JPS60104241A - Fluorescent x-ray analysis - Google Patents

Fluorescent x-ray analysis

Info

Publication number
JPS60104241A
JPS60104241A JP21293683A JP21293683A JPS60104241A JP S60104241 A JPS60104241 A JP S60104241A JP 21293683 A JP21293683 A JP 21293683A JP 21293683 A JP21293683 A JP 21293683A JP S60104241 A JPS60104241 A JP S60104241A
Authority
JP
Japan
Prior art keywords
fluorescent
ray
angle
detector
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21293683A
Other languages
Japanese (ja)
Inventor
Yoshiro Matsumoto
松本 義朗
Masakatsu Fujino
藤野 允克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21293683A priority Critical patent/JPS60104241A/en
Publication of JPS60104241A publication Critical patent/JPS60104241A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make an apparatus small in size by spanning a metallic plate on a guide member having a curved surface, and making an X-ray incident to the spanned part to detect the fluorescent X-ray therefrom. CONSTITUTION:An X-ray of an exciting source 40 is irradiated to a plated steel plate 1 at a low angle phi1 of an incident angle, and the fluorescent X-ray taken out from a plated cover film 1b at a taken-out angle psi1 is introduced to a detector 50 and converted to an electric signal. An output electrical signal of the detector 50 is sent to an amplifier 51 out of a measuring head housing, amplified thereby, and converted to the fluorescent X-ray intensity of the metal in the plated film by a crest analyzer 52 and a counter 53. On the other hand, the X- ray of an exciting source 41 is irradiated to a substrate metal 1a at a high angle phi2 of the incident angle, the fluorescent X-ray taken out from the metal 1a at the taken-out angle psi2 is converted to the fluorescent X-ray of the metal 1a by a detector 54, an amplifier 55, a crest analyzer 56, a counter 57, and the outputs 53, 57 are introduced to a computing device 58. By such constitution, respective distances between the analyzing point and the exciting source or the detector can be shortened, and the whole apparatus can be made small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発BAぽ螢光XIJA強度に基づいてメンキ被膜の膜
厚及び/又は組成を定量する螢光X線分析方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fluorescent X-ray analysis method for quantifying the thickness and/or composition of a coating based on the intensity of the BA fluorescent XIJA produced by the present invention.

〔従来技術〕[Prior art]

耐蝕性、溶接性、塗装性、経済性に優れた各種のメッキ
鋼板が製造されているが、耐蝕性、溶接性、塗装性はメ
ッキ被膜の膜厚9組成と密接な関係にあり、品質管理上
、膜厚1組成の正確な測定を欠かすことは出来ない。と
ころでこのようなメッキ被膜の膜厚又は付着量(g/r
rf)の測定にはメッキ前、後の鋼板重量及び鋼板表面
積とに基づいてめる重量法が、また組成には化学分析法
が採られていた。これらの方法は正確な分析を行えるが
結果を得る迄に時間を要するためメッキ鋼板の製造ライ
ンにおいてメッキ被膜の付着量1組成の制御には適用出
来ない難点がある。このため近年にあっては螢光X線分
析法が利用されつフある。
Various types of plated steel sheets with excellent corrosion resistance, weldability, paintability, and economic efficiency are manufactured, but corrosion resistance, weldability, and paintability are closely related to the coating thickness9 composition of the plating film, and quality control is essential. Moreover, accurate measurement of film thickness and composition is essential. By the way, the film thickness or adhesion amount (g/r
rf) was measured using a gravimetric method based on the weight of the steel sheet before and after plating and the surface area of the steel sheet, and a chemical analysis method was used for measuring the composition. Although these methods allow accurate analysis, they require time to obtain the results, and therefore have the disadvantage that they cannot be applied to control the coating amount and composition of the plating film in the production line of plated steel sheets. For this reason, in recent years, fluorescent X-ray analysis has come into use.

螢光X線分析法は測定対象物に励起X線を照射し、これ
によって測定対象物から発生する固有X線強度、即ち螢
光X線強度を測定し、予めめておいた検量線から目標元
素の定量を行い、また螢光X線強度と膜厚との関係に基
づき膜厚をめる方法である。
In the fluorescent X-ray analysis method, an object to be measured is irradiated with excited X-rays, thereby measuring the characteristic X-ray intensity generated from the object, that is, the fluorescence This method involves quantifying elements and determining the film thickness based on the relationship between fluorescent X-ray intensity and film thickness.

ところで従来におけ条壁光X線分析法はいずれも単層メ
ッキ鋼板についての膜厚1組成を定量する方法であって
、例えば経済性及び溶接性等に優れ、自動車車体用の新
素材として注目されているFe −Zn合金メッキ鋼板
の場合はメッキ被膜がFe、Znの2成分よりなるので
、l成分のメッキ鋼板における如き螢光X線強度とメッ
キ被膜厚さとの関係が容品には得られず、またメッキ被
膜成分中に下地金属と同一のFeが含まれるために従来
の螢光X線分析法にてメッキ被膜厚さを測定することは
不可能であり、また組成についての定量も不可能であっ
た。
By the way, conventional strip wall optical X-ray analysis methods are all methods for quantifying the film thickness per composition of single-layer plated steel sheets, and are attracting attention as new materials for automobile bodies due to their excellent economic efficiency and weldability. In the case of Fe-Zn alloy plated steel sheets, the plating film consists of two components, Fe and Zn, so the relationship between the fluorescent X-ray intensity and the plating film thickness as in the case of the L-component plated steel sheet is not suitable for the product. Furthermore, since the plating film contains the same Fe as the underlying metal, it is impossible to measure the thickness of the plating film using conventional fluorescent X-ray analysis, and it is also impossible to quantify the composition. It was impossible.

これを解決するために本願出願人は鋼板にFe −Zn
合金をメッキした単層メッキ鋼板、即ち下地金属とメッ
キ被膜とに共通の元素が含まれているものについてもメ
ッキ被膜の付着量及び組成の分析が可能な螢光X線分析
法につき既に出願を行っている(特願昭57−1057
09号)。これは被測定物表面に対して入射角及び取出
角を夫々高角度として測定すると共に、下地金属がらの
螢光X線強度が検出されないように入射角及び取出角を
夫々低角度として測定することにより分析する方法であ
る。
In order to solve this problem, the applicant has added Fe-Zn to the steel plate.
An application has already been filed for a fluorescent X-ray analysis method that can analyze the amount and composition of the plating film on single-layer plated steel sheets plated with an alloy, that is, those in which the base metal and the plating film contain common elements. (Patent application 1987-1057)
No. 09). This is done by setting the incident angle and the take-out angle at a high angle relative to the surface of the object to be measured, and at the same time keeping the incident angle and the take-out angle at a low angle so that the fluorescent X-ray intensity of the underlying metal is not detected. This is a method of analysis.

〔目 的〕〔the purpose〕

本発明は更にこの先願の方法を発展させたものである。 The present invention further develops the method of this prior application.

即ち、入射角及び取出角を低角度φ1゜ψ1とする場合
には第1図に示すように励起源40及び検出器50が相
当大きいので夫々のX線投射口及び螢光X線検出口はメ
ッキ鋼板1の表面から相当寸法離れた処に位置すること
となり、励起源〜分析点間距離及び分析点〜検出器間距
離を長くする必要があり、このためにレイアウト上の制
約がある。またその距離延長に伴うX線強度低下を補足
すべく励起X線強度を強くして測定する必要がある。本
発明の目的とするところは装置が小型となってレイアウ
ト上の制約が少なく、また励起X線強度を強くせずとも
測定が可能な螢光X線分析方法を提供するにある。
That is, when the incident angle and extraction angle are set to a low angle φ1°ψ1, the excitation source 40 and detector 50 are quite large as shown in FIG. Since it is located at a considerable distance from the surface of the plated steel plate 1, it is necessary to increase the distance between the excitation source and the analysis point and the distance between the analysis point and the detector, which imposes layout constraints. Furthermore, in order to compensate for the decrease in X-ray intensity that accompanies the distance extension, it is necessary to increase the excitation X-ray intensity during measurement. An object of the present invention is to provide a fluorescent X-ray analysis method that has a compact apparatus, has fewer restrictions on layout, and can perform measurements without increasing the excitation X-ray intensity.

〔発明の構成〕[Structure of the invention]

本発明に係る螢光X線分析方法はメッキした金属板に形
成した下地金属成分を含むメッキ被膜の厚さ及び/又は
組成を螢光X線分析にて定量する方法において、前記金
属板を曲面を有する案内部材に掛は回し、該案内部材に
掛は回されている金属板部分に対してX線を入射し、ま
たそれからの螢光X線を検出することを特徴とする。
The fluorescent X-ray analysis method according to the present invention is a method for quantifying the thickness and/or composition of a plating film containing a base metal component formed on a plated metal plate by fluorescent X-ray analysis. The apparatus is characterized in that the guide member is rotated, the X-rays are incident on the metal plate portion being rotated, and the fluorescent X-rays from the X-rays are detected.

〔発明の分析原理〕[Analysis principles of invention]

まず本発明方法の分析原理についてメッキ鋼板が平坦な
場合を例にして説明する。第2図は本発明方法の分析原
理説明図であって、下地金属となるFe IaO上にF
e−Zn1bがメッキされているFe−Zn合金メッキ
鋼板1が平坦な場合に、該Fe −Zn合金メッキ鋼板
1に入射角φで励起X線を入射させ、取出角ψで螢光X
線を取出してFeの螢光X線強度を測定する。この場合
のFeの螢光X線強度とメッキ被膜中のFeの重量濃度
との間には下記(1)式の関係がある。
First, the analysis principle of the method of the present invention will be explained using an example in which a plated steel plate is flat. FIG. 2 is an explanatory diagram of the analytical principle of the method of the present invention, in which F
When the Fe-Zn alloy plated steel plate 1 plated with e-Zn1b is flat, excitation X-rays are made incident on the Fe-Zn alloy plated steel plate 1 at an incident angle φ, and the fluorescence
The X-ray intensity of Fe fluorescence is measured. In this case, there is a relationship expressed by the following equation (1) between the fluorescent X-ray intensity of Fe and the weight concentration of Fe in the plating film.

(以下余白) (以下余白) 但し、 IFeKtx:Feの螢光X線強度 k :単位質量の分析元素Feが励起線を螢光X線に変
換する割合 Io :励起線の強度 WFe :メッキ被膜中のFe重量濃度ρFe−Zn 
:メッキ被膜厚の密度 d :メッキ被膜厚さ φ :励起線入射角 ψ :螢光X線取出角 さて、励起線の入射角φ及び螢光X線の取出角ψを小さ
くすると上記(1)式は、 I FeKα sin φ となり、この関係式よりFeの螢光X線強度I FeK
αとメッキ被膜中のFe重量濃度WFeとは一義対応の
関係にあることが分かる。即ち、下地金属からの螢光X
線強度が検出されない低角度の入射角φ及び取出角ψに
て螢光X線強度を測定することにより、Feの螢光X線
強度I FeKαからメッキ被膜中のFeの重量濃度W
Feがまる。
(Margins below) (Margins below) However, IFeKtx: Fluorescent X-ray intensity of Fe k: Rate at which unit mass of analytical element Fe converts excitation rays into fluorescent X-rays Io: Excitation ray intensity WFe: In plating film Fe weight concentration ρFe-Zn
: Density of plating film thickness d : Plating film thickness φ : Excitation line incident angle ψ : Fluorescent X-ray extraction angle Now, if the excitation line incidence angle φ and the fluorescent X-ray extraction angle ψ are made smaller, the above (1) is obtained. The formula is I FeKα sin φ, and from this relation, the fluorescent X-ray intensity of Fe is I FeK
It can be seen that there is a unique correspondence between α and the Fe weight concentration WFe in the plating film. That is, fluorescent light from the base metal
By measuring the fluorescent X-ray intensity at a low incident angle φ and extraction angle ψ where no line intensity is detected, the weight concentration W of Fe in the plating film can be determined from the fluorescent X-ray intensity I FeKα of Fe.
Fe is round.

次に実験結果に基づき上記関係を明らかにする。Next, the above relationship will be clarified based on experimental results.

実験の供試料としてはp e 2+ 、 z n 2J
″から構成されているメッキ液中で電気メッキを行った
ものを使用する。測定条件は励起源のX線管球としては
W(タングステン)を用い、励起条件としての管電圧−
管電流は30kV −30mAとし測定時間は10秒と
した。第3図は目付量が19〜53g/rdの範囲で、
低角度の入射角φ=取出角ψ=5°の条件にて測定した
Fe螢光X線強度I FeKα(cps )を縦軸に、
また化学分析で得られたメッキ被膜中のFeの重量濃度
WFe(%〕を横軸にとって示したものであってその場
合の検量線も図示している。この図に示されるようにI
 FeKαとWFeとは一義対応の関係にあることが実
証された。
Samples for the experiment were p e 2+ and z n 2J.
The measurement conditions are as follows: W (tungsten) is used as the excitation source X-ray tube, and the tube voltage is set as the excitation condition.
The tube current was 30 kV - 30 mA, and the measurement time was 10 seconds. Figure 3 shows the basis weight in the range of 19 to 53 g/rd.
Fe fluorescence X-ray intensity I FeKα (cps) measured under the condition of low incident angle φ = extraction angle ψ = 5° is plotted on the vertical axis,
It also shows the weight concentration WFe (%) of Fe in the plating film obtained by chemical analysis on the horizontal axis, and the calibration curve in that case is also shown.
It was demonstrated that FeKα and WFe have a unique correspondence relationship.

これに対して、下地金属からの螢光X線強度が検出され
る高角度の入射角φで励起線を入射させ取出角ψで螢光
X線を取出す場合には、上記+11式に見られるように
メッキ被膜厚さdの影響を受けることになる。しかしな
がら、前述のように入射角φを小とする条件でめたWF
eを一定とするとFe螢光X線強度I FeKαとメッ
キ被膜厚さdとの間には一義対応の関係が見られる。第
4図は高角度の入射角φ=取出角ψ=60°の条件にて
測定したFe螢光X線強度I FeKα(cps )と
化学分析で得られた目付量(g/nf)との関係をWF
eを変数として示したものであって、縦軸にI FeK
αを、また横軸に目付量をとって示している。この図に
よりI FeKα、WFe及びメッキ被膜厚さく目付量
)dの間に対応関係があることが解かる。なお第4図に
おいて、0点(実線連結)はWFeが0%(即ちZnの
み)、X点(破線連結)は同じ(5,7〜6.3%、6
点(実線連結)は同じ<12.1〜15.8%、0点(
破線連結)は同じ< 33.5〜36.7%、X点(実
線連結)は同じ< 44.0〜47.5%の試料片につ
いての結果を示している。以上詳述したように、低角度
の螢光X線測定で得られるWPeを変数として高角度で
螢光X線強度を測定することにより、該測定値に対応す
る目付量が得られることが分かる。
On the other hand, when the excitation line is incident at a high incidence angle φ at which the fluorescent X-ray intensity from the underlying metal is detected, and the fluorescent X-ray is extracted at an extraction angle ψ, the above equation +11 is obtained. As such, it is affected by the plating film thickness d. However, as mentioned above, the WF obtained under the condition that the incident angle φ is small
Assuming that e is constant, there is a unique relationship between the Fe fluorescence X-ray intensity IFeKα and the plating film thickness d. Figure 4 shows the relationship between the Fe fluorescence X-ray intensity I FeKα (cps) measured under the condition of high incidence angle φ = extraction angle ψ = 60° and the basis weight (g/nf) obtained by chemical analysis. WF the relationship
e is shown as a variable, and the vertical axis is I FeK
α is shown, and the basis weight is plotted on the horizontal axis. From this figure, it can be seen that there is a correspondence between I FeKα, WFe, and the plating film thickness and area weight) d. In Fig. 4, the 0 point (solid line connection) indicates that WFe is 0% (i.e. Zn only), and the X point (broken line connection) indicates the same (5, 7 to 6.3%, 6
Points (solid line connection) are the same <12.1-15.8%, 0 points (
The dashed line connection) shows the results for the same < 33.5-36.7%, and the X point (solid line connection) shows the results for the same < 44.0-47.5%. As detailed above, it can be seen that by measuring the fluorescent X-ray intensity at a high angle using WPe obtained by low-angle fluorescent X-ray measurement as a variable, the basis weight corresponding to the measured value can be obtained. .

〔実施例〕〔Example〕

次に本発明を図面に基づき具体的に説明する。 Next, the present invention will be specifically explained based on the drawings.

第5図は本発明方法の実施状態を示す模式図、第6図は
本発明に用いる螢光X線分析装置のブロック図である。
FIG. 5 is a schematic diagram showing the implementation state of the method of the present invention, and FIG. 6 is a block diagram of a fluorescent X-ray analyzer used in the present invention.

図中1はメッキ鋼板を示しており、メッキ鋼板1は、例
えばルーパ等の前、後に設置されている2本1組のブラ
イドロール2a、2bに掛け回されて白抜矢符方向に移
送されている。該フ゛ライドロール2a、2bの軸心は
共に水平であって上下方向及び横方向に適長離隔されて
配されてし)る。
In the figure, numeral 1 indicates a plated steel plate, and the plated steel plate 1 is passed around a pair of bride rolls 2a and 2b installed in front and behind a looper, etc., in the direction of the white arrow. ing. The axes of the ferride rolls 2a and 2b are both horizontal and are spaced apart from each other by appropriate lengths in the vertical and lateral directions.

上側ロール2aが偏位している側の側方には、ロール2
aの3弱とその凹部内に位置させるようGこ横向き凹形
状の測定ヘソドノーウジング3が設置されており、凹部
内に臨む上、下部の突出部に番ま夫々低角度用の検出器
50.励起源40が内設されており、これら検出器50
.励起源40の間で少しロール2aより遠ざかった位置
には高角度用の検出器54.励起源41が内設されてい
る。
On the side where the upper roll 2a is deviated, there is a roll 2
A sideways concave shaped measuring head nozzle 3 is installed to be positioned within the concave part of A, and a detector for low angles is placed on the protrusion at the top and bottom facing into the concave part, respectively. 50. An excitation source 40 is installed inside, and these detectors 50
.. A high angle detector 54 is located between the excitation sources 40 and a little further away from the roll 2a. An excitation source 41 is provided inside.

励起源40.41夫々はX線の照射方向がロール2aに
掛は回されている箇所のメッキ鋼板1を向くように、ま
た照射方向とメ・ツキ鋼板1の外側表面の入射点での法
線との角度が90°−φ1,90°−φ2(φ1〈φ2
)となるように取付けられても)る。
The excitation sources 40 and 41 are arranged so that the direction of irradiation of the X-rays faces the plated steel plate 1 at the location where it is being rotated by the roll 2a, and the angle between the irradiation direction and the incident point on the outer surface of the plated steel plate 1 is adjusted. The angle with the line is 90°-φ1, 90°-φ2 (φ1〈φ2
).

即ち励起源40の入射角はφ1.励起源410入射角は
φ2となっている。また検出器50.54夫々番よ螢光
X線を取出す方向と上記外側表面の取出し点での法線と
のなす角度が90゛−ψ1,90°−ψ2(ψ1〈ψ2
)となるように取付けられている。
That is, the incident angle of the excitation source 40 is φ1. The angle of incidence of the excitation source 410 is φ2. In addition, the angles formed between the direction in which fluorescent X-rays are extracted from the detectors 50 and 54 and the normal line at the extraction point of the outer surface are 90゛-ψ1, 90°-ψ2 (ψ1〈ψ2
).

即ち検出器50の取出角はψ1.検出器54の取出角は
ψ2となっている。
That is, the extraction angle of the detector 50 is ψ1. The extraction angle of the detector 54 is ψ2.

励起源40のX線は入射角が低角度φ1でメッキ鋼板1
に照射され、メッキ被膜1bから取出角ψ1で取出され
た螢光X線は検出器50に導かれて電気信号に変換され
る。検出器50の出力電気信号は測定ヘッドハウジング
外の増幅器51へ送られて増幅された後に、波高分析器
52及び計数器53によってメッキ被膜中の金属の螢光
X線強度に変換される。
The X-rays from the excitation source 40 have a low incident angle φ1 and are applied to the plated steel plate 1.
Fluorescent X-rays are emitted from the plating film 1b at an extraction angle ψ1 and are guided to the detector 50 and converted into electrical signals. The output electrical signal of the detector 50 is sent to an amplifier 51 outside the measurement head housing, where it is amplified and then converted by a pulse height analyzer 52 and a counter 53 into the fluorescent X-ray intensity of the metal in the plating film.

一方、励起源41のX線は入射角が高角度φ2で下地金
属1aに照射され、下地金属1aから取出角ψ2で取出
された螢光X線は、上述の低角度測定の場合と同様に構
成されている検出器54.増幅器55゜波高分析器56
及び計数器57によって下地金属1aの螢光X線強度に
変換される。計数器53.57の螢光X線強度に対応す
る出力は演算器58に導かれる。
On the other hand, the X-rays from the excitation source 41 are irradiated onto the base metal 1a at a high incident angle φ2, and the fluorescent X-rays extracted from the base metal 1a at an extraction angle ψ2 are similar to the case of the low-angle measurement described above. Detector 54 . Amplifier 55° Wave height analyzer 56
The counter 57 converts the intensity into the fluorescent X-ray intensity of the base metal 1a. The outputs of the counters 53 and 57 corresponding to the fluorescence X-ray intensity are led to the calculator 58.

この演算器58には、第3図に示される如きI FeK
αとWFeの関係式WFe−f (I FeKα)及び
第4図で示される如きI FeKα、WFe及び目付N
(厚さ)dの関係式d = f (I FeKcx、 
WFe)が予め設定されており、上述の如くして得られ
る螢光X線強度に対応する重量濃度及び目付量が演算さ
れ表示器59に表示される。なお、検出器50.54と
してはFe及びZnの螢光強度が容易に分離測定できる
半導体検出器を用いるのがよい。
This arithmetic unit 58 has I FeK as shown in FIG.
The relational expression WFe-f (I FeKα) between α and WFe and I FeKα, WFe, and basis weight N as shown in FIG.
(Thickness) Relational expression d = f (I FeKcx,
WFe) is set in advance, and the weight density and basis weight corresponding to the fluorescent X-ray intensity obtained as described above are calculated and displayed on the display 59. As the detectors 50 and 54, it is preferable to use semiconductor detectors that can easily separate and measure the fluorescence intensities of Fe and Zn.

そして前述の実施例では低角度及び高角度の測定を2組
の励起源及び検出器で測定することとしたが、1組の励
起源、検出器を用い、夫々が或いは一方が測定ヘッドハ
ウジング内を変位できるようにして2回に分けて測定し
てもよい。また、本実施例では下地金属をFeとしメッ
キ被膜組成をFe−Znとしたが、下地金属をFe以外
の金属、例えばCuとしメッキ被膜をCuを含む組成と
してもよい。
In the above embodiment, low angle and high angle measurements were performed using two sets of excitation sources and detectors, but one set of excitation sources and detectors was used, and one or both of them were installed inside the measurement head housing. The measurement may be carried out in two separate steps by making it possible to displace the sensor. Further, in this embodiment, the base metal is Fe and the plating film composition is Fe-Zn, but the base metal may be a metal other than Fe, for example, Cu, and the plating film may have a composition containing Cu.

更に、本発明はメッキ鋼板製造ラインのプライドルロー
ルに限らず、他のロール或いは回転せず、円弧以外のも
の等によりメッキ鋼板が曲げられた部分であれば分析可
能であり、またメッキ鋼板の加工ライン等であっても実
施できることは勿論である。
Furthermore, the present invention is not limited to pre-dol rolls on a plated steel plate production line, but can also be used to analyze any part of a plated steel plate that is bent by other rolls or non-rotating objects other than circular arcs, and can also be applied to the processing of plated steel plates. Of course, it can also be carried out on a line or the like.

〔効 果〕〔effect〕

以上詳述した如く本発明にあってはロール等の曲面にメ
ッキ鋼板を掛は回した部分において測定をするので、励
起源、検出器は分析点における接線に接近した位置に配
することができ、分析点と励起源、検出器との各距離の
短縮が可能となり、このため装置全体を小型にできレイ
アウト上の制約から解放される。また励起X線強度を強
くする必要もない等本発明は優れた効果を奏する。
As detailed above, in the present invention, since the measurement is carried out at the part where the plated steel plate is hung on the curved surface of the roll etc., the excitation source and the detector can be placed close to the tangent line at the analysis point. , it is possible to shorten the distances between the analysis point, the excitation source, and the detector, which allows the entire device to be made smaller and free from layout constraints. Further, the present invention has excellent effects such as no need to increase the excitation X-ray intensity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は先願の螢光X線分析装置のレイアウトを示す模
式図、第2図は本発明の詳細な説明図であり、第3図は
I FeK a −WFe、第4図はWFeを変数とし
たI FeKα−目付量の相関関係を夫々示すグラフで
あり、第5図は本発明方法の実施状態を示す模式図、第
6図は本発明に用いる螢光X線分析装置のブロック図で
ある。 1・・・メッキ鋼板 1a・・・下地金属 1b・・・
メッキ被1* 40,41・・・励起源 50.54・
・・検出器代理人 弁理士 河 野 登 夫 k。 準 11¥1 ′)−7 tl イ寸 IC’J7庁。2.〕 第 4 口 第 υ 図
FIG. 1 is a schematic diagram showing the layout of the fluorescent X-ray analyzer of the prior application, FIG. 2 is a detailed explanatory diagram of the present invention, FIG. 3 is a diagram showing I FeK a -WFe, and FIG. These are graphs showing the correlation between I FeKα and the basis weight as variables, FIG. 5 is a schematic diagram showing the implementation state of the method of the present invention, and FIG. 6 is a block diagram of the fluorescent X-ray analyzer used in the present invention. It is. 1... Plated steel plate 1a... Base metal 1b...
Plated 1* 40, 41... Excitation source 50.54.
...detector agent and patent attorney Noboru Konok. Quasi 11 yen 1')-7 tl i size IC'J7 office. 2. 〕 4th part υ figure

Claims (1)

【特許請求の範囲】 1、 メンキした金属板に形成した下地金属成分を含む
メッキ被膜の厚さ及び/又は組成を螢光X線分析にて定
量する方法において、前記金属板を曲面を有する案内部
材に掛は回し、該案内部材に91け回されている金属板
部分に対してX線を入射し、またそれからの螢光X線を
検出することを特徴とする螢光x#I!分析方法。 2、X線の入射方向及び螢光X線の検出方向が前記金属
板部分の法線よりも接線に近い方向である特許請求の範
囲第1項記載の螢光X線分析方法。
[Scope of Claims] 1. In a method for quantifying the thickness and/or composition of a plating film containing a base metal component formed on a scratched metal plate by fluorescent X-ray analysis, the metal plate is attached to a guide having a curved surface. Fluorescence x#I! is characterized in that a member is rotated, X-rays are incident on a metal plate portion that is rotated 91 times on the guide member, and fluorescent X-rays are detected from the X-rays. Analysis method. 2. The fluorescent X-ray analysis method according to claim 1, wherein the incident direction of the X-rays and the detection direction of the fluorescent X-rays are closer to a tangent than a normal to the metal plate portion.
JP21293683A 1983-11-11 1983-11-11 Fluorescent x-ray analysis Pending JPS60104241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21293683A JPS60104241A (en) 1983-11-11 1983-11-11 Fluorescent x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21293683A JPS60104241A (en) 1983-11-11 1983-11-11 Fluorescent x-ray analysis

Publications (1)

Publication Number Publication Date
JPS60104241A true JPS60104241A (en) 1985-06-08

Family

ID=16630743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21293683A Pending JPS60104241A (en) 1983-11-11 1983-11-11 Fluorescent x-ray analysis

Country Status (1)

Country Link
JP (1) JPS60104241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210144A (en) * 1988-06-28 1990-01-12 Kawasaki Steel Corp Method for measuring simultaneously thickness and composition of film
JP2013167584A (en) * 2012-02-16 2013-08-29 Hiroshima Univ Specific surface area measurement method and device for thin-film sample

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210144A (en) * 1988-06-28 1990-01-12 Kawasaki Steel Corp Method for measuring simultaneously thickness and composition of film
JPH0739987B2 (en) * 1988-06-28 1995-05-01 川崎製鉄株式会社 Simultaneous measurement of film thickness and composition
JP2013167584A (en) * 2012-02-16 2013-08-29 Hiroshima Univ Specific surface area measurement method and device for thin-film sample

Similar Documents

Publication Publication Date Title
RU2390764C2 (en) X-ray fluorescence spectrometre
EP0197157B1 (en) Method of determining thickness and composition of alloy film
US6784431B2 (en) Method of measuring anodize coating amount using infrared absorbance
JPH04232448A (en) Apparatus for measuring amount of iron contained in zinc layer
JPH0541940B2 (en)
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
JPS60104241A (en) Fluorescent x-ray analysis
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
JPS61259151A (en) X-ray analyser
JPH0576574B2 (en)
JPS60202339A (en) X-ray fluorescence analysis method
JP2873125B2 (en) Method and apparatus for measuring coating weight
JPS6319004B2 (en)
JPH056139B2 (en)
JP2563016B2 (en) Fluorescent X-ray analysis method and apparatus using effective wavelength
JPS62137552A (en) Plating attachment meter for alloy
JPS62144052A (en) 2-d distribution measuring apparatus for film thickness and component element of surface-treated layer of surface treated metal plate and measurement thereby
JPS61172002A (en) Infrared ray type coating film thickness measuring device
JPH0237539B2 (en)
RU1369496C (en) Method for determining mechanical properties
JPS62129748A (en) Measurement for plating attachment of metal material
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
JPS5912563Y2 (en) Fluorescent X-ray coating thickness analyzer
JPS63140950A (en) X-ray measuring instrument for plating film
JPS60133308A (en) Method for measuring attached amount of plated film