く、また導電層が長時間の使用により剥がれてしまうと
いう欠点があるため、内部添加法に期待が寄ぜられてい
る。 しかし、内部添加法にも次のような問題があった
。 すなわち、所望の電磁波シールド効果を付与させる
ためには、カーボンや金属等の導電性の充填材を多聞に
配合する必要があり、その結果、分散不烏を起こしたり
、成形品の機械的強度が低下するという欠点があった。
Methods of imparting conductivity to synthetic resin include forming a conductive layer on the surface by applying conductive paint, spraying or plating metal after molding the synthetic resin, and forming a conductive layer inside the synthetic resin. There is also an internal addition method in which conductive fillers such as carbon or metal powders or fibers are added. The method of forming a conductive layer on the surface of a synthetic resin increases the number of steps and is not suitable for mass production, and also has the disadvantage that the conductive layer peels off after long-term use, so expectations have been placed on the internal addition method. There is. However, the internal addition method also had the following problems. In other words, in order to provide the desired electromagnetic shielding effect, it is necessary to incorporate a large amount of conductive filler such as carbon or metal, which may cause dispersion problems or reduce the mechanical strength of the molded product. The disadvantage was that it decreased.

 また金属等を合成樹脂に充填した場合、合成樹脂を劣
化させるという問題があった。 さらに金属繊維や柔軟
性に富む充填材は単体の状態で塊状化しやす(、混合の
ために解きほぐし等の前処理■稈を必要とする欠点があ
った。 更に比重の違いや、形状の違いから均一に混練
することは、高度の技術と技能とを必要とする。 また
作業着が充填+4の取扱い時、IIMが皮膚にささった
り触れたりして、痛みやカユミ等身体的苦痛を伴うなど
環境衛生上の問題も発生しやすい。 従って成形材料の
製造はできる限り知いT稈で、かつクローズドシステム
で稼動でき、そして充填材の形態ら一定(変化しない)
のものが望まれていた。 いいかえれば導電性充填材の
充填量が少なくN磁波シールド効果が大きく、合成樹脂
との混合が均一にでき、環境衛生上もよく、しかも合成
樹脂の強度を低下又は劣化さ1!たりすることのない導
電性成形材料が19られていないのが現状である。
Furthermore, when a synthetic resin is filled with metal or the like, there is a problem in that the synthetic resin deteriorates. Furthermore, metal fibers and highly flexible fillers tend to clump together in a single state (they have the disadvantage of requiring pretreatment such as loosening for mixing).Furthermore, due to differences in specific gravity and shape, Uniform kneading requires advanced techniques and skills.Also, when handling work clothes for filling +4, IIM may get stuck or touch the skin, causing physical pain such as pain and itching. Hygiene problems are also likely to occur.Therefore, the manufacturing of the molding material should be as simple as possible, and it should be possible to operate in a closed system, and the form of the filler should be constant (do not change).
was desired. In other words, the filling amount of the conductive filler is small, the N magnetic wave shielding effect is large, it can be mixed uniformly with the synthetic resin, it is good for environmental hygiene, and it does not reduce or deteriorate the strength of the synthetic resin! At present, there is no conductive molding material available that will not cause any damage.

[発明の目的] 本発明の目的は、前記のような実情に鑑みてなされたも
ので、導電性充填材の形態と量を定量化し、安定して供
給するとともに導電性充填材の充填を少なく、合成樹脂
中に均一に分散することができ、機械的強度を低下させ
ることのない、電磁波シールド効果の優れた、環境衛生
上Jうよく、かつ低コストの導電性成形材料を提供しよ
うとするものである。
[Objective of the Invention] The object of the present invention was made in view of the above-mentioned circumstances, and is to quantify the form and amount of conductive filler, supply it stably, and reduce the amount of conductive filler. To provide a conductive molding material that can be uniformly dispersed in a synthetic resin, does not reduce mechanical strength, has an excellent electromagnetic shielding effect, is environmentally hygienic, and is low cost. It is something.

[発明の概要] 本発明物は、上記の目的を達成しようと鋭意研究を重ね
た結果、5LJS304ステンレス繊紺を導電性充填材
として用いて、後述のマスターペレツ1〜を製作し、こ
れを使用することによって、上記目的を達成することか
できることを見いだし、本発明を完成するに至ったもの
である。
[Summary of the Invention] As a result of intensive research to achieve the above object, the present invention was made by using 5LJS304 stainless steel navy blue as a conductive filler to produce Master Pellet 1 to be described later. The inventors have discovered that the above object can be achieved by doing so, and have completed the present invention.

す(2わら本発明は、長繊維状の5tJS304スデン
レスlll1Hを束ねた表面に合成樹脂層を被覆形成一
体化してペレット状に切断してなるマスターぺ1ノツト
と、ペレット状の合成樹脂からなるナチュラルペレット
とを主成分とすることを特徴とする導電付成形材料であ
る。 そしてこのマスターペレットは、一連の連続した
工程で製造される導電性成形材料である。
(2) The present invention consists of a master pellet made by forming a synthetic resin layer on the surface of a bundle of long fibers of 5t JS304 stainless steel and cutting it into pellets, and a natural material made of a pellet-shaped synthetic resin. This is a conductive molding material characterized by containing pellets as a main component.The master pellet is a conductive molding material manufactured in a series of continuous steps.

本発明で導電性充填材として用いるステンレスIIIは
、S U S 304鋼材から作られる繊維で、その化
学成分は、炭素0.08%以下、硅素i、o。
Stainless steel III used as a conductive filler in the present invention is a fiber made from SUS 304 steel, and its chemical composition is 0.08% or less of carbon, i and o silicon.

%以下、マンガン2.00%以下、リン0.04!1%
以下、硫黄0.30%Jズ下、ニッケル8.00〜1.
50%、クロム18.00〜20.0n%、残部が鉄で
S t、J 5316に比べてクロムの含有量が多く、
ニッケルの含有量が少なく、かつモリブデンを全く含有
しないものである。 従って5US316にくらべて硬
いため、繊維が折れたり、切断しにくいという性質があ
る。 この5US304ステンレス繊維の充填割合は、
成形材料に対して1〜10重量%であることが望ましい
。 充填量が1重間%未満では導電性に効果なく、また
10重帛%を超えるど比重が大ぎくコスト高となり好ま
しくない。 また長!l緋状のS tJ S 304ス
テンレスl1iIfrの線径は、6〜15Iln+で、
1000〜15000本稈度の束どして用いる。
% or less, manganese 2.00% or less, phosphorus 0.04!1%
Below, sulfur 0.30% J's bottom, nickel 8.00-1.
50%, chromium 18.00-20.0n%, the balance is iron, and has a higher chromium content than St, J 5316,
It has a low nickel content and no molybdenum. Therefore, since it is harder than 5US316, the fibers are difficult to break or cut. The filling ratio of this 5US304 stainless fiber is
The amount is preferably 1 to 10% by weight based on the molding material. If the filling amount is less than 1% by weight, there is no effect on the conductivity, and if it exceeds 10% by weight, the specific gravity becomes too large and the cost becomes undesirable. Long again! The wire diameter of the scarlet S tJ S 304 stainless steel l1iIfr is 6-15Iln+,
It is used in bundles of 1,000 to 15,000 culms.

本発明に用いる合成樹脂層の合成樹脂としては、ポリス
チレン樹脂、ABS樹脂、ポリカーボネート樹脂、変性
PPO樹脂、ポリブヂレンテレフタレート樹脂、ポリブ
タジェン樹脂等が挙げられる。
Examples of the synthetic resin for the synthetic resin layer used in the present invention include polystyrene resin, ABS resin, polycarbonate resin, modified PPO resin, polybutylene terephthalate resin, polybutadiene resin, and the like.

これら合成樹脂層の合成樹脂は、ナチュラルペレットの
合成樹脂と同種同一でも異種でも差支えない。 また、
ナチュラルペレットの合成樹脂と混合りることにJ、つ
て界面に形成する第三の合成樹脂が補強効果をもつbの
、すなわち、ブレンドポリマーどなるようなものでもJ
:い。 例えばスチしノン系ポリマーの成形品を得たい
場合は、変性PPO樹脂、ポリブタジェン樹脂、ポリカ
ーボネート樹脂等を使用すると好結果が得られる。 こ
うすることにより、界面に形成する第三の合成樹脂が補
強効果を4プち、成形品の特性劣化の防1にや特例の改
善がなされる。
The synthetic resin of these synthetic resin layers may be the same or different from the synthetic resin of the natural pellets. Also,
When mixed with the synthetic resin of natural pellets, the third synthetic resin formed at the interface has a reinforcing effect.
:stomach. For example, when it is desired to obtain a molded article made of a non-styrene polymer, good results can be obtained by using modified PPO resin, polybutadiene resin, polycarbonate resin, or the like. By doing this, the third synthetic resin formed at the interface has a reinforcing effect of 4 times, and a special improvement is achieved in preventing deterioration of the properties of the molded product.

本発明で用いるマスターペレッ1〜は、前述の長111
ff状(7)SUS3(14ステンLzスmlf[ヲ1
000〜15000本程度に束ね11二表面を前述の合
成樹脂層で被覆形成一体化し、5〜8 mmの長さにな
るよう繊維方向に直角に切断してペレット化したもので
ある。 合成樹脂層を形成一体化した後、そのまま切断
してもにいが、押圧して偏平状とし切断して1)差支え
ない。
The master pellets 1 to 1 used in the present invention are the above-mentioned long pellets 111
ff shape (7) SUS3 (14 stainless steel Lz mlf [wo1
The fibers are bundled into approximately 000 to 15,000 fibers, the two surfaces of which are covered with the aforementioned synthetic resin layer, and then cut perpendicularly to the fiber direction to a length of 5 to 8 mm to form pellets. After the synthetic resin layer is formed and integrated, it may be cut as is, or it may be pressed and cut into a flat shape.1) There is no problem.

本発明に用いるナチュラルペレットは、合成樹脂そのも
のでペレッ1〜状のポリスチロール樹脂、ABS樹脂、
ポリカーボネート樹脂、ポリブタジェン樹脂、変性P 
P O樹脂、ポリブチレンテレフタレート樹脂等が挙げ
られ、特に前述したブレンドポリマーを形成するものを
選択するのが好ましい。
The natural pellets used in the present invention are synthetic resins themselves, such as pellet-shaped polystyrene resin, ABS resin,
Polycarbonate resin, polybutadiene resin, modified P
Examples include P 2 O resin, polybutylene terephthalate resin, etc., and it is particularly preferable to select one that forms the above-mentioned blend polymer.

本発明の導電性成形材料は、マスターペレットとナチュ
ラルペレッ[へとを主成分として製造されるが、一般に
射出成形ではマスターペレット 1重量部に対してナチ
ュラルペレッ]〜 1〜20重量部配合することが望ま
しい。 その他必要に応じて他の添加剤を加えることも
できる。 そして本発明の導電性成形材料は、電磁波シ
ールド効果を必要とする電子機器等のハウジング等とし
て使用される。
The conductive molding material of the present invention is blended with 1 to 20 parts by weight of master pellets and natural pellets (produced using hematoma as a main component, but in general, in injection molding, 1 part by weight of master pellets is natural pellets). is desirable. Other additives may also be added if necessary. The conductive molding material of the present invention is used as housings for electronic devices and the like that require an electromagnetic shielding effect.

次に図面を用いて本発明の導電性成形材料を説明する。Next, the conductive molding material of the present invention will be explained using the drawings.

 第1図は、本発明に用いるマスターペレットの拡大断
面図で長繊維状の5US304ステンレス1liH1を
束ねた表面に合成樹脂層2が被覆形成一体化されている
。 第2図はマスターペレット3の拡大完敗り図で、艮
l11m状のS U 5304ステンレス繊N1を束ね
、その表面を合成樹脂層2で被覆形成し、これを適当な
長さに切断してマスターペレットとしている。 製造さ
れるマスターペレット3は通常断面が円形であるが、必
ずしも円形でなくとも偏平でもよく特に断面形状に制限
はない。 次にマスターペレットの製造方法を第3図を
用いて説明する。 束ねた長m維状のS U S 30
4ステンレスm雑10を押出機11のダイス12を通し
、束ねた長繊維状5US304ステンレス繊維10を合
成樹脂で被覆形成13し、更にカッティング14してマ
スターペレット15とする。 このマスターペレット1
5の一連の製造工程を連続的に行うことが経済的に大変
有利であるが、必ずしも連続的でなくバッチ方式でもよ
い。
FIG. 1 is an enlarged sectional view of a master pellet used in the present invention, in which a synthetic resin layer 2 is integrally coated on the surface of a bundle of long fibers of 5US304 stainless steel 1liH1. Figure 2 is an enlarged view of the master pellet 3, which is made by bundling S U 5304 stainless steel fibers N1 in the shape of about 11 m, coating the surface with a synthetic resin layer 2, and cutting this into an appropriate length to make the master pellet. It is made into pellets. The manufactured master pellets 3 usually have a circular cross section, but the cross-sectional shape is not necessarily limited and may be flat. Next, a method for manufacturing master pellets will be explained using FIG. 3. Bundled long filament SUS 30
4 stainless steel materials 10 are passed through a die 12 of an extruder 11, bundled long fibers of 5 US 304 stainless steel fibers 10 are coated with a synthetic resin 13, and further cut 14 to form master pellets 15. This master pellet 1
Although it is economically very advantageous to carry out the series of manufacturing steps No. 5 continuously, it is not necessarily necessary to carry out the process continuously, but a batch system may also be used.

[発明の実施例] 次に本発明を実施例によって説明する。[Embodiments of the invention] Next, the present invention will be explained by examples.

実施例 1 直径約8μmの長尺のS 1.J S 304ステンレ
スm¥#を6000本束ねて、ポリスチレン樹脂を薄く
被覆形成一体化して直径約2+mとし、長さ51Ill
にカッティングしたものをマスターペレッi〜とした。
Example 1 Long S with a diameter of about 8 μm 1. 6,000 pieces of JS 304 stainless steel m¥# are bundled together and a thin layer of polystyrene resin is formed and integrated to make a diameter of approximately 2+m and a length of 51Ill.
The pellets cut into the following shapes were designated as Master Pellet i~.

5US304ステンレス!1Mが成形材料に対して5型
間%含まれるように、このマスターペレットとポリスチ
レン樹脂のナチュラルペレットとを機械的に混合して導
電性成形材料を製造した。 得られた成形材料を使用し
て射出成形を行い、厚さ3fflIの板状成形品を得た
。 この成形品の電磁波シールド効果を試験したところ
、300MH2で40dF3であった。 成形品のS 
U S 304ステンレス繊緒が少なく、均一に分散し
ており、かつ樹脂の強度の低下や劣化はみられなかった
。 第4図に電磁波シールド効果を示した。
5US304 stainless steel! A conductive molding material was produced by mechanically mixing this master pellet and natural pellets of polystyrene resin so that 1M was contained in the molding material in an amount of 5%. Injection molding was performed using the obtained molding material to obtain a plate-shaped molded product with a thickness of 3fflI. When the electromagnetic shielding effect of this molded product was tested, it was found to be 40 dF3 at 300 MH2. S of molded product
The amount of US 304 stainless steel cord was small and uniformly dispersed, and no decrease in strength or deterioration of the resin was observed. Figure 4 shows the electromagnetic shielding effect.

比較例 直径約8μmの5US316ステンレス繊麗を6000
本束ねて実施例と同様にしてマスターペレットを作り、
また同様にして導電性成形材料を作り成形品を得た。 
成形品の電磁波シールド効果は300MH2で20 d
F3であった。
Comparative example: 5US316 stainless steel with a diameter of about 8μm.6000
This is bundled to make a master pellet in the same manner as in the example,
In addition, a conductive molding material was made in the same manner and a molded product was obtained.
The electromagnetic shielding effect of the molded product is 20 d at 300 MH2
It was F3.

[発明の効果] 以上説明したように本発明の導電性成形材料は、S t
J S 304ステンレスtINを用いたことによって
、その充填量も少なく、均一に合成樹脂に分散し、優れ
た電磁波シールド効果を示し、また環境衛生上もよいも
ので、この導電付成形材料を使用すれば強度の劣化しな
い優れた成形品を低コストで製造することができる。 
また充填材の混合T程がないため、■程も大幅に短縮で
き大変有利である。
[Effects of the Invention] As explained above, the conductive molding material of the present invention has S t
By using JS 304 stainless steel tIN, the filling amount is small and it is uniformly dispersed in the synthetic resin, exhibiting an excellent electromagnetic shielding effect and being environmentally hygienic. Therefore, excellent molded products with no deterioration in strength can be manufactured at low cost.
In addition, since there is no need to mix the filler T, the time required for mixing can be greatly shortened, which is very advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に使用するマスターペレットの拡大断
面図、第2図はマスターペレットの拡大完敗り図、第3
図はマスターペレットの製造方法を示す図、第4図は本
発明の電磁波シールド効果を示す曲線図である。 1.1O−8IJS304’)、テンレ’)、mH,2
・・・合成樹脂層、 3.15・・・マスターペレット
、11・・・押出機、 12・・・ダイス、 13・・
・合成樹脂被覆、 14・・・カッティング。 第1図     第2図
Fig. 1 is an enlarged sectional view of the master pellet used in the present invention, Fig. 2 is an enlarged view of the master pellet completely destroyed, and Fig. 3 is an enlarged sectional view of the master pellet used in the present invention.
The figure shows a method for manufacturing master pellets, and FIG. 4 is a curve diagram showing the electromagnetic shielding effect of the present invention. 1.1O-8IJS304'), tenle'), mH, 2
...Synthetic resin layer, 3.15...Master pellet, 11...Extruder, 12...Dice, 13...
・Synthetic resin coating, 14...Cutting. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 長繊維状のSUS304ステンレス繊維を束ねた表
面に合成樹脂層を被覆形成一体化してペレット状に切断
してなるマスターペレットと、ペレット状の合成樹脂か
らなるナチユラルペレットとを主成分とすることを特徴
とする導電性成形材料。 2 SUS304ステンレス繊維の化学成分が炭素0.
08%以下、マンガン2%以下、硅素1.0%以下、ク
ロム18〜20%、Ni8〜10.5%、リン0.04
5%以下、硫黄0.03%以下、残部が鉄である特許請
求の範囲第1項記載の導電性成形材料。 3 マスターペレットが、長繊維状のSUS304ステ
ンレス繊維を束ねた表面に合成樹脂層を被覆形成一体化
してペレット状に切断する一連の連続した工程で製造さ
れるものである特許請求の範囲1項又は第2項記載の 導電性成形材料。
[Scope of Claims] 1 A master pellet formed by forming a synthetic resin layer on the surface of a bundle of long-fiber SUS304 stainless steel fibers and cutting it into pellets, and a natural pellet made of a pellet-shaped synthetic resin. A conductive molding material characterized by having the main component as a conductive molding material. 2 The chemical composition of SUS304 stainless steel fiber is carbon 0.
08% or less, manganese 2% or less, silicon 1.0% or less, chromium 18-20%, Ni 8-10.5%, phosphorus 0.04
5% or less, sulfur 0.03% or less, and the balance iron. 3. The master pellet is manufactured by a series of continuous steps of forming a synthetic resin layer on the surface of a bundle of long-fiber SUS304 stainless steel fibers and cutting them into pellets. 2. The conductive molding material according to item 2.
JP13610185A 1985-06-24 1985-06-24 Electrically-conductive molding material Granted JPS61296066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13610185A JPS61296066A (en) 1985-06-24 1985-06-24 Electrically-conductive molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13610185A JPS61296066A (en) 1985-06-24 1985-06-24 Electrically-conductive molding material

Publications (2)

Publication Number Publication Date
JPS61296066A true JPS61296066A (en) 1986-12-26
JPH055263B2 JPH055263B2 (en) 1993-01-21

Family

ID=15167295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13610185A Granted JPS61296066A (en) 1985-06-24 1985-06-24 Electrically-conductive molding material

Country Status (1)

Country Link
JP (1) JPS61296066A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235368A (en) * 1987-03-25 1988-09-30 Toshiba Chem Corp Electrically conductive resin composition and molded product thereof
JPH01203469A (en) * 1988-02-08 1989-08-16 Aron Kasei Co Ltd Synthetic resin composition
JPH02173068A (en) * 1988-12-26 1990-07-04 Idemitsu Petrochem Co Ltd Molding material containing stainless steel fiber
KR100787562B1 (en) 2006-10-31 2007-12-21 주식회사 케이씨티 A method of preparing resin composition pellet for shielding electro-magnetic interference and molded articles using it
WO2019088063A1 (en) * 2017-10-30 2019-05-09 ダイセルポリマー株式会社 Electromagnetic wave shielding/absorbing molded article
JP2019161209A (en) * 2017-10-30 2019-09-19 ダイセルポリマー株式会社 Electromagnetic wave shielding/absorbing molding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379000A (en) * 1965-09-15 1968-04-23 Roehr Prod Co Inc Metal filaments suitable for textiles
JPS5159944A (en) * 1974-11-20 1976-05-25 Daidoh Plant Eng
JPS58150203A (en) * 1981-12-30 1983-09-06 エヌ・ヴイ・ベカルト・エス・エイ Prastic product with conductive fiber
JPS58222124A (en) * 1982-06-18 1983-12-23 Aron Kasei Co Ltd Thermoplastic resin composition
JPS5941246A (en) * 1982-07-22 1984-03-07 ダ−ト・インダストリ−ス・インコ−ポレ−テツド Fiber reinforced composite material
JPS59182819A (en) * 1983-04-02 1984-10-17 Toshiba Chem Corp Electrically conductive molding material
JPS6088063A (en) * 1983-10-21 1985-05-17 Seiko Epson Corp Electrically conductive resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379000A (en) * 1965-09-15 1968-04-23 Roehr Prod Co Inc Metal filaments suitable for textiles
JPS5159944A (en) * 1974-11-20 1976-05-25 Daidoh Plant Eng
JPS58150203A (en) * 1981-12-30 1983-09-06 エヌ・ヴイ・ベカルト・エス・エイ Prastic product with conductive fiber
JPS58222124A (en) * 1982-06-18 1983-12-23 Aron Kasei Co Ltd Thermoplastic resin composition
JPS5941246A (en) * 1982-07-22 1984-03-07 ダ−ト・インダストリ−ス・インコ−ポレ−テツド Fiber reinforced composite material
JPS59182819A (en) * 1983-04-02 1984-10-17 Toshiba Chem Corp Electrically conductive molding material
JPS6088063A (en) * 1983-10-21 1985-05-17 Seiko Epson Corp Electrically conductive resin composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235368A (en) * 1987-03-25 1988-09-30 Toshiba Chem Corp Electrically conductive resin composition and molded product thereof
JPH0212986B2 (en) * 1987-03-25 1990-04-03 Toshiba Chem Prod
JPH01203469A (en) * 1988-02-08 1989-08-16 Aron Kasei Co Ltd Synthetic resin composition
JPH02173068A (en) * 1988-12-26 1990-07-04 Idemitsu Petrochem Co Ltd Molding material containing stainless steel fiber
KR100787562B1 (en) 2006-10-31 2007-12-21 주식회사 케이씨티 A method of preparing resin composition pellet for shielding electro-magnetic interference and molded articles using it
WO2019088063A1 (en) * 2017-10-30 2019-05-09 ダイセルポリマー株式会社 Electromagnetic wave shielding/absorbing molded article
JP2019161209A (en) * 2017-10-30 2019-09-19 ダイセルポリマー株式会社 Electromagnetic wave shielding/absorbing molding
CN111264090A (en) * 2017-10-30 2020-06-09 大赛璐塑料株式会社 Electromagnetic wave shielding and absorbing molded article
US11515644B2 (en) 2017-10-30 2022-11-29 Daicel Polymer Ltd. Electromagnetic wave shielding and absorbing molded article
CN111264090B (en) * 2017-10-30 2023-03-31 大赛璐塑料株式会社 Electromagnetic wave shielding and absorbing molded article

Also Published As

Publication number Publication date
JPH055263B2 (en) 1993-01-21

Similar Documents

Publication Publication Date Title
US4816184A (en) Electrically conductive material for molding
EP0131067A1 (en) Conductive synthetic resin molding material
US5397608A (en) Plastic article containing electrically conductive fibers
JPS59158016A (en) Electromagnetically shielding material
JPS5814457B2 (en) Conductive plastic composition for shielding electromagnetic waves
JPH07312498A (en) Molding material for electromagnetic shield
JPS61296066A (en) Electrically-conductive molding material
GB2112796A (en) Plastics materials containing electrically conductive fibers
US4258101A (en) Conductive plastic with metalized glass fibers retained in partial clumps
EP0304435B1 (en) Electrically conductive material for molding
CN111029080A (en) Magnetic material for high frequency and method for producing same
US4332853A (en) Conductive plastic with metalized glass fibers retained in partial clumps
JPS60179204A (en) Manufacture of chip for shielding electromagnetic wave composition
JPH0319862B2 (en)
CA1101169A (en) Conductive plastic with metalized glass fibers retained in partial clumps
JPS62138537A (en) Electrically-conductive thermoplastic resin composition
JPH0159884B2 (en)
JPS5938244A (en) Electromagnetic wave-shielding synthetic resin molding material
JPS63280603A (en) Conductive composite plastic material
JPS6142568A (en) Electromagnetic wave-shielding resin mixture
JPS6018315A (en) Conductive molding material
JPH01148515A (en) Manufacture of electroconductive fiber composite resin
JPS61296067A (en) Electrically-conductive resin composition
JPH02155724A (en) Manufacture of molded electromagnetic shield product
JPS61100415A (en) Electrically-conductive molding material