JP2013167584A - Specific surface area measurement method and device for thin-film sample - Google Patents

Specific surface area measurement method and device for thin-film sample Download PDF

Info

Publication number
JP2013167584A
JP2013167584A JP2012032066A JP2012032066A JP2013167584A JP 2013167584 A JP2013167584 A JP 2013167584A JP 2012032066 A JP2012032066 A JP 2012032066A JP 2012032066 A JP2012032066 A JP 2012032066A JP 2013167584 A JP2013167584 A JP 2013167584A
Authority
JP
Japan
Prior art keywords
ray
fluorescent
yield
surface area
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012032066A
Other languages
Japanese (ja)
Other versions
JP5919024B2 (en
Inventor
Shinjiro Hayakawa
慎二郎 早川
Kosuke Sumita
弘祐 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Hiroshima University NUC
Original Assignee
Mazda Motor Corp
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Hiroshima University NUC filed Critical Mazda Motor Corp
Priority to JP2012032066A priority Critical patent/JP5919024B2/en
Publication of JP2013167584A publication Critical patent/JP2013167584A/en
Application granted granted Critical
Publication of JP5919024B2 publication Critical patent/JP5919024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a surface area of a specific element per unit mass included in a thin film in a state of being the thin film on a base material.SOLUTION: An X-ray before and after the absorption end of a specific element is applied to a thin film on a base material, to obtain an electron yield Ic proportionate to a surface area S of the specific element in an X-ray application region, and a fluorescence X-ray yield If proportionate to an amount M of the specific element in the X-ray application region. From the electron yield Ic and the fluorescence X-ray yield If, a specific surface area SA regarding the specific element in the thin film is calculated.

Description

本発明は、基材上に特定元素を含有する薄膜が設けられている薄膜試料の当該薄膜における特定元素の単位質量当たりの表面積を測定する方法及び装置に関する。   The present invention relates to a method and an apparatus for measuring a surface area per unit mass of a specific element in a thin film sample in which a thin film containing a specific element is provided on a substrate.

粉末の比表面積については従来よりBET法によって測定されている。BET法以外では、例えば、特許文献1に被測定物のX線散乱積分強度から比表面積を測定する方法が記載されている。この方法では、小角X線散乱曲線の始点から終点までの散乱角度についての積分値であるX線散乱積分強度と、被測定物の比表面積とがほぼ比例関係にあることを利用している。その被測定物の形態に関しては、粉末単独だけに限定されず、複合体中に含有される粉末、例えば粉末と樹脂の複合体、粉末と液体の複合体のように、粉末と他のX線透過性の材料とが複合化されたものでもよいとされている。   The specific surface area of the powder has been conventionally measured by the BET method. In addition to the BET method, for example, Patent Document 1 describes a method for measuring the specific surface area from the X-ray scattering integrated intensity of an object to be measured. This method utilizes the fact that the X-ray scattering integrated intensity, which is an integrated value for the scattering angle from the start point to the end point of the small-angle X-ray scattering curve, and the specific surface area of the object to be measured are approximately proportional. The form of the object to be measured is not limited to the powder alone, but the powder and other X-rays such as the powder contained in the composite, for example, the composite of powder and resin, the composite of powder and liquid. It is said that a composite with a permeable material may be used.

特開2008−256576号公報JP 2008-256576 A

特許文献1に記載された比表面積測定方法は粉末を対象としており、基材に例えば金属が担持されて薄膜状になっている場合、その薄膜における金属の単位質量当たりの表面積を求めることはできない。また、金属や非金属の蒸着膜についても、その蒸着膜における金属や非金属の単位質量当たりの表面積を求める手法も未だ確立されていない。   The specific surface area measurement method described in Patent Document 1 is intended for powders, and when a metal is supported on a base material to form a thin film, the surface area per unit mass of the metal in the thin film cannot be obtained. . In addition, regarding a metal or nonmetal vapor-deposited film, a method for determining the surface area per unit mass of the metal or nonmetal in the vapor-deposited film has not yet been established.

例えば、自動車の排ガス触媒では貴金属の使用量を減らすために、貴金属をナノ粒子化し、さらに、実際の使用条件下での粒子の凝集を防ぐために、適切な担体を選ぶことが重要である。このような条件下での触媒の性能を議論するためには、貴金属が担体に担持されている状態での貴金属の比表面積に関する情報が重要であるが、これまでそのような比表面積の測定法は存在しない。   For example, in an automobile exhaust gas catalyst, in order to reduce the amount of noble metal used, it is important to make the noble metal into nanoparticles and to select an appropriate carrier in order to prevent particle aggregation under actual use conditions. In order to discuss the performance of the catalyst under such conditions, information on the specific surface area of the noble metal with the noble metal supported on the support is important. Does not exist.

このため、触媒や電池の電極材料等の性能評価には、例えば、基材に担持する前の粉末試料について得られた比表面積が用いられることがあるが、粉末状態での表面積と、基材に担持された状態での表面積とは、必ずしも対応しない。さらに、粉末を基材に担持して薄膜にしたときの表面積は、粉末の担持方法によって異なるのが通常である。   For this reason, for example, the specific surface area obtained for the powder sample before being supported on the base material may be used for the performance evaluation of the catalyst and the electrode material of the battery. It does not necessarily correspond to the surface area in the state of being supported on the surface. Furthermore, the surface area when the powder is supported on the base material to form a thin film usually varies depending on the method of supporting the powder.

そこで、本発明は、基材上で薄膜になった状態の該薄膜が含有する特定元素の単位質量当たりの表面積を精度良く測定することができるようにする。   Therefore, the present invention makes it possible to accurately measure the surface area per unit mass of the specific element contained in the thin film in the state of being thin on the substrate.

本発明は、上記課題を解決するために、薄膜にX線を照射した際に該薄膜から放出される電子及び蛍光X線を利用して、その薄膜が含有する特定元素の単位質量当たりの表面積を求めるようにした。   In order to solve the above-mentioned problems, the present invention utilizes the electrons and fluorescent X-rays emitted from the thin film when the thin film is irradiated with X-rays, and uses the surface area per unit mass of the specific element contained in the thin film. I asked for.

ここに提示する薄膜試料の比表面積測定方法は、基材上に特定元素を含有する薄膜が設けられている薄膜試料の当該薄膜における特定元素の単位質量当たりの表面積である比表面積を測定する方法であって、
上記特定元素の吸収端前後のエネルギーのX線を上記薄膜に照射するX線照射ステップと、
上記X線が照射された試料から放出された電子及び蛍光X線をそれぞれ検出する検出ステップと、
上記電子の放出量に基いてX線照射領域の上記特定元素の表面積Sに比例する電子収量Icを得る電子収量検出ステップと、
上記蛍光X線の放出量に基いてX線照射領域内の上記特定元素の量Mに比例する蛍光X線収量Ifを得る蛍光X線収量検出ステップと、
上記電子収量Icと上記蛍光X線収量Ifとに基いて、上記薄膜の上記特定元素に係る比表面積SAを算出する処理ステップとを備えていることを特徴とする。
The specific surface area measuring method of the thin film sample presented here is a method of measuring the specific surface area, which is the surface area per unit mass of the specific element in the thin film of the thin film sample in which the thin film containing the specific element is provided on the substrate Because
An X-ray irradiation step of irradiating the thin film with X-rays of energy before and after the absorption edge of the specific element;
A detection step of detecting electrons and fluorescent X-rays emitted from the sample irradiated with the X-rays;
An electron yield detection step for obtaining an electron yield Ic proportional to the surface area S of the specific element in the X-ray irradiation region based on the electron emission amount;
A fluorescent X-ray yield detection step for obtaining a fluorescent X-ray yield If which is proportional to the amount M of the specific element in the X-ray irradiation region based on the emission amount of the fluorescent X-ray;
And a processing step of calculating a specific surface area SA related to the specific element of the thin film based on the electron yield Ic and the fluorescent X-ray yield If.

また、ここに提示する薄膜試料の比表面積測定装置は、基材上に特定元素を含有する薄膜が設けられている薄膜試料の当該薄膜における特定元素の単位質量当たりの表面積である比表面積を測定する装置であって、
上記特定元素の吸収端前後のエネルギーのX線を上記薄膜に照射するX線照射部と、
上記X線照射部によるX線が照射された試料から放出された電子を検出する電子検出部と、
上記X線照射部によるX線が照射された試料から放出された蛍光X線を検出する蛍光X線検出部と、
上記電子検出部で検出された電子放出量に基いて、X線照射領域の上記特定元素の表面積Sに比例する電子収量Icを得る電子収量検出部と、
上記蛍光X線検出部で検出された蛍光X線放出量に基いて、X線照射領域内の上記特定元素の量Mに比例する蛍光X線収量Ifを得る蛍光X線収量検出部と、
上記電子収量検出部で検出された電子収量Icと、上記蛍光X線収量検出部で検出された蛍光X線収量Ifとに基いて、上記薄膜における上記特定元素に係る比表面積SAを算出する処理部とを備えていることを特徴とする。
In addition, the specific surface area measuring device for thin film samples presented here measures the specific surface area, which is the surface area per unit mass of the specific element in the thin film, where the thin film containing the specific element is provided on the substrate. A device that performs
An X-ray irradiation unit that irradiates the thin film with X-rays of energy before and after the absorption edge of the specific element;
An electron detection unit for detecting electrons emitted from the sample irradiated with X-rays by the X-ray irradiation unit;
A fluorescent X-ray detection unit for detecting fluorescent X-rays emitted from a sample irradiated with X-rays by the X-ray irradiation unit;
An electron yield detector that obtains an electron yield Ic that is proportional to the surface area S of the specific element in the X-ray irradiation region based on the amount of electron emission detected by the electron detector;
A fluorescent X-ray yield detector that obtains a fluorescent X-ray yield If proportional to the amount M of the specific element in the X-ray irradiation region based on the amount of fluorescent X-ray emission detected by the fluorescent X-ray detector;
Processing for calculating the specific surface area SA related to the specific element in the thin film based on the electron yield Ic detected by the electron yield detector and the fluorescent X-ray yield If detected by the fluorescent X-ray yield detector. And a portion.

すなわち、試料に特定元素の吸収端前後のエネルギーのX線を照射すると、特定元素がX線を吸収することにより、そのX線の吸収量に比例した量の光電子及びオージェ電子を放出するとともに、そのX線の吸収量に比例した量の蛍光X線を放出する。   That is, when the sample is irradiated with X-rays having energy before and after the absorption edge of the specific element, the specific element absorbs X-rays, thereby emitting photoelectrons and Auger electrons in proportion to the amount of X-ray absorption, An amount of fluorescent X-rays proportional to the amount of X-ray absorption is emitted.

光電子及びオージェ電子は、脱出深度が浅いことが知られており、試料表面部の特定元素から放出される。そのため、電子収量Icは、式(1)で表されるように、X線照射領域の特定元素の表面積Sに比例したものになる。一方、蛍光X線は、脱出深度が深いことが知られており、試料表面から内部にわたって存在する特定元素から放出される。そのため、蛍光X線収量Ifは、式(2)で表されるように、X線照射領域内に存在する特定元素量Mに比例したものになる。本発明は、上記電子収量Ic及び蛍光X線収量Ifに式(1),(2)の比例関係を有することに着目し、この電子収量Ic及び蛍光X線収量Ifに基いて特定元素に係る比表面積SAを得るようにしたものである。   Photoelectrons and Auger electrons are known to have a shallow escape depth and are emitted from specific elements on the surface of the sample. Therefore, the electron yield Ic is proportional to the surface area S of the specific element in the X-ray irradiation region, as represented by the formula (1). On the other hand, fluorescent X-rays are known to have a deep escape depth, and are emitted from specific elements existing from the sample surface to the inside. Therefore, the fluorescent X-ray yield If is proportional to the specific element amount M present in the X-ray irradiation region, as represented by the formula (2). The present invention pays attention to the fact that the electron yield Ic and the fluorescent X-ray yield If have a proportional relationship of the formulas (1) and (2). The specific surface area SA is obtained.

Ic=α・S …(1)
Ic;電子収量(X線吸収強度)
α;放出電子の検出に関する装置定数(m−2
S;特定元素の表面積(m
If=β・M …(2)
M=S・ρ・d
If;蛍光X線収量(X線吸収強度)
β;蛍光X線の検出に関する装置定数(g−1
;X線照射面積(m
ρ;特定元素の密度(g・m−3
d;膜厚(m)
Ic = α · S (1)
Ic: Electron yield (X-ray absorption intensity)
α: Device constant for detection of emitted electrons (m −2 )
S: Surface area of specific element (m 2 )
If = β · M (2)
M = S 0 · ρ · d
If; fluorescent X-ray yield (X-ray absorption intensity)
β: Apparatus constant for detection of fluorescent X-rays (g −1 )
S 0 ; X-ray irradiation area (m 2 )
ρ: density of a specific element (g · m −3 )
d: Film thickness (m)

上記装置定数α,βは、検出立体角、検出器の感度、測定条件等によって決まる定数である。   The apparatus constants α and β are constants determined by the detection solid angle, the sensitivity of the detector, the measurement conditions, and the like.

比表面積SAは式(3)で表される。すなわち、電子収量Ic及び蛍光X線収量Ifと装置定数α,βとから特定元素の単位質量当たりの表面積が得られる。   The specific surface area SA is represented by the formula (3). That is, the surface area per unit mass of the specific element is obtained from the electron yield Ic, the fluorescent X-ray yield If, and the device constants α and β.

SA=S/M=(Ic/If)・(β/α) …(3)     SA = S / M = (Ic / If) · (β / α) (3)

上記装置定数α,βは次の方法で求めることができる。すなわち、基材上の薄膜の特定元素量M及び特定元素の表面積Sが既知である標準試料を準備する。この標準試料について、上記X線照射ステップ、上記検出ステップ、上記電子収量検出ステップ及び上記蛍光X線収量検出ステップにより、電子収量Ic及び蛍光X線収量Ifを得る。上記標準試料に係る電子収量Icと表面積Sとに基いて装置定数α=Ic/Sを求め、蛍光X線収量Ifと特定元素量Mとに基いて装置定数β=If/Mを求める。   The device constants α and β can be obtained by the following method. That is, a standard sample in which the specific element amount M of the thin film on the substrate and the surface area S of the specific element are known is prepared. With respect to this standard sample, the electron yield Ic and the fluorescent X-ray yield If are obtained by the X-ray irradiation step, the detection step, the electron yield detection step, and the fluorescent X-ray yield detection step. The apparatus constant α = Ic / S is determined based on the electron yield Ic and the surface area S of the standard sample, and the apparatus constant β = If / M is determined based on the fluorescent X-ray yield If and the specific element amount M.

ここに、「特定元素を含有する薄膜」は、微視的観察において、膜材が基板表面で連続的に広がった連続膜に限らず、膜材が隙間を存して分散しているものを含む。その薄膜は、金属のような特定元素よりなる膜材で形成されている場合に限らず、合金や化合物のような特定元素を含む膜材で形成されていてもよく、或いは特定元素よりなる膜材と他の元素よりなる膜材との複合膜であってもよい。   Here, the “thin film containing a specific element” is not limited to a continuous film in which the film material continuously spreads on the surface of the substrate in microscopic observation, but the film material is dispersed with a gap. Including. The thin film is not limited to a film material made of a specific element such as a metal, but may be formed of a film material containing a specific element such as an alloy or a compound, or a film made of a specific element. A composite film of a material and a film material made of another element may be used.

上記電子収量検出部、上記蛍光X線収量検出部及び上記処理部に関する好ましい態様は次のとおりである。   The preferred embodiments relating to the electron yield detection unit, the fluorescent X-ray yield detection unit, and the processing unit are as follows.

上記電子収量検出部は、上記電子検出部で検出された電子放出量に基いてX線の吸収係数に関するX線吸収スペクトルを得る電子収量スペクトル検出部と、該電子収量スペクトル検出部で検出したX線吸収スペクトルを数値化して、式(1)で表されるX線照射領域の上記特定元素の表面積Sに比例する電子収量Icを得る電子収量スペクトル数値化部とを備える。   The electron yield detector includes an electron yield spectrum detector that obtains an X-ray absorption spectrum related to an X-ray absorption coefficient based on the amount of electron emission detected by the electron detector, and an X detected by the electron yield spectrum detector. An electron yield spectrum quantification unit that digitizes the linear absorption spectrum and obtains an electron yield Ic proportional to the surface area S of the specific element in the X-ray irradiation region represented by the formula (1).

上記蛍光X線収量検出部は、上記蛍光X線検出部で検出された蛍光X線放出量に基いてX線の吸収係数に関するX線吸収スペクトルを得る蛍光X線収量スペクトル検出部と、該蛍光X線収量スペクトル検出部で検出したX線吸収スペクトルを数値化して、式(2)で表されるX線照射領域内の特定元素量Mに比例する蛍光X線収量Ifを得る蛍光X線収量スペクトル数値化部とを備える。   The fluorescent X-ray yield detection unit includes a fluorescent X-ray yield spectrum detection unit that obtains an X-ray absorption spectrum related to an X-ray absorption coefficient based on the amount of fluorescent X-ray emission detected by the fluorescent X-ray detection unit; Fluorescent X-ray yield to obtain a fluorescent X-ray yield If proportional to the specific element amount M in the X-ray irradiation region represented by the formula (2) by digitizing the X-ray absorption spectrum detected by the X-ray yield spectrum detector A spectrum digitizing unit.

上記処理部は、上記電子の検出に関する装置定数αに対する上記蛍光X線の検出に関する装置定数βの比を装置定数比β/αとして記憶する記憶部を有し、上記電子収量スペクトル数値化部で数値化された電子収量Icと、上記蛍光X線収量スペクトル数値化部で数値化された蛍光X線収量Ifと、上記記憶部の装置定数比β/αとに基いて、式(3)によって上記特定元素に係る比表面積SAを算出する。   The processing unit includes a storage unit that stores a ratio of the device constant β related to the detection of the fluorescent X-rays to the device constant α related to the detection of the electrons as a device constant ratio β / α. Based on the digitized electron yield Ic, the fluorescent X-ray yield If digitized by the fluorescent X-ray yield spectrum digitizing unit, and the device constant ratio β / α of the storage unit, The specific surface area SA related to the specific element is calculated.

また、上記電子収量検出部が上記電子収量スペクトル検出部及び電子収量スペクトル数値化部を備え、上記蛍光X線収量検出部が上記蛍光X線収量スペクトル検出部及び蛍光X線収量スペクトル数値化部を備えるケースにおいて、上記処理部の別の好ましい態様は次のとおりである。   The electron yield detection unit includes the electron yield spectrum detection unit and the electron yield spectrum digitization unit, and the fluorescent X-ray yield detection unit includes the fluorescent X-ray yield spectrum detection unit and the fluorescent X-ray yield spectrum digitization unit. In the case of providing, another preferable aspect of the processing unit is as follows.

すなわち、上記処理部は、上記電子の検出に関する装置定数α及び上記蛍光X線の検出に関する装置定数βを記憶する記憶部を有し、上記電子収量スペクトル数値化部で数値化された電子収量Icと上記記憶部の電子の検出に関する装置定数αとに基いてX線照射領域の上記特定元素の表面積Sを算出し、上記蛍光X線収量スペクトル数値化部で数値化された蛍光X線収量Ifと上記記憶部の蛍光X線の検出に関する装置定数βとに基いてX線照射領域内の上記特定元素量Mを算出し、上記特定元素の表面積Sと上記特定元素量Mとに基いて該特定元素に係る比表面積SAを算出する。   That is, the processing unit includes a storage unit that stores an apparatus constant α related to the detection of the electrons and an apparatus constant β related to the detection of the fluorescent X-ray, and the electron yield Ic quantified by the electron yield spectrum quantification unit. The surface area S of the specific element in the X-ray irradiation region is calculated based on the device constant α relating to the detection of electrons in the storage unit, and the fluorescent X-ray yield If quantified by the fluorescent X-ray yield spectrum digitizing unit. And the specific element amount M in the X-ray irradiation region based on the apparatus constant β relating to the detection of fluorescent X-rays in the storage unit, and based on the surface area S of the specific element and the specific element amount M The specific surface area SA related to the specific element is calculated.

本発明によれば、特定元素の吸収端前後のX線を基材上の薄膜に照射することによって、X線照射領域の上記特定元素の表面積Sに比例する電子収量Icと、X線照射領域内の上記特定元素の量Mに比例する蛍光X線収量Ifとを求め、この電子収量Icと蛍光X線収量Ifとに基いて、上記薄膜の上記特定元素に係る比表面積SAを算出するようにしたから、基材上で薄膜になった状態での特定元素の比表面積に関する情報を得ることができ、触媒、電池の電極等の表面における特定元素の化学的、物理的ないしは電気的な性能評価に有利になる。   According to the present invention, by irradiating the thin film on the substrate with X-rays before and after the absorption edge of the specific element, the electron yield Ic proportional to the surface area S of the specific element in the X-ray irradiation region, and the X-ray irradiation region A fluorescent X-ray yield If proportional to the amount M of the specific element is obtained, and a specific surface area SA related to the specific element of the thin film is calculated based on the electron yield Ic and the fluorescent X-ray yield If. Therefore, it is possible to obtain information on the specific surface area of a specific element in the state of a thin film on a substrate, and the chemical, physical or electrical performance of the specific element on the surface of a catalyst, battery electrode, etc. It becomes advantageous for evaluation.

本発明の実施形態に係る比表面積測定装置の概略構成図である。It is a schematic block diagram of the specific surface area measuring apparatus which concerns on embodiment of this invention. 被験試料AのSEM(走査型電子顕微鏡)写真である。3 is a SEM (scanning electron microscope) photograph of test sample A. 被験試料BのSEM(走査型電子顕微鏡)写真である。2 is a SEM (scanning electron microscope) photograph of test sample B.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its use.

<比表面積測定装置>
薄膜試料の比表面積測定方法に用いる装置について説明する。ここに、薄膜試料は、基材上に特定元素を含有する薄膜が設けられたものである。
<Specific surface area measuring device>
The apparatus used for the specific surface area measuring method of a thin film sample is demonstrated. Here, the thin film sample is obtained by providing a thin film containing a specific element on a base material.

図1は、本発明の実施形態に係る薄膜試料の比表面積測定装置1の概略構造を示す。この比表面積測定装置1は、転換電子収量法と蛍光X線収量法とを利用して薄膜試料の比表面積を測定する装置(XAFS分析装置)である。   FIG. 1 shows a schematic structure of a specific surface area measuring apparatus 1 for a thin film sample according to an embodiment of the present invention. The specific surface area measuring apparatus 1 is an apparatus (XAFS analyzer) that measures the specific surface area of a thin film sample using a conversion electron yield method and a fluorescent X-ray yield method.

比表面積測定装置1は試料(薄膜試料)Wを収容するチャンバー2を備えている。チャンバー2には試料ホルダ3が配設されている。試料ホルダ3は、その上部に試料Wを保持するとともに、この保持状態で試料Wの上面を任意の傾斜角度に設定可能に構成されている。試料ホルダ3には、保持した試料Wを100MΩ以上で電気的に絶縁する絶縁構造が設けられている。試料ホルダ3に固定された試料Wには、導線4を介して電子検出部としての微小電流検出器5が接続されている。微小電流検出器5は試料WにX線を照射した際に放出される光電子及びオージェ電子を検出することが可能な高感度のものである。上記絶縁構造により試料Wを電気的に絶縁しておくことで、この微小電流検出器5での検出精度が十分に確保できるようになっている。微小電流検出器5による検出信号はコンピュータ10に入力されるようになっている。   The specific surface area measuring apparatus 1 includes a chamber 2 that accommodates a sample (thin film sample) W. A sample holder 3 is disposed in the chamber 2. The sample holder 3 is configured so that the sample W is held on the upper part thereof, and the upper surface of the sample W can be set to an arbitrary inclination angle in this held state. The sample holder 3 is provided with an insulating structure for electrically insulating the held sample W at 100 MΩ or more. A minute current detector 5 as an electron detector is connected to the sample W fixed to the sample holder 3 via a lead wire 4. The minute current detector 5 has a high sensitivity capable of detecting photoelectrons and Auger electrons emitted when the sample W is irradiated with X-rays. By sufficiently insulating the sample W with the insulating structure, sufficient detection accuracy can be secured with the minute current detector 5. A detection signal from the minute current detector 5 is input to the computer 10.

上記チャンバー2の上方には高真空X線導波管11が、X線の出射口を下方へ向けて配設されている。X線導波管11は、X線が透過する分光器12を備えている。分光器12はコンピュータ10の分光器制御部13に接続されており、分光器12により出射口から出射されるX線のエネルギー(波長)が変えられるようになっている。これらX線導波管11及び分光器制御部13によりX線照射部14が構成されている。尚、この明細書では、X線の波長により決定されるフォトン1個が持つエネルギーをX線のエネルギーと呼ぶこととする。分光器制御器13によってX線のエネルギーを制御することにより、エネルギーが約1000eV〜約3000eVの間のX線、いわゆる軟X線をX線導波管11から出射することができる。   A high vacuum X-ray waveguide 11 is disposed above the chamber 2 with the X-ray exit opening facing downward. The X-ray waveguide 11 includes a spectrometer 12 that transmits X-rays. The spectrometer 12 is connected to the spectrometer controller 13 of the computer 10 so that the energy (wavelength) of X-rays emitted from the emission port can be changed by the spectrometer 12. These X-ray waveguide 11 and spectroscope control unit 13 constitute an X-ray irradiation unit 14. In this specification, the energy of one photon determined by the X-ray wavelength is referred to as X-ray energy. By controlling the energy of X-rays by the spectroscope controller 13, X-rays whose energy is between about 1000 eV and about 3000 eV, so-called soft X-rays, can be emitted from the X-ray waveguide 11.

上記チャンバー2の上壁には、ベリリウムで構成されたベリリウム薄膜15がチャンバー2内外を仕切るように配設されている。上記X線導波管11は、その出射口がベリリウム薄膜15の上面に対向するように位置付けられていて、出射口から出射されたX線がベリリウム薄膜15を透過して試料Wの上面に照射されるようになっている。図示しないが、ベリリウム薄膜15とチャンバー2上壁との間にはOリング等のシール材が配設されている。同様に、ベリリウム薄膜15と上記X線導波管11の出射口周縁との間にもシール材が配設されている。   A beryllium thin film 15 made of beryllium is disposed on the upper wall of the chamber 2 so as to partition the inside and outside of the chamber 2. The X-ray waveguide 11 is positioned so that the exit port faces the upper surface of the beryllium thin film 15, and X-rays emitted from the exit port pass through the beryllium thin film 15 and irradiate the upper surface of the sample W. It has come to be. Although not shown, a sealing material such as an O-ring is disposed between the beryllium thin film 15 and the upper wall of the chamber 2. Similarly, a sealing material is also disposed between the beryllium thin film 15 and the peripheral edge of the X-ray waveguide 11.

上記チャンバー2には、図外の真空ポンプに接続された真空導入管18と、チャンバー2内にヘリウムガスを導入するガス導入管19とが接続されている。真空導入管18によりチャンバー2内の真空引きを行なった後、ガス導入管19からヘリウムガスを導入することで、チャンバー2内がヘリウムガスで満たされる。このようにチャンバー2内をヘリウムガスで満たすことにより、チャンバー2内の圧力を常圧にしながら、X線の散乱を抑制することが可能となる。また、真空導入管18による真空引きの度合いや、ガス導入管19によるヘリウムガスの導入量等により、チャンバー2内の圧力を調整することが可能である。ガス導入管19からは、ヘリウムガス以外でX線の散乱を抑制するガスを導入するようにしてもよい。   A vacuum introduction pipe 18 connected to a vacuum pump (not shown) and a gas introduction pipe 19 for introducing helium gas into the chamber 2 are connected to the chamber 2. After evacuating the chamber 2 with the vacuum introduction tube 18, the chamber 2 is filled with helium gas by introducing helium gas from the gas introduction tube 19. By filling the chamber 2 with helium gas in this way, X-ray scattering can be suppressed while the pressure in the chamber 2 is kept at normal pressure. Further, the pressure in the chamber 2 can be adjusted by the degree of evacuation by the vacuum introduction pipe 18 or the amount of helium gas introduced by the gas introduction pipe 19. A gas that suppresses X-ray scattering other than helium gas may be introduced from the gas introduction pipe 19.

また、上記チャンバー2の側壁には、X線を照射した試料Wから放出される蛍光X線を検出する蛍光X線検出部としての蛍光X線検出器20が配設されている。つまり、比表面積測定装置1は、上記チャンバー2、微小電流検出器5、X線導波管11、真空導入管18、ガス導入管19、蛍光X線検出器20及びコンピュータ10で構成されている。   A fluorescent X-ray detector 20 as a fluorescent X-ray detector for detecting fluorescent X-rays emitted from the sample W irradiated with X-rays is disposed on the side wall of the chamber 2. That is, the specific surface area measuring apparatus 1 includes the chamber 2, the minute current detector 5, the X-ray waveguide 11, the vacuum introduction tube 18, the gas introduction tube 19, the fluorescent X-ray detector 20, and the computer 10. .

上記蛍光X線検出器20は、X線を利用した試料分析装置に一般に用いられている周知のものである。蛍光X線検出器20の検出部20aは上記チャンバー2内に臨んでおり、検出部20aが試料Wに対し進退するように構成されている。蛍光X線検出器20には、検出信号を増幅する増幅器21が接続され、増幅器21で増幅された信号は上記コンピュータ10に入力される。   The fluorescent X-ray detector 20 is a well-known one that is generally used in sample analyzers using X-rays. The detection unit 20 a of the fluorescent X-ray detector 20 faces the chamber 2, and the detection unit 20 a is configured to advance and retract with respect to the sample W. The fluorescent X-ray detector 20 is connected to an amplifier 21 that amplifies the detection signal, and the signal amplified by the amplifier 21 is input to the computer 10.

上記蛍光X線検出器20の検出部20aを進退させることで、試料Wから放出された蛍光X線の取り込み角を適切に設定して蛍光X線の数え落としによる検出効率の低下を回避することかできる。また、上記試料ホルダ3により試料W上面の傾斜角度を変えることで、該試料Wから蛍光X線検出器20へ向けて放出される蛍光X線の強度を変化させることができる。この蛍光X線の強度が最大となるように試料W上面の傾斜角度を調整することで、蛍光X線の検出が確実になる。   By advancing and retreating the detection unit 20a of the fluorescent X-ray detector 20, the capture angle of the fluorescent X-rays emitted from the sample W is appropriately set to avoid a decrease in detection efficiency due to counting off of the fluorescent X-rays. I can do it. Further, by changing the inclination angle of the upper surface of the sample W by the sample holder 3, the intensity of the fluorescent X-rays emitted from the sample W toward the fluorescent X-ray detector 20 can be changed. By adjusting the inclination angle of the upper surface of the sample W so that the intensity of the fluorescent X-ray is maximized, the detection of the fluorescent X-ray is ensured.

上記微小電流検出器5は、光電子及びオージェ電子を連続的に検出してその検出信号を上記コンピュータ10に送る。また、蛍光X線検出器20も同様に蛍光X線の検出信号を上記コンピュータ10に送る。コンピュータ10は、微小電流検出器5及び蛍光X線検出器20から送られた連続信号を単位時間で区切って光電子及びオージェ電子の放出量と蛍光X線の放出量とをそれぞれ得るカウンタ23を備えている。   The minute current detector 5 continuously detects photoelectrons and Auger electrons and sends detection signals to the computer 10. Similarly, the fluorescent X-ray detector 20 sends a fluorescent X-ray detection signal to the computer 10. The computer 10 includes a counter 23 that obtains the emission amount of photoelectrons and Auger electrons and the emission amount of fluorescent X-rays by dividing the continuous signals sent from the minute current detector 5 and the fluorescent X-ray detector 20 in unit time. ing.

また、分光器制御部13は、試料Wの薄膜を構成する特定元素の吸収端前後のエネルギーのX線を薄膜に照射すべく、X線のエネルギーを予め設定された範囲(吸収端よりも低エネルギー側の所定値から吸収端よりも高エネルギー側の所定値までの範囲)内で掃引するように構成されている。上記カウンタ23は、照射されたX線の各エネルギーにおける光電子及びオージェ電子の放出量と蛍光X線の放出量とを同時に検出する。これら放出量がコンピュータ10に設けられた電子収量検出部及び蛍光X線収量検出部に送られる。   Further, the spectroscope control unit 13 sets the energy of the X-rays in a predetermined range (lower than the absorption edge) in order to irradiate the thin film with X-rays having energy before and after the absorption edge of the specific element constituting the thin film of the sample W Sweeping is performed within a range from a predetermined value on the energy side to a predetermined value on the higher energy side than the absorption edge. The counter 23 simultaneously detects the emission amount of photoelectrons and Auger electrons and the emission amount of fluorescent X-rays at each energy of irradiated X-rays. These emission amounts are sent to an electron yield detector and a fluorescent X-ray yield detector provided in the computer 10.

電子収量検出部は、微小電流検出器5によって検出される光電子及びオージェ電子の放出量に基いて、転換電子収量法によって特定元素に係る電子収量(X線吸収強度)Icを得るものであり、電子収量スペクトル検出部25と電子収量スペクトル数値化部27とを備えている。   The electron yield detection unit obtains the electron yield (X-ray absorption intensity) Ic related to the specific element by the conversion electron yield method based on the amount of emission of photoelectrons and Auger electrons detected by the microcurrent detector 5. An electron yield spectrum detection unit 25 and an electron yield spectrum digitization unit 27 are provided.

蛍光X線収量検出部は、蛍光X線検出器20によって検出される蛍光X線の放出量に基いて、蛍光X線収量法によって特定元素に係る蛍光X線収量(X線吸収強度)Ifを得るものであり、蛍光X線収量スペクトル検出部26と蛍光X線収量スペクトル数値化部28とを備えている。   The fluorescent X-ray yield detection unit calculates the fluorescent X-ray yield (X-ray absorption intensity) If related to the specific element by the fluorescent X-ray yield method based on the amount of emitted fluorescent X-rays detected by the fluorescent X-ray detector 20. And includes a fluorescent X-ray yield spectrum detector 26 and a fluorescent X-ray yield spectrum digitizer 28.

電子収量検出部の電子収量スペクトル検出部25は、光電子及びオージェ電子の放出量と、これら電子の放出量を検出したときのX線のエネルギーとに基づいてX線吸収スペクトルを得る。すなわち、X線が照射された試料Wから放出される光電子及びオージェ電子の量は当該試料WにおけるX線の吸収量に比例する。そこで、上記電子収量スペクトル検出部25では、光電子及びオージェ電子の放出量に所定の演算を行なうことで試料WにおけるX線の吸収係数を得て、この吸収係数を縦軸に取り、上記X線のエネルギーを横軸に取ることで、X線の吸収係数に関するX線吸収スペクトルを得るようになっている。   The electron yield spectrum detector 25 of the electron yield detector obtains an X-ray absorption spectrum based on the emission amounts of photoelectrons and Auger electrons and the energy of X-rays when these electron emission amounts are detected. That is, the amount of photoelectrons and Auger electrons emitted from the sample W irradiated with X-rays is proportional to the amount of X-ray absorption in the sample W. Therefore, the electron yield spectrum detection unit 25 obtains an X-ray absorption coefficient in the sample W by performing a predetermined calculation on the emission amounts of photoelectrons and Auger electrons, and takes the absorption coefficient on the vertical axis. The X-ray absorption spectrum related to the X-ray absorption coefficient is obtained by taking the energy of x on the horizontal axis.

蛍光X線収量検出部の蛍光X線収量スペクトル検出部26は、蛍光X線の放出量と、この蛍光X線の放出量を検出したときのX線のエネルギーとに基づいてX線吸収スペクトルを得る。すなわち、上記光電子及びオージェ電子の場合と同様に、X線が照射された試料Wから放出される蛍光X線の量は試料Wにおいて照射X線の吸収量に比例するので、上記蛍光X線収量スペクトル検出部26では、蛍光X線の放出量に所定の演算を行なうことで試料WにおけるX線の吸収係数を得てこの吸収係数を縦軸に取り、上記X線のエネルギーを横軸に取ることでX線の吸収係数に関するX線吸収スペクトルを得るようになっている。   The fluorescent X-ray yield spectrum detection unit 26 of the fluorescent X-ray yield detection unit calculates an X-ray absorption spectrum based on the emission amount of the fluorescent X-ray and the energy of the X-ray when the emission amount of the fluorescent X-ray is detected. obtain. That is, as in the case of the photoelectrons and Auger electrons, the amount of fluorescent X-rays emitted from the sample W irradiated with X-rays is proportional to the amount of absorbed X-rays absorbed in the sample W. In the spectrum detector 26, a predetermined calculation is performed on the amount of emitted fluorescent X-rays to obtain an X-ray absorption coefficient in the sample W, the absorption coefficient is taken on the vertical axis, and the X-ray energy is taken on the horizontal axis. Thus, an X-ray absorption spectrum related to the X-ray absorption coefficient is obtained.

上記の如く電子収量スペクトル検出部25と蛍光X線収量スペクトル検出部26とで検出されたX線吸収スペクトルは、X線の吸収係数の大きさとX線のエネルギーとの関係を示すものであるため、これらX線吸収スペクトルの振動構造がXAFSとなる。   As described above, the X-ray absorption spectrum detected by the electron yield spectrum detection unit 25 and the fluorescent X-ray yield spectrum detection unit 26 shows the relationship between the magnitude of the X-ray absorption coefficient and the X-ray energy. The vibration structure of these X-ray absorption spectra is XAFS.

X線を照射した際に放出される光電子及びオージェ電子の脱出深度は浅い。すなわち、微小電流検出器5で検出された光電子及びオージェ電子は、例えば試料Wの表面から約1nm〜約3nmまでの間という極表面側を構成する特定元素から放出されたものである。従って、これら光電子及びオージェ電子に基づいて得られたX線吸収スペクトルの振動構造は、試料WのX線照射領域の特定元素の表面積Sに対応したものになる。   The escape depth of photoelectrons and Auger electrons emitted when irradiated with X-rays is shallow. That is, the photoelectrons and Auger electrons detected by the minute current detector 5 are emitted from a specific element constituting the extreme surface side between about 1 nm and about 3 nm from the surface of the sample W, for example. Therefore, the vibration structure of the X-ray absorption spectrum obtained based on these photoelectrons and Auger electrons corresponds to the surface area S of the specific element in the X-ray irradiation region of the sample W.

一方、蛍光X線は光電子よりも脱出深度が深い。すなわち、蛍光X線検出器20で検出された蛍光X線は、例えば試料の表面から約1μm〜約3μmまでの間に存する特定元素から放出されたものである。従って、この蛍光X線に基づいて得られたX線吸収スペクトルの振動構造は、試料WのX線照射領域内の特定元素量Mに対応したものになる。   On the other hand, fluorescent X-rays have a greater escape depth than photoelectrons. That is, the fluorescent X-rays detected by the fluorescent X-ray detector 20 are emitted from a specific element existing between about 1 μm and about 3 μm from the surface of the sample, for example. Therefore, the vibration structure of the X-ray absorption spectrum obtained based on this fluorescent X-ray corresponds to the specific element amount M in the X-ray irradiation region of the sample W.

上記電子収量スペクトル数値化部27は、上記電子収量スペクトル検出部25で得られたX線吸収スペクトルを数値化する。すなわち、電子収量スペクトル数値化部27は、X線吸収スペクトルにおける吸収端、即ちX線のエネルギーがこれ以上低くなると吸収係数が急激に減少するようになる部分を1とする規格化を行なう。これにより、X線吸収スペクトルの吸収端が基準となってX線吸収スペクトルの強度が数値化され、特定元素に係る電子収量(X線吸収強度)Icが得られる。この電子収量Icは、式(1)で表されるように、X線照射領域の上記特定元素の表面積Sに比例する。   The electron yield spectrum digitizing unit 27 digitizes the X-ray absorption spectrum obtained by the electron yield spectrum detecting unit 25. In other words, the electron yield spectrum digitizing unit 27 performs normalization by setting the absorption edge in the X-ray absorption spectrum, that is, the portion where the absorption coefficient rapidly decreases as the X-ray energy further decreases to 1. Thereby, the intensity of the X-ray absorption spectrum is digitized with reference to the absorption edge of the X-ray absorption spectrum, and the electron yield (X-ray absorption intensity) Ic related to the specific element is obtained. This electron yield Ic is proportional to the surface area S of the specific element in the X-ray irradiation region, as represented by the formula (1).

Ic=α・S …(1)
上記蛍光X線収量スペクトル数値化部28は、蛍光X線収量スペクトル検出部28で得られたX線吸収スペクトルを数値化する。すなわち、蛍光X線収量スペクトル数値化部28は、上記電子収量スペクトル数値化部27と同様に、X線吸収スペクトルを吸収端で規格化する。これにより、X線吸収スペクトルの吸収端が基準となってX線吸収スペクトルの強度が数値化され、特定元素に係る蛍光X線収量(X線吸収強度)Ifが得られる。この蛍光X線収量Ifは、式(2)で表されるように、X線照射領域内の特定元素量Mに比例する。
Ic = α · S (1)
The fluorescent X-ray yield spectrum digitizing unit 28 digitizes the X-ray absorption spectrum obtained by the fluorescent X-ray yield spectrum detecting unit 28. That is, the fluorescent X-ray yield spectrum digitizing unit 28 normalizes the X-ray absorption spectrum at the absorption edge in the same manner as the electron yield spectrum digitizing unit 27. As a result, the intensity of the X-ray absorption spectrum is digitized using the absorption edge of the X-ray absorption spectrum as a reference, and the fluorescent X-ray yield (X-ray absorption intensity) If associated with the specific element is obtained. The fluorescent X-ray yield If is proportional to the specific element amount M in the X-ray irradiation region, as represented by the formula (2).

If=β・M …(2)
M=S・ρ・d
;X線照射面積(m
ρ;特定元素の密度(g・m−3
d;膜厚(m)
If = β · M (2)
M = S 0 · ρ · d
S 0 ; X-ray irradiation area (m 2 )
ρ: density of a specific element (g · m −3 )
d: Film thickness (m)

上記コンピュータ10には、上記電子収量スペクトル数値化部27で得られる電子収量Icと、上記蛍光X線収量スペクトル数値化部28で得られる蛍光X線収量Ifとに基いて、試料Wの薄膜における特定元素の単位質量当たりの表面積、すなわち、特定元素に係る比表面積SAを得る処理部29が設けられている。   The computer 10 includes a thin film of the sample W based on the electron yield Ic obtained by the electron yield spectrum digitizing unit 27 and the fluorescent X-ray yield If obtained by the fluorescent X-ray yield spectrum digitizing unit 28. A processing unit 29 for obtaining a surface area per unit mass of the specific element, that is, a specific surface area SA related to the specific element is provided.

処理部29は、上記電子の検出に関する装置定数αに対する上記蛍光X線の検出に関する装置定数βの比を装置定数比β/αとして記憶する記憶部30を有し、上記電子収量Icと上記蛍光X線収量Ifと上記装置定数比β/αとに基いて、式(3)によって上記特定元素に係る比表面積SAを算出する。上記装置定数比β/αの求め方については後述する。   The processing unit 29 includes a storage unit 30 that stores a ratio of the device constant β related to the detection of the fluorescent X-rays to the device constant α related to the detection of the electrons as a device constant ratio β / α. The processing unit 29 stores the electron yield Ic and the fluorescence. Based on the X-ray yield If and the apparatus constant ratio β / α, the specific surface area SA related to the specific element is calculated by the equation (3). A method for obtaining the device constant ratio β / α will be described later.

SA=S/M
=(Ic/If)・(β/α)
=S/(S・ρ・d) …(3)
SA = S / M
= (Ic / If) · (β / α)
= S / (S 0 · ρ · d) (3)

<比表面積測定方法>
上記比表面積測定装置1を用いた比表面積測定方法を説明する。まず、基材上に特定元素を含有する薄膜が設けられている薄膜試料Wをチャンバー2の試料ホルダ3に保持する。チャンバー2内の真空引きを行なった後、チャンバー2内が大気圧になるまでヘリウムガスを導入する。X線照射部14によりX線を試料Wの薄膜面に照射する(X線照射ステップ)。このX線の掃引範囲は、特定元素の吸収端を含む所定エネルギー範囲とする。
<Specific surface area measurement method>
A specific surface area measuring method using the specific surface area measuring apparatus 1 will be described. First, a thin film sample W in which a thin film containing a specific element is provided on a substrate is held in a sample holder 3 of a chamber 2. After evacuating the chamber 2, helium gas is introduced until the inside of the chamber 2 reaches atmospheric pressure. The thin film surface of the sample W is irradiated by the X-ray irradiation unit 14 (X-ray irradiation step). The X-ray sweep range is a predetermined energy range including the absorption edge of the specific element.

試料Wから放出される光電子及びオージェ電子を微小電流検出器5で検出するとともに、試料Wから放出される蛍光X線を蛍光X線検出器20で検出する(検出ステップ)。   Photoelectrons and Auger electrons emitted from the sample W are detected by the minute current detector 5, and fluorescent X-rays emitted from the sample W are detected by the fluorescent X-ray detector 20 (detection step).

微小電流検出器5で検出された電子放出量に基いて、X線照射領域の上記特定元素の表面積Sに比例する電子収量Icを得る(電子収量検出ステップ)。すなわち、微小電流検出器5で検出された電子の放出量に基いて、電子収量スペクトル検出部25においてX線の吸収係数に関するX線吸収スペクトルを得る(電子収量スペクトル検出ステップ)。そして、電子収量スペクトル検出部25で検出したX線吸収スペクトルを、電子収量スペクトル数値化部27において数値化して電子収量Icを得る(電子収量スペクトル数値化ステップ)。   Based on the amount of electron emission detected by the minute current detector 5, an electron yield Ic proportional to the surface area S of the specific element in the X-ray irradiation region is obtained (electron yield detection step). That is, based on the amount of electron emission detected by the minute current detector 5, the electron yield spectrum detector 25 obtains an X-ray absorption spectrum related to the X-ray absorption coefficient (electron yield spectrum detection step). The X-ray absorption spectrum detected by the electron yield spectrum detector 25 is digitized by the electron yield spectrum digitizer 27 to obtain the electron yield Ic (electron yield spectrum digitization step).

一方、蛍光X線検出器20で検出された蛍光X線放出量に基いて、式(2)で表されるX線照射領域内の上記特定元素の量Mに比例する蛍光X線収量Ifを得る(蛍光X線収量検出ステップ)。すなわち、蛍光X線検出器20で検出された蛍光X線放出量に基いて、蛍光X線収量スペクトル検出部26においてX線の吸収係数に関するX線吸収スペクトルを得る(蛍光X線収量スペクトル検出ステップ)。そして、蛍光X線収量スペクトル検出部26で検出したX線吸収スペクトルを、蛍光X線収量スペクトル数値化部28において数値化して蛍光X線収量Ifを得る(蛍光X線収量スペクトル数値化ステップ)。   On the other hand, based on the amount of fluorescent X-ray emission detected by the fluorescent X-ray detector 20, the fluorescent X-ray yield If proportional to the amount M of the specific element in the X-ray irradiation region represented by the formula (2) is obtained. (Fluorescent X-ray yield detection step). That is, based on the amount of X-ray emission detected by the fluorescent X-ray detector 20, an X-ray absorption spectrum relating to the X-ray absorption coefficient is obtained in the fluorescent X-ray yield spectrum detector 26 (fluorescent X-ray yield spectrum detection step). ). Then, the X-ray absorption spectrum detected by the fluorescent X-ray yield spectrum detector 26 is digitized by the fluorescent X-ray yield spectrum digitizing unit 28 to obtain the fluorescent X-ray yield If (fluorescent X-ray yield spectrum digitizing step).

電子収量スペクトル数値化部27で得られた電子収量Icと、蛍光X線収量スペクトル数値化部28で得られた蛍光X線収量Ifと、記憶部30の装置定数比β/αとに基いて、処理部29において式(3)の演算を行なうことにより、上記薄膜における特定元素に係る比表面積SAを算出する(処理ステップ)。   Based on the electron yield Ic obtained by the electron yield spectrum digitizing unit 27, the fluorescent X-ray yield If obtained by the fluorescent X-ray yield spectrum digitizing unit 28, and the device constant ratio β / α of the storage unit 30. Then, the specific surface area SA related to the specific element in the thin film is calculated by performing the calculation of Expression (3) in the processing unit 29 (processing step).

ここで、装置定数比β/αを求める方法を説明する。すなわち、式(3)によれば、β/α=SA・(If/Ic)である。よって、比表面積SAが既知の標準試料を準備し、その電子収量Ic及び蛍光X線収量Ifを上記比表面積測定装置1によって求めることにより、装置定数比β/αが得られる。   Here, a method for obtaining the device constant ratio β / α will be described. That is, according to the equation (3), β / α = SA · (If / Ic). Therefore, by preparing a standard sample with a known specific surface area SA and obtaining the electron yield Ic and fluorescent X-ray yield If using the specific surface area measuring device 1, the device constant ratio β / α can be obtained.

<実施例>
厚さ20μmの銅基板にAg(銀)を膜厚2.2nmとなるように蒸着させた被験試料Aと、厚さ1mmのシリコン基板にAgを膜厚2.1nmとなるように蒸着させた被験試料Bとを作製した。また、厚さ0.6μmの平滑なPP基板にAgを膜厚141nmとなるように蒸着させた標準試料を作成した。図2は被験試料Aの表面のSEM(走査型電子顕微鏡)写真であり、図3は被験試料Bの表面のSEM写真である。
<Example>
A test sample A in which Ag (silver) was vapor-deposited to a thickness of 2.2 nm on a copper substrate having a thickness of 20 μm, and Ag was vapor-deposited to a thickness of 2.1 nm on a silicon substrate having a thickness of 1 mm. Test sample B was prepared. Further, a standard sample was prepared by depositing Ag on a smooth PP substrate having a thickness of 0.6 μm so as to have a film thickness of 141 nm. 2 is an SEM (scanning electron microscope) photograph of the surface of the test sample A, and FIG. 3 is an SEM photograph of the surface of the test sample B.

次に、表1に示す条件で各試料のAgのL殻X線吸収を測定し、吸収端前のエネルギーを3.34keV、吸収端後のエネルギーを3.40keVとして、上記比表面積測定装置1により、蛍光X線収量法及び転換電子収量法の各方法でX線吸収強度を求めた。結果を表2に示す。 Next, the L 3 shell X-ray absorption of Ag of each sample was measured under the conditions shown in Table 1, the energy before the absorption edge was 3.34 keV, and the energy after the absorption edge was 3.40 keV. 1, the X-ray absorption intensity was determined by the fluorescent X-ray yield method and the conversion electron yield method. The results are shown in Table 2.

ここに、標準試料の場合、Ag薄膜は膜厚が141nmの連続膜であって、その表面は平滑に近い状態になっている。このため、X線照射領域の特定元素Agの表面積Sは、X線照射面積(幾何学的表面積)Sに略一致する。すなわち、式(3)のS/Sを1とおくことができるから、標準試料の比表面積はSA=1/(ρ・d)となる。Agの密度ρを10490000g/mとしたときの標準試料の比表面積SAを表3に示す。そして、式(3)に標準試料のSA、電子収量Ic及び蛍光X線収量Ifを代入すると、装置定数比β/α(=SA・(Ic/If))が求まる。その結果を表3に示す。この装置定数比β/αを記憶部30に記憶させる。 Here, in the case of the standard sample, the Ag thin film is a continuous film having a film thickness of 141 nm, and the surface thereof is in a nearly smooth state. Therefore, the surface area S of a specific element Ag X-ray irradiation region substantially coincides with the X-ray irradiation area (geometric surface area) S 0. That is, since the S / S in the formula (3) can be set to 1, the specific surface area of the standard sample is SA = 1 / (ρ · d). Table 3 shows the specific surface area SA of the standard sample when the density ρ of Ag is 10490000 g / m 3 . Then, by substituting SA, electron yield Ic, and fluorescent X-ray yield If of the standard sample into equation (3), the apparatus constant ratio β / α (= SA · (Ic / If)) is obtained. The results are shown in Table 3. The device constant ratio β / α is stored in the storage unit 30.

そうして、被験試料A,Bの比表面積SAは、処理部29により、式(3)にその電子収量Ic及び蛍光X線収量Ifと表3の装置定数比β/αを代入することで求まる。その結果を表4に示す。被験試料Aの方が被験試料Bよりも比表面積SAが大きい。図2及び図3によれば、被験試料A(図2)の方が被験試料B(図3)よりも、Agの蒸着粒子が小さいから、比表面積測定装置1による測定結果(表4)はSEM観察結果と一致している。   Then, the specific surface area SA of the test samples A and B is calculated by substituting the electron yield Ic and the fluorescent X-ray yield If and the apparatus constant ratio β / α in Table 3 into the formula (3) by the processing unit 29. I want. The results are shown in Table 4. Test sample A has a larger specific surface area SA than test sample B. According to FIG.2 and FIG.3, since the test sample A (FIG. 2) has smaller vapor deposition particles of Ag than the test sample B (FIG. 3), the measurement result (Table 4) by the specific surface area measuring apparatus 1 is This is consistent with the SEM observation results.

<別の実施形態>
この実施形態では、装置定数α及び装置定数β各々を上記記憶部30に記憶させる。上記処理部29において、記憶部30の装置定数α,βを用いて、特定元素の表面積S及び特定元素量M各々を算出して比表面積SAを求める。
<Another embodiment>
In this embodiment, each of the device constant α and the device constant β is stored in the storage unit 30. In the processing unit 29, the specific surface area SA is obtained by calculating the surface area S and the specific element amount M of the specific element using the device constants α and β of the storage unit 30.

すなわち、基材上の薄膜の特定元素量M及び特定元素の表面積Sが既知である標準試料を準備する。この標準試料について、上記比表面積測定装置1により、上記X線照射ステップ、上記検出ステップ、上記電子収量検出ステップ及び上記蛍光X線収量検出ステップを経て、電子収量Ic及び蛍光X線収量Ifを得る。この標準試料に係る電子収量Icと表面積Sとに基いて装置定数α=Ic/Sを算出し、蛍光X線収量Ifと特定元素量Mとに基いて装置定数β=If/Mを算出する。この装置定数α,βを記憶部30に保存する。   That is, a standard sample in which the specific element amount M of the thin film on the substrate and the surface area S of the specific element are known is prepared. With respect to this standard sample, the electron yield Ic and the fluorescent X-ray yield If are obtained by the specific surface area measuring device 1 through the X-ray irradiation step, the detection step, the electron yield detection step and the fluorescent X-ray yield detection step. . The device constant α = Ic / S is calculated based on the electron yield Ic and the surface area S of the standard sample, and the device constant β = If / M is calculated based on the fluorescent X-ray yield If and the specific element amount M. . The device constants α and β are stored in the storage unit 30.

標準試料として、上述の厚さ0.6μmの平滑なPP基板にAgを膜厚141nmとなるように蒸着させた試料を用いる場合、特定元素Agの表面積S=X線照射面積Sとすることができる。よって、この標準試料の電子収量IcとX線照射面積Sとに基いて装置定数α=Ic/Sを得ることができる。また、この標準試料は特定元素量M=S・ρ・dであるから、この標準試料の蛍光X線収量Ifと特定元素量Mとに基いて装置定数β=If/Mを得ることができる。 When using a sample obtained by vapor-depositing Ag to a film thickness of 141 nm on the above-mentioned smooth PP substrate having a thickness of 0.6 μm as a standard sample, the surface area S of the specific element Ag should be set to X-ray irradiation area S 0. Can do. Therefore, the device constant α = Ic / S 0 can be obtained based on the electron yield Ic and the X-ray irradiation area S 0 of this standard sample. Further, since this standard sample has the specific element amount M = S 0 · ρ · d, the apparatus constant β = If / M can be obtained based on the fluorescent X-ray yield If and the specific element amount M of the standard sample. it can.

そうして、被験試料について上記電子収量スペクトル数値化部27で得られた電子収量Icと記憶部30の装置定数αとに基いてX線照射領域の特定元素の表面積Sを算出する。また、被験試料について上記蛍光X線収量スペクトル数値化部で得られた蛍光X線収量Ifと上記記憶部30の装置定数βとに基いてX線照射領域内の特定元素量Mを算出する。この特定元素の表面積Sと特定元素量Mとに基いて該特定元素に係る比表面積SAを算出する。   Then, the surface area S of the specific element in the X-ray irradiation region is calculated based on the electron yield Ic obtained by the electron yield spectrum digitizing unit 27 and the device constant α of the storage unit 30 for the test sample. Further, the specific element amount M in the X-ray irradiation region is calculated based on the fluorescent X-ray yield If obtained by the fluorescent X-ray yield spectrum digitizing unit and the device constant β of the storage unit 30 for the test sample. Based on the surface area S and the specific element amount M of the specific element, the specific surface area SA related to the specific element is calculated.

以上のように、上記比表面積測定装置1によれば、基材上で薄膜になった状態での特定元素の比表面積に関する情報を得ることができ、触媒、電池の電極等の表面における特定元素の化学的、物理的ないしは電気的な性能評価に有利になる。   As described above, according to the specific surface area measuring apparatus 1, information on the specific surface area of a specific element in a thin film state on a substrate can be obtained, and a specific element on the surface of a catalyst, a battery electrode, or the like. It is advantageous for the chemical, physical or electrical performance evaluation.

1 XAFS分析装置
5 微小電流検出器(電子検出部)
14 X線照射部
20 蛍光X線検出器(蛍光X線検出部)
25 電子収量スペクトル検出部
26 蛍光X線収量スペクトル検出部
27 電子収量スペクトル数値化部
28 蛍光X線収量スペクトル数値化部
29 処理部
30 記憶部
W 試料
1 XAFS analyzer 5 Microcurrent detector (electronic detector)
14 X-ray irradiation unit 20 X-ray fluorescence detector (fluorescence X-ray detection unit)
25 Electron Yield Spectrum Detection Unit 26 Fluorescence X-ray Yield Spectrum Detection Unit 27 Electron Yield Spectrum Digitization Unit 28 Fluorescence X-ray Yield Spectrum Digitization Unit 29 Processing Unit 30 Storage Unit W Sample

Claims (4)

基材上に特定元素を含有する薄膜が設けられている薄膜試料の当該薄膜における特定元素の単位質量当たりの表面積である比表面積を測定する薄膜試料の比表面積測定方法であって、
上記特定元素の吸収端前後のエネルギーのX線を上記薄膜に照射するX線照射ステップと、
上記X線が照射された試料から放出された電子及び蛍光X線をそれぞれ検出する検出ステップと、
上記電子の放出量に基いてX線照射領域の上記特定元素の表面積Sに比例する電子収量Icを得る電子収量検出ステップと、
上記蛍光X線の放出量に基いてX線照射領域内の上記特定元素の量Mに比例する蛍光X線収量Ifを得る蛍光X線収量検出ステップと、
上記電子収量Icと上記蛍光X線収量Ifとに基いて、上記薄膜における上記特定元素に係る比表面積SAを算出する処理ステップとを備えていることを特徴とする薄膜試料の比表面積測定方法。
A thin film sample specific surface area measurement method for measuring a specific surface area of a thin film sample provided with a thin film containing a specific element on a substrate, the specific surface area per unit mass of the specific element in the thin film,
An X-ray irradiation step of irradiating the thin film with X-rays of energy before and after the absorption edge of the specific element;
A detection step of detecting electrons and fluorescent X-rays emitted from the sample irradiated with the X-rays;
An electron yield detection step for obtaining an electron yield Ic proportional to the surface area S of the specific element in the X-ray irradiation region based on the electron emission amount;
A fluorescent X-ray yield detection step for obtaining a fluorescent X-ray yield If which is proportional to the amount M of the specific element in the X-ray irradiation region based on the emission amount of the fluorescent X-ray;
A method for measuring a specific surface area of a thin film sample, comprising: a processing step of calculating a specific surface area SA related to the specific element in the thin film based on the electron yield Ic and the fluorescent X-ray yield If.
基材上に特定元素を含有する薄膜が設けられている薄膜試料の当該薄膜における特定元素の単位質量当たりの表面積である比表面積を測定する薄膜試料の比表面積測定装置であって、
上記特定元素の吸収端前後のエネルギーのX線を上記薄膜に照射するX線照射部と、
上記X線照射部によるX線が照射された試料から放出された電子を検出する電子検出部と、
上記X線照射部によるX線が照射された試料から放出された蛍光X線を検出する蛍光X線検出部と、
上記電子検出部で検出された電子放出量に基いて、X線照射領域の上記特定元素の表面積Sに比例する電子収量Icを得る電子収量検出部と、
上記蛍光X線検出部で検出された蛍光X線放出量に基いて、X線照射領域内の上記特定元素の量Mに比例する蛍光X線収量Ifを得る蛍光X線収量検出部と、
上記電子収量検出部で検出された電子収量Icと、上記蛍光X線収量検出部で検出された蛍光X線収量Ifとに基いて、上記薄膜における上記特定元素に係る比表面積SAを算出する処理部とを備えていることを特徴とする薄膜試料の比表面積測定装置。
A thin film sample specific surface area measuring apparatus for measuring a specific surface area of a thin film sample provided with a thin film containing a specific element on a substrate, the specific surface area per unit mass of the specific element in the thin film,
An X-ray irradiation unit that irradiates the thin film with X-rays of energy before and after the absorption edge of the specific element;
An electron detection unit for detecting electrons emitted from the sample irradiated with X-rays by the X-ray irradiation unit;
A fluorescent X-ray detection unit for detecting fluorescent X-rays emitted from a sample irradiated with X-rays by the X-ray irradiation unit;
An electron yield detector that obtains an electron yield Ic that is proportional to the surface area S of the specific element in the X-ray irradiation region based on the amount of electron emission detected by the electron detector;
A fluorescent X-ray yield detector that obtains a fluorescent X-ray yield If proportional to the amount M of the specific element in the X-ray irradiation region based on the amount of fluorescent X-ray emission detected by the fluorescent X-ray detector;
Processing for calculating the specific surface area SA related to the specific element in the thin film based on the electron yield Ic detected by the electron yield detector and the fluorescent X-ray yield If detected by the fluorescent X-ray yield detector. And a specific surface area measuring device for a thin film sample.
請求項2において、
上記電子収量検出部は、上記電子検出部で検出された電子放出量に基いてX線の吸収係数に関するX線吸収スペクトルを得る電子収量スペクトル検出部と、該電子収量スペクトル検出部で検出したX線吸収スペクトルを数値化して、式(1)で表されるX線照射領域の上記特定元素の表面積Sに比例する電子収量Icを得る電子収量スペクトル数値化部とを備え、
Ic=α×S …(1)
(αは上記電子の検出に関する装置定数である。)
上記蛍光X線収量検出部は、上記蛍光X線検出部で検出された蛍光X線放出量に基いてX線の吸収係数に関するX線吸収スペクトルを得る蛍光X線収量スペクトル検出部と、該蛍光X線収量スペクトル検出部で検出したX線吸収スペクトルを数値化して、式(2)で表されるX線照射領域内の特定元素量Mに比例する蛍光X線収量Ifを得る蛍光X線収量スペクトル数値化部とを備え、
If=β・M …(2)
(βは上記蛍光X線の検出に関する装置定数である。)
上記処理部は、上記電子の検出に関する装置定数αに対する上記蛍光X線の検出に関する装置定数βの比を装置定数比β/αとして記憶する記憶部を有し、上記電子収量スペクトル数値化部で数値化された電子収量Icと、上記蛍光X線収量スペクトル数値化部で数値化された蛍光X線収量Ifと、上記記憶部の装置定数比β/αとに基いて、式(3)による演算によって上記特定元素に係る比表面積SAを得ることを特徴とする薄膜試料の比表面積測定装置。
SA=S/M=(Ic/If)・(β/α) …(3)
In claim 2,
The electron yield detector includes an electron yield spectrum detector that obtains an X-ray absorption spectrum related to an X-ray absorption coefficient based on the amount of electron emission detected by the electron detector, and an X detected by the electron yield spectrum detector. An electron yield spectrum quantification unit that digitizes a linear absorption spectrum and obtains an electron yield Ic proportional to the surface area S of the specific element in the X-ray irradiation region represented by the formula (1),
Ic = α × S (1)
(Α is an apparatus constant relating to the detection of the electrons.)
The fluorescent X-ray yield detection unit includes a fluorescent X-ray yield spectrum detection unit that obtains an X-ray absorption spectrum related to an X-ray absorption coefficient based on the amount of fluorescent X-ray emission detected by the fluorescent X-ray detection unit; Fluorescent X-ray yield to obtain a fluorescent X-ray yield If proportional to the specific element amount M in the X-ray irradiation region represented by the formula (2) by digitizing the X-ray absorption spectrum detected by the X-ray yield spectrum detector A spectrum digitizing unit,
If = β · M (2)
(Β is an apparatus constant relating to the detection of the fluorescent X-ray.)
The processing unit includes a storage unit that stores a ratio of the device constant β related to the detection of the fluorescent X-rays to the device constant α related to the detection of the electrons as a device constant ratio β / α. Based on the digitized electron yield Ic, the fluorescent X-ray yield If digitized by the fluorescent X-ray yield spectrum digitizing unit, and the device constant ratio β / α of the storage unit, the equation (3) A specific surface area measuring apparatus for a thin film sample, wherein the specific surface area SA related to the specific element is obtained by calculation.
SA = S / M = (Ic / If) · (β / α) (3)
請求項2において、
上記電子収量検出部は、上記電子検出部で検出された電子放出量に基いてX線の吸収係数に関するX線吸収スペクトルを得る電子収量スペクトル検出部と、該電子収量スペクトル検出部で検出したX線吸収スペクトルを数値化して、式(1)で表されるX線照射領域の上記特定元素の表面積Sに比例する電子収量Icを得る電子収量スペクトル数値化部とを備え、
Ic=α×S …(1)
(αは上記電子の検出に関する装置定数である。)
上記蛍光X線収量検出部は、上記蛍光X線検出部で検出された蛍光X線放出量に基いてX線の吸収係数に関するX線吸収スペクトルを得る蛍光X線収量スペクトル検出部と、該蛍光X線収量スペクトル検出部で検出したX線吸収スペクトルを数値化して、式(2)で表されるX線照射領域内の特定元素量Mに比例する蛍光X線収量Ifを得る蛍光X線収量スペクトル数値化部とを備え、
If=β・M …(2)
(βは上記蛍光X線の検出に関する装置定数である。)
上記処理部は、上記電子の検出に関する装置定数α及び上記蛍光X線の検出に関する装置定数βを記憶する記憶部を有し、上記電子収量スペクトル数値化部で数値化された電子収量Icと上記記憶部の電子の検出に関する装置定数αとに基いてX線照射領域の上記特定元素の表面積Sを算出し、上記蛍光X線収量スペクトル数値化部で数値化された蛍光X線収量Ifと上記記憶部の蛍光X線の検出に関する装置定数βとに基いてX線照射領域内の上記特定元素量Mを算出し、上記特定元素の表面積Sと上記特定元素量Mとに基いて該特定元素に係る比表面積SAを算出することを特徴とする薄膜試料の比表面積測定装置。
In claim 2,
The electron yield detector includes an electron yield spectrum detector that obtains an X-ray absorption spectrum related to an X-ray absorption coefficient based on the amount of electron emission detected by the electron detector, and an X detected by the electron yield spectrum detector. An electron yield spectrum quantification unit that digitizes a linear absorption spectrum and obtains an electron yield Ic proportional to the surface area S of the specific element in the X-ray irradiation region represented by the formula (1),
Ic = α × S (1)
(Α is an apparatus constant relating to the detection of the electrons.)
The fluorescent X-ray yield detection unit includes a fluorescent X-ray yield spectrum detection unit that obtains an X-ray absorption spectrum related to an X-ray absorption coefficient based on the amount of fluorescent X-ray emission detected by the fluorescent X-ray detection unit; Fluorescent X-ray yield to obtain a fluorescent X-ray yield If proportional to the specific element amount M in the X-ray irradiation region represented by the formula (2) by digitizing the X-ray absorption spectrum detected by the X-ray yield spectrum detector A spectrum digitizing unit,
If = β · M (2)
(Β is an apparatus constant relating to the detection of the fluorescent X-ray.)
The processing unit includes a storage unit that stores an apparatus constant α related to the detection of the electrons and an apparatus constant β related to the detection of the fluorescent X-ray, and the electron yield Ic quantified by the electron yield spectrum quantification unit and the above The surface area S of the specific element in the X-ray irradiation region is calculated based on the apparatus constant α relating to the detection of electrons in the storage unit, and the fluorescent X-ray yield If quantified by the fluorescent X-ray yield spectrum digitizing unit and the above-mentioned The specific element amount M in the X-ray irradiation region is calculated based on the apparatus constant β relating to the detection of fluorescent X-rays in the storage unit, and the specific element is calculated based on the surface area S of the specific element and the specific element amount M. A specific surface area measuring apparatus for a thin film sample, characterized by calculating a specific surface area SA related to the above.
JP2012032066A 2012-02-16 2012-02-16 Method and apparatus for measuring specific surface area of thin film sample Active JP5919024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032066A JP5919024B2 (en) 2012-02-16 2012-02-16 Method and apparatus for measuring specific surface area of thin film sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032066A JP5919024B2 (en) 2012-02-16 2012-02-16 Method and apparatus for measuring specific surface area of thin film sample

Publications (2)

Publication Number Publication Date
JP2013167584A true JP2013167584A (en) 2013-08-29
JP5919024B2 JP5919024B2 (en) 2016-05-18

Family

ID=49178086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032066A Active JP5919024B2 (en) 2012-02-16 2012-02-16 Method and apparatus for measuring specific surface area of thin film sample

Country Status (1)

Country Link
JP (1) JP5919024B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104241A (en) * 1983-11-11 1985-06-08 Sumitomo Metal Ind Ltd Fluorescent x-ray analysis
JP2005292085A (en) * 2004-04-05 2005-10-20 Japan Science & Technology Agency Method and apparatus for analyzing sample
JP2008045975A (en) * 2006-08-14 2008-02-28 Daido Steel Co Ltd Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
JP2008256576A (en) * 2007-04-06 2008-10-23 Denki Kagaku Kogyo Kk Specific surface area measuring apparatus and method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104241A (en) * 1983-11-11 1985-06-08 Sumitomo Metal Ind Ltd Fluorescent x-ray analysis
JP2005292085A (en) * 2004-04-05 2005-10-20 Japan Science & Technology Agency Method and apparatus for analyzing sample
JP2008045975A (en) * 2006-08-14 2008-02-28 Daido Steel Co Ltd Carbon concentration distribution measuring method, and manufacturing method of carburized member using it
JP2008256576A (en) * 2007-04-06 2008-10-23 Denki Kagaku Kogyo Kk Specific surface area measuring apparatus and method using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016012135; 辻笑子 他: '蛍光X線・転換電子収量の同時測定による元素選択的な比表面積測定' 第72回分析化学討論会 講演要旨集 , 20120505, p.48(C2014) *

Also Published As

Publication number Publication date
JP5919024B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
AU2009211833B2 (en) Apparatus and method for X-ray fluorescence analysis of a mineral sample
Jaklevic et al. A. beta.-gage method applied to aerosol samples
Schwanke et al. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy
Patterson et al. Three‐dimensional density measurements of ultra low density materials by X‐ray scatter using confocal micro X‐ray fluorescence spectroscopy
Romano et al. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution
US20120126135A1 (en) Dosimeter and method for determining an energy dose of a pulsed radiation field
Fransson et al. Effects of x-ray free-electron laser pulse intensity on the Mn Kβ1, 3 x-ray emission spectrum in photosystem II—a case study for metalloprotein crystals and solutions
Roth et al. Determination and effect of platinum concentration profiles in supported catalysts
JP5682918B2 (en) Elemental quantitative analysis method and elemental quantitative analyzer by X-ray absorption edge method
JP5919024B2 (en) Method and apparatus for measuring specific surface area of thin film sample
Manchili et al. Surface analysis of iron and steel nanopowder
JP4241479B2 (en) Sample analysis method and sample analyzer
Lopes et al. Thickness measurement of V2O5 nanometric thin films using a portable XRF
Procop et al. X-ray fluorescence as an additional analytical method for a scanning electron microscope
CN109154578B (en) Transient gamma emission measurement system for generating pulsed neutrons for surface defect detection and analysis
JP2010014722A (en) Preparing method of sample for fluorescent x-ray analysis
US20210302336A1 (en) Analysis Method and X-Ray Fluorescence Analyzer
Konaka Small-angle electron diffraction by gases. An apparatus with electron-counting device
Tarifeño-Saldivia et al. Calibration methodology for proportional counters applied to yield measurements of a neutron burst
JP6358045B2 (en) X-ray analysis method for surface-coated fine particles and X-ray analyzer for surface-coated fine particles
JP2011185881A (en) Layer thickness measuring device
Wittry Methods of quantitative electron probe analysis
Smerdov et al. Novel low-macroscopic-field emission cathodes for electron probe spectroscopy systems
JP5489032B2 (en) Ion beam analyzer with excellent beam quantity measurement function
Nayak et al. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV–Vis spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5919024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250