JPS5912563Y2 - Fluorescent X-ray coating thickness analyzer - Google Patents

Fluorescent X-ray coating thickness analyzer

Info

Publication number
JPS5912563Y2
JPS5912563Y2 JP14959377U JP14959377U JPS5912563Y2 JP S5912563 Y2 JPS5912563 Y2 JP S5912563Y2 JP 14959377 U JP14959377 U JP 14959377U JP 14959377 U JP14959377 U JP 14959377U JP S5912563 Y2 JPS5912563 Y2 JP S5912563Y2
Authority
JP
Japan
Prior art keywords
fluorescent
coating thickness
coating
thickness
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14959377U
Other languages
Japanese (ja)
Other versions
JPS5475156U (en
Inventor
允克 藤野
正英 海野
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP14959377U priority Critical patent/JPS5912563Y2/en
Publication of JPS5475156U publication Critical patent/JPS5475156U/ja
Application granted granted Critical
Publication of JPS5912563Y2 publication Critical patent/JPS5912563Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【考案の詳細な説明】 本考案は、鋼板等に塗膜を施す製造ライン等において、
比較的広い面積の被膜厚を分析する管理分析機能と、板
幅方向またはライン方向の被膜厚の詳細なプロフィルを
計測する機能との両者を有する螢光X線方式の被膜分析
計に関する。
[Detailed description of the invention] This invention is designed to
The present invention relates to a fluorescent X-ray coating analyzer that has both a control analysis function for analyzing coating thickness over a relatively wide area and a function for measuring a detailed profile of coating thickness in the board width direction or line direction.

従来、製造ラインに設置されている被膜厚分析計は、放
射線発生手段として、放射性同位体を用いている。
Conventionally, coating thickness analyzers installed on production lines use radioactive isotopes as radiation generating means.

このときの放射線照射面積は、被膜または下地から発生
する螢光X線の計数率の点から、一般に直径または一辺
が約59 mmから数百mmにわたっており、これは化
学分析性(重量分析法)に対応した管理分析機能を有し
たものである。
The radiation irradiation area at this time generally ranges from approximately 59 mm in diameter or side to several hundred mm in terms of the counting rate of fluorescent It has a management analysis function corresponding to

他方、被膜厚分析計の機能として、ライン方向または板
幅方向の被膜厚の約5mm程度の分解能を有する詳細な
プロフィルの分析も要求される。
On the other hand, as a function of the coating thickness analyzer, detailed profile analysis with a resolution of about 5 mm of the coating thickness in the line direction or the plate width direction is also required.

従来の装置にこのような機能を持たせるために、線源の
スリット幅を狭めれば、照射面積は小さくなしえるが、
これにともなって螢光X線の計数率が著しく減少し、統
計変動誤差が大きくなる。
In order to provide this kind of functionality to conventional equipment, the irradiation area can be reduced by narrowing the slit width of the radiation source.
Along with this, the counting rate of fluorescent X-rays decreases significantly, and statistical fluctuation errors increase.

これを補うためには、被検試料と検出素子との間の距離
を短くするか、あるいは放射性同位体の個数を増すこと
なども考えられるが、両者とも実用化は非常に困難であ
る。
To compensate for this, it is possible to shorten the distance between the test sample and the detection element or increase the number of radioactive isotopes, but it is extremely difficult to put either of these into practical use.

しかしながら、線源としてX線管球を用いれば、一次X
線、したがって螢光X線の強度を、管球の発生電圧・電
流を変えることにより、任意に変えることが可能である
However, if an X-ray tube is used as a radiation source, the primary
The intensity of the rays, and therefore of the fluorescent X-rays, can be changed arbitrarily by changing the voltage and current generated by the tube.

本考案は、かかる点に着目し、線源としてX線電球(小
面積のプロフィル分析用)および放射性同位体(広い面
積の管理分析用)の両者を具備し、かつ画線源を切り換
え可能にした螢光X線方法の被膜厚分析計を提供するも
のである。
Focusing on this point, the present invention is equipped with both an X-ray bulb (for small-area profile analysis) and a radioisotope (for large-area management analysis) as radiation sources, and is capable of switching the imaging source. The present invention provides a coating thickness analyzer using a fluorescent X-ray method.

本考案の実施例について図面を参照して説明する。Embodiments of the present invention will be described with reference to the drawings.

第・1図は、一例として亜鉛メッキ製造ラインに設置さ
れた本考案にもとづくメッキ厚み計の概略構戊図である
FIG. 1 is a schematic diagram of a plating thickness meter based on the present invention installed in a galvanizing production line as an example.

被検試料の比較的広い面積の被膜厚を分析する管理分析
用の線源1として、放射性同位体Am”1(ICi)を
設ける。
A radioactive isotope Am"1 (ICi) is provided as a radiation source 1 for controlled analysis to analyze the coating thickness over a relatively wide area of a test sample.

被検試料のライン方向または幅方向の被膜厚の詳細なプ
ロフィルを計測するための線源2として、小型油浸X線
管球(最大管電圧65 kV)を設ける。
A small oil-immersed X-ray tube (maximum tube voltage 65 kV) is provided as a radiation source 2 for measuring the detailed profile of the coating thickness in the line direction or width direction of the test sample.

この場合、Am241の照射面積は70 X 180
mm (幅方向B1Xライン方向L.)であり、また、
X線管球のそれは5 X 20 mm(幅方向B2Xラ
イン方向L2)である。
In this case, the irradiation area of Am241 is 70 x 180
mm (width direction B1X line direction L.), and
The size of the X-ray tube is 5 x 20 mm (width direction B2X line direction L2).

検出器3は比例計数管(Ar − Co2封入)を用い
ているが、Si(Li)半導体検出器を用いることもで
きる。
The detector 3 uses a proportional counter tube (enclosed in Ar-Co2), but a Si(Li) semiconductor detector can also be used.

X線または放射線を亜鉛メッキ鋼板4に照射すると、亜
鉛被膜および基地より固有の波長を持った螢光X線6が
発生する。
When the galvanized steel plate 4 is irradiated with X-rays or radiation, fluorescent X-rays 6 having a specific wavelength are generated from the zinc coating and base.

これが、検出器3に入照すると、気体電離を起こす。When this light is illuminated by the detector 3, it causes gas ionization.

この電離に要するエネルギは一定であるから、入照する
螢光X線に比例した電離が生じ、これをパルス発生器7
によってパルスとして取り出す。
Since the energy required for this ionization is constant, ionization occurs in proportion to the incident fluorescent X-rays, and the pulse generator 7
is extracted as a pulse.

したがって、パルス高さが螢光X線のエネルギに比例す
る。
Therefore, the pulse height is proportional to the energy of the fluorescent x-rays.

そこで亜鉛の螢光X線を波高分析器8で電気的に分離し
、計算機9により、X線強度をメッキ厚みに換算し、デ
ジタル表示器10に表示するとともに記録器11に記録
する。
Therefore, the fluorescent X-rays of zinc are electrically separated by a pulse height analyzer 8, and a calculator 9 converts the X-ray intensity into plating thickness, which is displayed on a digital display 10 and recorded on a recorder 11.

この厚み計は鋼板の表面および裏面にそれぞれ設ける。This thickness gauge is provided on the front and back sides of the steel plate.

測定モードとしては、板幅の任意の1点測定、板幅方向
の連続走査および板幅方向の5点測定ができる。
Measurement modes include measurement at any one point in the board width, continuous scanning in the board width direction, and measurement at five points in the board width direction.

X線管球を用いた分析値はプロフィル上の任意の範囲を
積分して放射性同位体線源の分析値と対応させることも
可能である。
It is also possible to integrate the analysis value using an X-ray tube over an arbitrary range on the profile and make it correspond to the analysis value of the radioisotope source.

第2図は、亜鉛メッキ厚みと亜鉛の螢光X線強度との関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between zinc plating thickness and zinc fluorescent X-ray intensity.

同一の亜鉛メッキ厚みに対し、Am241線源(図中黒
円●)およびX線管球(図中白円0ともほぼ同一の螢光
X線強度であり、いずれの線源を用いても差異がないこ
とがわかる。
For the same zinc plating thickness, the fluorescent X-ray intensity is almost the same for the Am241 source (black circle ● in the figure) and the X-ray tube (white circle 0 in the figure), and there is no difference when using either source. It turns out that there is no.

第3図は、Am241線源を用いた板幅中心におけるラ
イン方向の亜鉛メッキ厚みの分析結果を示すグラフであ
る。
FIG. 3 is a graph showing the analysis results of the zinc plating thickness in the line direction at the center of the plate width using an Am241 radiation source.

これにより、メッキ厚みの詳細なプロフィルを求めるこ
とができる。
This makes it possible to obtain a detailed profile of the plating thickness.

第4図は、X線管球を用いた板幅方向の亜鉛メッキ厚み
の分析結果を示すグラフである。
FIG. 4 is a graph showing the analysis results of the galvanizing thickness in the board width direction using an X-ray tube.

これにより、メッキ厚みの詳細なプロフィルを求めるこ
とができる。
This makes it possible to obtain a detailed profile of the plating thickness.

したがって、本考案によれば、その測定目的に応じて、
詳細な被膜厚のプロフィルから、広い面積の平均的な被
膜厚まで任意に分析することができ、分計能率の向上を
図ることができる。
Therefore, according to the present invention, depending on the purpose of measurement,
It is possible to analyze anything from a detailed coating thickness profile to the average coating thickness over a wide area, and it is possible to improve the measurement efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は亜鉛メッキ製造ラインに設置された本考案にも
とづくメッキ厚み計の概略構戒図、第2図は亜鉛メッキ
厚みと亜鉛の螢光X線強度との関係を示すグラフ、第3
図は管理分析用放射線源を用いて測定した被検試料のラ
イン方向長さに関する被検試料の中心における亜鉛メッ
キ厚みを示すグラフ、第4図はプロフィル分析用放射線
源を用いて測定した被検試料の幅方向長さに関する亜鉛
メッキ厚みを示すグラフ。 1:放射性同位体Am241、2:小型油浸X線管球、
3:検出器、4:亜鉛メッキ鋼板。
Figure 1 is a schematic diagram of a plating thickness meter based on the present invention installed in a galvanizing production line, Figure 2 is a graph showing the relationship between zinc plating thickness and fluorescent X-ray intensity of zinc, and Figure 3 is a graph showing the relationship between zinc plating thickness and fluorescent X-ray intensity of zinc.
The figure is a graph showing the zinc plating thickness at the center of the test sample with respect to the line direction length of the test sample measured using a radiation source for controlled analysis. Graph showing the galvanizing thickness with respect to the widthwise length of the sample. 1: Radioactive isotope Am241, 2: Small oil immersion X-ray tube,
3: Detector, 4: Galvanized steel plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 金属物質上の被膜またはその下地から発生する螢光X線
を単一のX線検出素子を用いて被膜の厚みを測定する被
膜厚測定装置において、被検試料の比較的広い面積の被
膜厚を分析する管理分析用の放射線源として放射性同位
体を設け、被検試料の幅方向またはライン方向の被膜厚
の詳細なプロフィルを計測するための放射線源としてX
線管球を設け、これら放射線源を適宜切り換えられるよ
うに構或したことを特徴とした螢光X線方式の被膜厚分
析計。
A coating thickness measurement device that uses a single X-ray detection element to measure the thickness of a coating using fluorescent X-rays generated from a coating on a metal substance or its base, is used to measure coating thickness over a relatively wide area of a test sample. A radioactive isotope is provided as a radiation source for control analysis, and an
A coating thickness analyzer using a fluorescent X-ray method, characterized in that it is equipped with a radiation tube and is configured so that these radiation sources can be switched as appropriate.
JP14959377U 1977-11-08 1977-11-08 Fluorescent X-ray coating thickness analyzer Expired JPS5912563Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14959377U JPS5912563Y2 (en) 1977-11-08 1977-11-08 Fluorescent X-ray coating thickness analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14959377U JPS5912563Y2 (en) 1977-11-08 1977-11-08 Fluorescent X-ray coating thickness analyzer

Publications (2)

Publication Number Publication Date
JPS5475156U JPS5475156U (en) 1979-05-28
JPS5912563Y2 true JPS5912563Y2 (en) 1984-04-16

Family

ID=29133073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14959377U Expired JPS5912563Y2 (en) 1977-11-08 1977-11-08 Fluorescent X-ray coating thickness analyzer

Country Status (1)

Country Link
JP (1) JPS5912563Y2 (en)

Also Published As

Publication number Publication date
JPS5475156U (en) 1979-05-28

Similar Documents

Publication Publication Date Title
US3911280A (en) Method of measuring a profile of the density of charged particles in a particle beam
Foord et al. Multichannel light detector system for visible continuum measurements on Alcator C
US2967934A (en) Apparatus for measuring the thickness of a deposit
US3984679A (en) Coating thickness monitor for multiple layers
Petrasso et al. Soft x‐ray imaging instrument for the Alcator A tokamak
JPS5912563Y2 (en) Fluorescent X-ray coating thickness analyzer
Yagi et al. New irradiation system for photon activation analysis by electron linear accelerator
JPH0228819B2 (en) METSUKIEKIBUNSEKISOCHI
Okabe et al. Beam profile measurement for electron accelerators
WO1994019920A1 (en) Method and apparatus for precisely measuring accelerating voltages applied to x-ray sources
Keyser Characterization of room temperature detectors using the proposed IEEE standard
Kaye et al. The experimental realisation of the röntgen
JPS57197410A (en) Measuring method of adhered amount of high polymer film on metallic plate
Leng et al. A fully automated angular distribution valence photoelectron spectrometer
SU519958A1 (en) Gas proportional beta meter for solid sources
Burdakov et al. A complex of imaging diagnostic devices of vacuum UV radiation for the GOL-3 multimirror trap
KR20110040362A (en) Method for measuring thickness of the organic thin layer and apparatus for measuring the organic thin layer
Mainsbridge Relative Intensity of the 17· 2 and 14· 3 MeV Gamma Rays from the 7Li (p, G) 8Be Reaction
Rusinowski et al. Performance tests of the IAE dose equivalent meter in radiation field of high energy calibration facility at SPS-CERN
USH922H (en) Method for analyzing materials using x-ray fluorescence
JP2685722B2 (en) X-ray analysis method
Miller Analytical utility of the M series x-ray emission lines applied to uranium, neptunium, plutonium, and americium
Solon et al. Stray Radiation Measurements at Particle Accelerator Sites
Desai et al. Neutron beam flux monitors in coaxial and planar geometry for neutron scattering instruments at Dhruva reactor
SU361483A1 (en) LIBRARY