JPS5988721A - Range finder of camera - Google Patents

Range finder of camera

Info

Publication number
JPS5988721A
JPS5988721A JP19772282A JP19772282A JPS5988721A JP S5988721 A JPS5988721 A JP S5988721A JP 19772282 A JP19772282 A JP 19772282A JP 19772282 A JP19772282 A JP 19772282A JP S5988721 A JPS5988721 A JP S5988721A
Authority
JP
Japan
Prior art keywords
output
outputs
circuit
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19772282A
Other languages
Japanese (ja)
Inventor
Ryoichi Suzuki
良一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19772282A priority Critical patent/JPS5988721A/en
Priority to DE19833335401 priority patent/DE3335401A1/en
Publication of JPS5988721A publication Critical patent/JPS5988721A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To simplify the circuit constitution of the titled device and make the device suitable for small-sized cameras, by leading out two outputs in accordance with the incident angle of a light reflected from an object, and using one output as distance information under a prescribed condition. CONSTITUTION:The titled camera is provided with an infrared LED17 which projects a light to an object 19, semiconductor position detector 21 which gives contrary changes to two outputs in accordance with the incident angle of a light reflected by the objective 19, control circuit 6 which controls the output of the LED17 so that the direct or indirect sum of the two outputs of the detector 21 attains to a prescribed value, and distance information detecting means 46 and 52. One output VA of the detector 21 is latched 54 as distance information when the sum of the two outputs of the detector 21 is a prescribed value.

Description

【発明の詳細な説明】 本発明は、カメラ本体側から投光され、その反射光を受
光することにより距離情報を得る距離測定装置の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a distance measuring device that obtains distance information by projecting light from the camera body side and receiving reflected light.

従来、所定の距離(基紳長)を隔てた投光素子と受光素
子とを備え、投光素子又は受光素子を撮影レンズの移動
と連動して方向変換し、被写体距離に応じて受光素子の
出力ピーク値に達した時、前記撮影レンズの移動を停止
して合焦動作を行うアクティブ方式の距離測定装置は広
く知られている。
Conventionally, a light emitting element and a light receiving element are provided which are separated by a predetermined distance (base length), and the direction of the light emitting element or the light receiving element is changed in conjunction with the movement of the photographic lens, and the direction of the light receiving element is changed according to the subject distance. Active type distance measuring devices that stop the movement of the photographing lens and perform a focusing operation when the output peak value is reached are widely known.

しかしながら、前記アクティブ方式では、投光素子又は
受光素子を方向変換するための機構が必要であると共に
、撮影レンズの移動と同時に測距動作を行うため、レリ
ーズ操作前に前もって距離情報を知ることができない。
However, the active method requires a mechanism to change the direction of the light emitting element or light receiving element, and the distance measurement operation is performed simultaneously with the movement of the photographic lens, so it is not possible to know the distance information in advance before the release operation. Can not.

さらに、レリーズ操作前に前もってファインダ視野枠内
の任意の被写体の測距を行うプリフォーカスの撮影には
特別の工夫が必要であった。また、プリフォーカスの可
能な自動焦点制御装置として、電荷結合素子を用いた二
重保合致方式のものも公知になっているが、該二重保合
致方式は電荷結合素子が高価であるばかりでなく、その
処理演算回路も複雑で、小型のコンパクトカメラには、
不向きになっている。
Furthermore, special measures are required for prefocus photography, which measures the distance of an arbitrary object within the viewfinder field frame before the release operation. In addition, as an automatic focus control device capable of prefocusing, a double-coupling system using a charge-coupled device is also known, but the charge-coupled device is expensive in this double-coupling system. The processing and arithmetic circuits are complicated, and small compact cameras are
It has become unsuitable.

そのため、投光素子を用いて半導体装置検出器の二つの
出力の差信号により距離信号を得ることが特開昭57−
4.4809号公報により提案されている。この提案に
おいては、iり差信号を正確に距離信号と対応させるた
め、二つの出力の和信号により投光素子にパルス変調を
かけて、二つの出力の和信号が1111411定休距離
に関係なく常に一定となるように前記投光素子の出力を
フィードバック制御している。
Therefore, it is possible to obtain a distance signal from a difference signal between two outputs of a semiconductor device detector using a light emitting element.
4.4809 has been proposed. In this proposal, in order to make the difference signal accurately correspond to the distance signal, pulse modulation is applied to the light emitting element using the sum signal of the two outputs, so that the sum signal of the two outputs is always 1111411 regardless of the fixed distance. The output of the light projecting element is feedback-controlled so as to be constant.

しかし、このような提案をカメラの距離測定装置として
使用する場合には、二つの受光出力の差を演算する回路
を必要とするため、回路構成が複雑になる問題点があっ
た。
However, when such a proposal is used as a distance measuring device for a camera, a circuit for calculating the difference between the two light reception outputs is required, resulting in a complicated circuit configuration.

本発明の目的は、上述した問題点を5W決し、回路構成
を簡単にすることができ、小型カメラに適したカメラの
距離測定装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a distance measuring device for a camera which solves the above-mentioned problems by 5W, has a simple circuit configuration, and is suitable for a small camera.

この目的を達成するために、本発明は、被写体からの反
射光の入射角に応じて二つの出力に相反した変化をさせ
る受光手段の二つの和が所定値である時の受光手段のい
ずれか一方の出力を距離情報として得る距離情報検出手
段を設けて、受光手段の二つの出力の差を演算せずに済
むようにしたことを特徴とする。
In order to achieve this object, the present invention provides a light receiving means that changes two outputs contradictoryly depending on the angle of incidence of reflected light from a subject. The present invention is characterized in that distance information detecting means for obtaining one output as distance information is provided so that it is not necessary to calculate the difference between the two outputs of the light receiving means.

以下、本発明を図示の実施例に基づき詳細に説明する。Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1〜2図は本発明の一実施例を示す回路図及び半導体
装置検出器を示す。■は電源電池、2は電源スィッチ、
3は電源スィッチ2をオンにした時に単一パルスのパワ
ーアップクリア信号PUCを発生する単一パルス発生回
路、4は定電圧KVC1VCを発生する定電圧発生回路
、5はクロックパルスCL Kを発生するクロック発生
回路、6はRSフリップフロップ、7.8はトランジス
タ、9.10は分圧抵抗、11は時定用キャパシタ、1
2は演算増幅器、13はトランジスタ、14.15は分
圧抵抗、16はトランジスタで、クロックパルスCL 
Kが入力することによりオンオフを(り返して赤外発光
ダイオード17を交流点灯させる。18は投光レンズ、
19は投光レンズ18から距離Xの位置の被写体、20
は受光レンズ、21は受光面22及び78極A、+3を
有する半導体装置検出器(詳細は後述する)、23は半
導***11を検出器21に接続されるバイアス用′「I
L源である。。
1 and 2 show a circuit diagram and a semiconductor device detector showing an embodiment of the present invention. ■ is the power battery, 2 is the power switch,
3 is a single pulse generating circuit that generates a single pulse power-up clear signal PUC when the power switch 2 is turned on; 4 is a constant voltage generating circuit that generates a constant voltage KVC1VC; 5 is a clock pulse generating circuit that generates a clock pulse CLK Clock generation circuit, 6 is an RS flip-flop, 7.8 is a transistor, 9.10 is a voltage dividing resistor, 11 is a time-fixing capacitor, 1
2 is an operational amplifier, 13 is a transistor, 14.15 is a voltage dividing resistor, 16 is a transistor, and clock pulse CL
By inputting K, the infrared light emitting diode 17 is turned on and off (repeatedly, the infrared light emitting diode 17 is turned on with alternating current. 18 is a light emitting lens;
19 is an object located at a distance X from the projection lens 18; 20
2 is a light-receiving lens, 21 is a semiconductor device detector having a light-receiving surface 22 and 78 poles A and +3 (details will be described later);
It is an L source. .

24.25は演算増幅器で、それぞれの反転入力端には
半導体装置検出器21の電極A1電]保Bが接続され、
非反転入力端にはそれぞれ定電圧VCが入力する。26
.27は演算増幅器24.25と共にバイパスフィルタ
を構成する周波数選択回路、28.29.30は抵抗、
31は演算増幅器、32.33.34は抵抗、35は演
算増幅器、36.37はアナログスイッチ、38は抵抗
39とキャパシタ40から構成される積分回路、41は
抵抗42とキャパシタ43から構成される積分回路、4
4.45は積分回路38.41により積分された信号を
増幅し、それぞれ信号電圧V4、信号電圧■、を出力す
る演算増幅器、46は抵抗47.48.49.50及び
演算増幅器51から構成される加算回路で、信号電圧V
、と信号電圧■、の和信号(■、十V、 )が出力され
る。和信号(■□十■、)は、半導体装置検出器21の
信号電流IA、■8の和に比例したものとなる。52は
コンパレータで、反転入力端には基準レベル発生器53
(定電圧K VCとボテンクヨメータにより設定される
)の基準レベルVRIが、非反転入力端には加算回路4
6からの和信号(V、十Vお)が、それぞれ入力する。
24 and 25 are operational amplifiers, and electrodes A1 and B of the semiconductor device detector 21 are connected to their respective inverting input terminals;
A constant voltage VC is input to each non-inverting input terminal. 26
.. 27 is a frequency selection circuit that constitutes a bypass filter together with operational amplifiers 24 and 25; 28, 29, and 30 are resistors;
31 is an operational amplifier, 32, 33, 34 is a resistor, 35 is an operational amplifier, 36, 37 is an analog switch, 38 is an integration circuit composed of a resistor 39 and a capacitor 40, 41 is composed of a resistor 42 and a capacitor 43 Integral circuit, 4
4.45 is an operational amplifier that amplifies the signal integrated by the integrating circuit 38.41 and outputs a signal voltage V4, a signal voltage 2, respectively, and 46 is composed of resistors 47, 48, 49, 50 and an operational amplifier 51. In the adder circuit, the signal voltage V
, and the signal voltage ■, a sum signal (■, 10 V, ) is output. The sum signal (■□10■,) is proportional to the sum of the signal currents IA and ■8 of the semiconductor device detector 21. 52 is a comparator, and a reference level generator 53 is connected to the inverting input terminal.
The reference level VRI (set by the constant voltage K VC and the potentiometer) is connected to the adder circuit 4 at the non-inverting input terminal.
The sum signals (V, 10 V) from 6 are respectively input.

54はRSフリップフロップ6がセットされたときにラ
ッチするラッチ回路、55は抵抗、56はキャパシタ、
57はオアゲート、VllA?は電池電圧である。
54 is a latch circuit that latches when the RS flip-flop 6 is set; 55 is a resistor; 56 is a capacitor;
57 is Orgate, VllA? is the battery voltage.

次に動作について説明する。始めに、第2図に示す半導
体装置検出器21の動作について説明する。半導体装置
検出器21は、バイアス用電源23によりバイアスされ
ており、受光面22に光が入射すると、その入射光量に
応じて光電流Iを生成すると共に、この光電流■を二つ
の信号電流■6.1. (但し1.+1.=I)に分け
て電極A、Bより出力する。即ち、信号電流■い■、は
反射光の入射角に応じて相反した変化をすることになる
Next, the operation will be explained. First, the operation of the semiconductor device detector 21 shown in FIG. 2 will be explained. The semiconductor device detector 21 is biased by a bias power supply 23, and when light is incident on the light receiving surface 22, it generates a photocurrent I according to the amount of incident light, and converts this photocurrent ■ into two signal currents ■. 6.1. (However, 1.+1.=I) is divided and output from electrodes A and B. That is, the signal currents (I, I, and I) change in opposite ways depending on the incident angle of the reflected light.

今、半導体装置検出器21の電極A、B間の距離をり、
電極Aから受光点までの距離なXとすると、受光面22
は均一な抵抗体であるので、1」 L=IX− の関係がある。よって、I (= IA十IB)を一定
に制御することにより、信号電流■え又は信号電流■、
によって距11[1x(即ち受光点の位置)を知ること
ができ、この耐漏xに応じて三角測量の原理により被写
体とのげトi離Xを測定することができる。
Now, calculate the distance between electrodes A and B of the semiconductor device detector 21,
If X is the distance from electrode A to the light receiving point, the light receiving surface 22
Since is a uniform resistor, there is a relationship of 1"L=IX-. Therefore, by controlling I (= IA + IB) to a constant value, the signal current ■E or the signal current ■,
The distance 11[1x (that is, the position of the light receiving point) can be known by this, and the distance X from the subject to the subject can be measured according to the leakage resistance x by the principle of triangulation.

カメラ本体のレリーズボタンの第1ストロークにより、
電源スィッチ2がオンすると、単一パルス発生回路3か
らはパワーアップクリア信号PUCが発生し、RSフリ
ップフロップ6はリセットされ、出力端子Qの出力はハ
イレベルに反転する。また、定電圧発生回路4からは二
ツノ定電圧VC,KVC(KVC>VC)が発生すると
共に、クロック発生回路5からは数10 K I(Z程
度のクロックパルスCL Kが発生する。前記RSSフ
リラグフロップの出力端子Qの出力がハイレベルに反転
すると、トランジスタ7がオンし、同時にトランジスタ
8もオンになり、時定用キャパシタ11は抵抗9を経て
充電されていく。そのため、演算増幅器12の非反転入
力端の入力レベルは徐々に上昇していき、l・ランジス
タ13を経て赤外発光ダイオード17に印加される電圧
も上昇し、赤外発光ダイオード17からの投光出力は上
昇する。尚、クロックパルスCLKによりトランジスタ
16はオンオフをくり返すので、赤外発光ダイオード1
7はクロックパルスCLKに同期した交流点灯を行う。
The first stroke of the release button on the camera body causes
When the power switch 2 is turned on, the single pulse generation circuit 3 generates a power-up clear signal PUC, the RS flip-flop 6 is reset, and the output of the output terminal Q is inverted to high level. Further, the constant voltage generation circuit 4 generates two constant voltages VC and KVC (KVC>VC), and the clock generation circuit 5 generates a clock pulse CLK of about 10 K I (Z). When the output of the output terminal Q of the free-lag flop is inverted to high level, the transistor 7 is turned on, and at the same time, the transistor 8 is also turned on, and the time-fixing capacitor 11 is charged via the resistor 9. Therefore, the operational amplifier 12 The input level at the non-inverting input terminal of the infrared light emitting diode 17 gradually rises, the voltage applied to the infrared light emitting diode 17 via the l transistor 13 also rises, and the light emitting output from the infrared light emitting diode 17 rises. Note that since the transistor 16 is repeatedly turned on and off by the clock pulse CLK, the infrared light emitting diode 1
7 performs AC lighting in synchronization with the clock pulse CLK.

また、分圧抵抗14.150分圧点が演算増幅器120
反転入力端に接続されているので、演算増幅器12はト
ランジスタ13及び分圧抵抗14.15と共に定電圧回
路として働く。
In addition, the voltage dividing point of the voltage dividing resistor 14 and 150 is the operational amplifier 120.
Since it is connected to the inverting input terminal, the operational amplifier 12 works as a constant voltage circuit together with the transistor 13 and the voltage dividing resistors 14 and 15.

赤外発光ダイオード17からの投光出力は投光レンズ1
8を経て、被写体19に投光され、その反射光は、受光
レンズ20を経て半導体装置検出器21の受光面220
1点に入射する。
The light emission output from the infrared light emitting diode 17 is transmitted through the light emission lens 1.
8, the light is projected onto the subject 19, and the reflected light passes through the light receiving lens 20 and reaches the light receiving surface 220 of the semiconductor device detector 21.
Inject at one point.

その入射角により、前述した原理で、半導体装置検出器
210対を成す電極A、Bから信号電流工い■、をそれ
ぞれ得ることができる。それぞれの信号電流■1、■8
は演算増幅器24.25及び周波数選択回路26,27
により高周波数成分のみが選択、増幅される。その二つ
の出力は、抵抗28〜30及び演算増幅器31と抵抗3
2〜34及び演算増幅器35とにより、さらに増幅され
、アナログスイッチ36.37にそれぞれ入力する。ア
ナログスイッチ36.37では、クロックパルスCLK
の入力により、赤外発光ダイオード17の点滅周期と同
期して、演算増幅器31.35の出力の瞬時値が検出さ
れると共に、その値が保持され、積分回路38.41に
それぞれ入力する。積分回路38.41でその二つの入
力は積分され、その積分値は、演算増幅器44を経て信
号電圧■□としてラッチ回路54及び加算回路46へ、
演算増幅器45を経て信号電圧■、とじて加算回路46
へ、それぞれ出力される。
Depending on the angle of incidence, signal currents (1) and 2) can be obtained from the pair of electrodes A and B of the semiconductor device detector 210, respectively, according to the principle described above. Each signal current ■1, ■8
are operational amplifiers 24, 25 and frequency selection circuits 26, 27
Only high frequency components are selected and amplified. Its two outputs are connected to resistors 28 to 30 and operational amplifier 31 and resistor 3.
2 to 34 and an operational amplifier 35, the signals are further amplified and input to analog switches 36 and 37, respectively. At analog switches 36 and 37, clock pulse CLK
In response to the input, the instantaneous value of the output of the operational amplifier 31.35 is detected in synchronization with the blinking cycle of the infrared light emitting diode 17, and the value is held and inputted to the integrating circuit 38.41. The two inputs are integrated by the integrating circuits 38 and 41, and the integrated value is passed through the operational amplifier 44 to the latch circuit 54 and the adder circuit 46 as a signal voltage □.
The signal voltage ■ passes through the operational amplifier 45, and then the adder circuit 46
, respectively.

ここで、加算回路46の一部を構成する各抵抗47〜5
0の抵抗値Lv〜R6oの間には以下の関係式を成立さ
せてお(。
Here, each of the resistors 47 to 5 forming a part of the adder circuit 46
The following relational expression is established between the resistance values Lv to R6o of 0 (.

Rso    R4[+ R47R4゜ よって、加算回路46から和信号(VA+V、)が出力
される。加算回路46の和信号(V、+V、)は、赤外
投光ダイオード170投光出力の上昇に応じて増加して
いき、コンパレータ52により基準レベル発生器53か
らの基準レベル■□、と比較され、この基準レベルより
も高くなると、コンパレータ52の出力はハイレベルに
反転し、RSフリップフロップ6はセットされる。その
セットにより出力端子Qの出力はローレベルに反転し、
トランジスタ7及びトランジスタ8はオフし、時定用キ
ャパシタ11への充電が停止すると共に、演算増幅器1
2の出力上昇も停止し、赤外発光ダイオード170投光
出力の上昇も停止する。
Rso R4[+R47R4° Therefore, the sum signal (VA+V, ) is output from the adder circuit 46. The sum signal (V, +V,) of the adder circuit 46 increases as the light emitting output of the infrared light emitting diode 170 increases, and is compared with the reference level □ from the reference level generator 53 by the comparator 52. When the signal becomes higher than this reference level, the output of the comparator 52 is inverted to high level, and the RS flip-flop 6 is set. Due to this setting, the output of output terminal Q is inverted to low level,
Transistor 7 and transistor 8 are turned off, charging of time-limiting capacitor 11 is stopped, and operational amplifier 1 is turned off.
The increase in the output of the infrared light emitting diode 170 also stops.

また、RSフリップフロップ6がセットされると、出力
端子Qの出力はハイレベルに反転し、ラッチ回路54の
働きにより、その時の演算増幅器44かもの信号電圧■
がラッチされる。そのため該信号電圧■は和信号(VA
+V、)が所定値に達した時の値になり、前述した原理
により正確に被写体距離に対応したものになる。
Furthermore, when the RS flip-flop 6 is set, the output of the output terminal Q is inverted to high level, and the signal voltage of the operational amplifier 44 at that time is inverted by the action of the latch circuit 54.
is latched. Therefore, the signal voltage ■ is the sum signal (VA
+V, ) reaches a predetermined value, and it corresponds accurately to the subject distance according to the above-mentioned principle.

前記時定用キャパシタ11への充電が停止すると、演算
増幅器12の出力上昇も停止して、赤外発光ダイオード
17の投光出力上昇も停止すると共に、RSフリップフ
ロップ6の出力端子Qの出力はハイレベルに反転してい
るため、抵抗55を経てキャパシタ56が充電されてい
く。この充電電圧が成るレベル以上となると、オアゲー
ト57の出力はハイレベルに保持され、トランジスタ1
6はオンし、トランジスタ13はオフして赤外発光ダイ
オード17は消灯する。
When the charging of the time-fixing capacitor 11 is stopped, the increase in the output of the operational amplifier 12 is also stopped, and the increase in the light emission output of the infrared light emitting diode 17 is also stopped, and the output of the output terminal Q of the RS flip-flop 6 is Since it is inverted to a high level, the capacitor 56 is charged via the resistor 55. When this charging voltage reaches or exceeds this level, the output of the OR gate 57 is held at a high level, and the transistor 1
6 is turned on, the transistor 13 is turned off, and the infrared light emitting diode 17 is turned off.

尚、前記時定用キャパシタ11の充電レベルは分圧抵抗
9.100分圧点の電位である上限値具−ヒにはならな
いので、赤外発光ダイオード17の最大投光出力も、そ
の分圧点の電位により定まる上限値以上にはならない。
Incidentally, since the charge level of the time-fixing capacitor 11 does not reach the upper limit value, which is the potential at the voltage dividing point of the voltage dividing resistor 9. It does not exceed the upper limit determined by the potential of the point.

これにより、赤外発光ダイオード17やトランジスタ1
30オーバードライブによる破壊を防ぐことができる。
As a result, the infrared light emitting diode 17 and the transistor 1
Can prevent destruction caused by 30 overdrive.

本実施例における分圧抵抗9.10の分圧比は、赤外発
光ダイオード17の最大定格電力及びその制御回路の駆
動能力等により適宜設定される。また、コンパレーク5
2の反転入力端に入力する基準レベルVRIは、本発明
が適用されるカメラの過焦点距離、半導体装置検出器2
1の感度等を考慮して適宜設定されるものである。
The voltage dividing ratio of the voltage dividing resistor 9.10 in this embodiment is appropriately set based on the maximum rated power of the infrared light emitting diode 17, the driving ability of its control circuit, etc. Also, Compare Lake 5
The reference level VRI input to the inverting input terminal of 2 is the hyperfocal distance of the camera to which the present invention is applied, the semiconductor device detector 2
This value is appropriately set in consideration of the sensitivity of No. 1 and the like.

本実施例では、RCO時定カーブに依存した形で演算増
幅器12の出力が上昇し、この出力上昇と赤外発光ダイ
オード17のV、 −I、特性の関係で、赤外発光ダイ
オード17の出力は上昇していくが、本発明はこのよう
な赤外発光ダイオード17の出力上昇の形式に限定され
るものでは決してない。
In this embodiment, the output of the operational amplifier 12 increases depending on the RCO time constant curve, and the output of the infrared light emitting diode 17 increases due to the relationship between this output increase and the V, -I, characteristics of the infrared light emitting diode 17. However, the present invention is by no means limited to this type of increase in the output of the infrared light emitting diode 17.

直線的カーブで演算増幅器12の出力が上昇する本発明
の他の実施例を第3図に示す。第1〜2図と同様な部分
は同一符号にて表す。58はトランジスタ、59.60
はカレントミラーを構成するトランジスタ、61は定電
流回路である。
Another embodiment of the invention in which the output of operational amplifier 12 increases in a linear curve is shown in FIG. Components similar to those in FIGS. 1 and 2 are designated by the same reference numerals. 58 is a transistor, 59.60
61 is a transistor constituting a current mirror, and 61 is a constant current circuit.

時定用キャパシタ11は、定電流回路61の出力電流に
よりカレントミラーを構成するトランジスタ59.60
を経て直線的に充電されてい(。前述した動作により和
信号(V、+V、)が所定値に対し、コンパレータ52
からの出力がハイレベルになり、RSフリップフロップ
6がセットされると、その出力端子Qの出力はローレベ
ルに反転して、トランジスタ58はオンし、トランジス
タ59.60はオフして時定用キャパシタ11の充電は
停止する。
The time-fixing capacitor 11 is connected to a transistor 59, 60 that forms a current mirror using the output current of the constant-current circuit 61.
The sum signal (V, +V,) is charged linearly through the comparator 52 (by the operation described above,
When the output from the RS flip-flop 6 becomes high level and the RS flip-flop 6 is set, the output of its output terminal Q is inverted to low level, turning on the transistor 58 and turning off the transistors 59 and 60 for time constant operation. Charging of capacitor 11 is stopped.

どの様な充電カーブを選択するかは赤外発光ダイオード
17の性能や、各回路の性能を考慮して適宜行うのが望
しい。
It is desirable to select a charging curve as appropriate, taking into consideration the performance of the infrared light emitting diode 17 and the performance of each circuit.

二つの図示実施例において、半導体装置検出器21が受
光手段に相当し、赤外発光ダイオード17が投光手段に
相当し、RSフリップフロップ6からラッチ回路54を
除くオアゲート57又は定電流回路61までの回路が制
御回路の一例を構成し、ラッチ回路54が本発明の距離
情報検出手段に相当する。
In the two illustrated embodiments, the semiconductor device detector 21 corresponds to the light receiving means, the infrared light emitting diode 17 corresponds to the light emitting means, and from the RS flip-flop 6 to the OR gate 57 or the constant current circuit 61 excluding the latch circuit 54. The circuit constitutes an example of a control circuit, and the latch circuit 54 corresponds to the distance information detection means of the present invention.

本実施例では、半導体装置検出器21を用いているが、
これに限らず、二つの受光素子を用いることも容易であ
る。二つの受光素子は、被写体19かもの反射光の入射
角に応じて、その出力が相反した変化をする位置に配置
される。
In this embodiment, a semiconductor device detector 21 is used, but
The invention is not limited to this, and it is also easy to use two light receiving elements. The two light-receiving elements are arranged at positions where their outputs change in opposite ways depending on the incident angle of the light reflected from the subject 19.

この時には二つの受光素子からの出力をそれぞれ演算増
幅器24.250反転入力端に接続すればよく、被写体
距離によって二つの受光素子への入射光量が変化し、そ
れに応じて信号電圧■、の値も変化し、距離情報を得る
ことができる。
At this time, it is sufficient to connect the outputs from the two light-receiving elements to the inverting input terminals of the operational amplifier 24.250, and the amount of light incident on the two light-receiving elements changes depending on the distance to the subject, and the value of the signal voltage ■ also changes accordingly. change, and distance information can be obtained.

また、本実施例では、赤外発光ダイオード17の出力を
徐々に上昇させ、和信号(VA十V、)が所定値に達し
た時のどちらか一方の信号電圧VA又は信号電圧■、を
距離信号としてラッチしているが、これに限らず、フィ
ードバック制御により常に和信号(VA−1−V、 >
を所定値とし、その時の信号電圧■□又は信号電圧■□
のいずれか一方を距離情報とすることもできろ1、 以上説明したように、本発明によれば、被写体からの反
射光の入射角に応じて二つの出力に相反した変化をさせ
る受光手段の二つの相が所定値である時の受光手段のい
ずれか一方の出力を距離情報として得る距離情報検出手
段を設けて、受光手段の二つの出力の差を演算せずに済
むようにしたから、回路構成を簡単にすることができ、
小型カメラに適したものにすることができる。
In addition, in this embodiment, the output of the infrared light emitting diode 17 is gradually increased, and when the sum signal (VA0V, ) reaches a predetermined value, either the signal voltage VA or the signal voltage Although it is latched as a signal, it is not limited to this, and the sum signal (VA-1-V, >
is a predetermined value, and the signal voltage ■□ or signal voltage ■□ at that time
It is also possible to use either one of the two as distance information.1 As explained above, according to the present invention, the light receiving means changes the two outputs contradictoryly depending on the angle of incidence of the reflected light from the subject. By providing a distance information detection means that obtains the output of either one of the light receiving means as distance information when the two phases are at predetermined values, there is no need to calculate the difference between the two outputs of the light receiving means. The circuit configuration can be simplified,
It can be made suitable for small cameras.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図は第1
図における半導体装置検出器を示す図、第3図は本発明
の他の実施例を示す回路図である。 1・・・電源電池、6・・・RSフリップフロップ、1
1・・・時定用キャパシタ、17・・・赤外発光ダイオ
ード、19・・・被写体、21・・・半導体装置検出器
、46・・・加算回路、52・・・コンパレータ、53
・・・基準レベル発生器、54・・・ラッチ回路、58
〜60・・・トランジスタ、61・・・定電流回路、■
・・・光電流、■4、工3・・・信号電流、■、■、・
・・信号電圧、VRI・・・基準電圧、CLK・・・ク
ロックパルス、PUC・・・パワーアップクリア信号。 特許出願人   キャノン株式会社 代理人 中 村 稔
Fig. 1 is a circuit diagram showing one embodiment of the present invention, and Fig. 2 is a circuit diagram showing an embodiment of the present invention.
FIG. 3 is a circuit diagram showing another embodiment of the present invention. 1...Power battery, 6...RS flip-flop, 1
DESCRIPTION OF SYMBOLS 1... Time-fixing capacitor, 17... Infrared light emitting diode, 19... Subject, 21... Semiconductor device detector, 46... Addition circuit, 52... Comparator, 53
... Reference level generator, 54 ... Latch circuit, 58
~60...transistor, 61...constant current circuit, ■
...Photocurrent, ■4, Engineering 3...Signal current, ■,■,・
...Signal voltage, VRI...Reference voltage, CLK...Clock pulse, PUC...Power-up clear signal. Patent applicant Minoru Nakamura, Canon Co., Ltd. agent

Claims (1)

【特許請求の範囲】[Claims] 1、被写体に投光する投光手段と、被写体からの反射光
の入射角に応じて二つの出力に相反した変化をさせる受
光手段と、受光手段の二つの出力の直接的又は間接的な
相が所定値になるように投光手段の出力を制御する制御
回路とを備えたカメラの距離測定装置において、前記受
光手段の二つの出力の和が所定値でありる時の受光手段
のいずれが一方の出力を距離情報として得る距離情報検
出手段を設けたことを特徴とするカメラの距離測定装置
1. A light projecting means that projects light onto the subject, a light receiving means that changes two outputs contradictoryly depending on the incident angle of the reflected light from the subject, and a direct or indirect correlation between the two outputs of the light receiving means. In the distance measuring device for a camera, which is equipped with a control circuit for controlling the output of the light projecting means so that the output of the light projecting means becomes a predetermined value, which of the light receiving means when the sum of the two outputs of the light receiving means is a predetermined value. A distance measuring device for a camera, characterized in that a distance information detection means for obtaining one output as distance information is provided.
JP19772282A 1982-09-30 1982-11-12 Range finder of camera Pending JPS5988721A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19772282A JPS5988721A (en) 1982-11-12 1982-11-12 Range finder of camera
DE19833335401 DE3335401A1 (en) 1982-09-30 1983-09-29 Range finding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19772282A JPS5988721A (en) 1982-11-12 1982-11-12 Range finder of camera

Publications (1)

Publication Number Publication Date
JPS5988721A true JPS5988721A (en) 1984-05-22

Family

ID=16379257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19772282A Pending JPS5988721A (en) 1982-09-30 1982-11-12 Range finder of camera

Country Status (1)

Country Link
JP (1) JPS5988721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191514A (en) * 1984-10-12 1986-05-09 West Electric Co Ltd Distance measuring apparatus
JPH01206210A (en) * 1988-02-12 1989-08-18 Canon Inc Measuring apparatus of distance having function of automatic control of projection output
JPH0264486A (en) * 1988-08-30 1990-03-05 Omron Tateisi Electron Co Distance measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191514A (en) * 1984-10-12 1986-05-09 West Electric Co Ltd Distance measuring apparatus
JPH01206210A (en) * 1988-02-12 1989-08-18 Canon Inc Measuring apparatus of distance having function of automatic control of projection output
JPH0264486A (en) * 1988-08-30 1990-03-05 Omron Tateisi Electron Co Distance measuring apparatus

Similar Documents

Publication Publication Date Title
US4682872A (en) Signal processing apparatus for a semiconductor position sensing device
JPS5988721A (en) Range finder of camera
JPS59119336A (en) Camera used together with flashing device
JPS5960427A (en) Range finder of camera
JPS5960426A (en) Range finder of camera
US4967223A (en) Distance measuring device
JP2004245780A (en) Ranging device
JPS6360884B2 (en)
JP3015099B2 (en) Distance measuring device
JPS5990012A (en) Distance measuring device
JPH0536732B2 (en)
JPH0334005B2 (en)
US20070019969A1 (en) Apparatus and method for converting optical signal into electrical signal
JPS6177711A (en) Automatic focusing device
JP2942593B2 (en) Subject distance detection device
JPS63182633A (en) Distance measuring instrument
JPS60263811A (en) Range finder
JP2763800B2 (en) Distance measuring device
JPH036894Y2 (en)
JPS6110184Y2 (en)
JPS61107111A (en) Range finder
JPS60121408A (en) Distance measuring device
JPS60263810A (en) Range finder
JPS6190006A (en) Distance measuring instrument
JPH0578767B2 (en)