JPS598613A - Ultrafine powder of sio in amorphous state, its preparation and device for preparing it - Google Patents

Ultrafine powder of sio in amorphous state, its preparation and device for preparing it

Info

Publication number
JPS598613A
JPS598613A JP11731482A JP11731482A JPS598613A JP S598613 A JPS598613 A JP S598613A JP 11731482 A JP11731482 A JP 11731482A JP 11731482 A JP11731482 A JP 11731482A JP S598613 A JPS598613 A JP S598613A
Authority
JP
Japan
Prior art keywords
sio
nozzle
powder
vapor
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11731482A
Other languages
Japanese (ja)
Other versions
JPS5950601B2 (en
Inventor
Fumio Hori
堀 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11731482A priority Critical patent/JPS5950601B2/en
Publication of JPS598613A publication Critical patent/JPS598613A/en
Publication of JPS5950601B2 publication Critical patent/JPS5950601B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To mass-produce ultrafine powder of SiO in amorphous state having a pure single composition and good powder characteristics, by nitrogenizing reductively SiO vapor, carbonizing it reductively, or jetting it into an atmosphere of oxygen at reduced pressure, so that it is nitrogenized, carbonized or oxidized on the surface. CONSTITUTION:Metal Si or C is added to SiO2, which is heated at >= about 1,300 deg.C to evolve SiO vapor, which is jetted through a nozzle at >= the velocity of molecular motion into an atmosphere containing nitrogen or hydrocarbon, or an atmosphere containing O2 whose pressure is reduced to <=1/10 atmospheric pressure. By the rapid cooling caused by the adiabatic expansion of the jetting is obtained ultrafine powder of amorphous SiO having <=1mu particle diameter and a single composition, nitrogenized, carbonized or oxidized on the surface. This amorphous SiO has an extremely small amount of admixture of Si and SiO2 resulting from decomposition and extremely improved powder characteristics.

Description

【発明の詳細な説明】 本発明は、少くとも表面を窒化または炭化もしくは酸化
してなる粒径1μ以下のアモルファス状SiOの゛超微
粉とその製造方法ならびvcfQ造装置に関し、粒体特
性のすぐれた超微粉の単一な組成を持つアモルファス状
5iOi得ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrafine amorphous SiO powder with a particle size of 1 μm or less obtained by nitriding, carbonizing, or oxidizing at least the surface, a method for producing the same, and a vcfQ production device, which have excellent particle characteristics. The purpose is to obtain amorphous 5iOi having a single composition of ultrafine powder.

通常SiOは低温では不安定で分解してSiと5in2
の混合物になる事が多く、従来5ino固体と思われて
いたものは重子顕微鏡及びX線ディフラクトメータで調
べだ結果、多くはSiとS i02の混合物であるlf
が分って来た。まして純度の高い粉体特性のすぐれたS
iOの1μ以下の超微粉を得゛る事は非常に困難であっ
た。
Normally, SiO is unstable at low temperatures and decomposes into Si and 5in2.
What was previously thought to be a 5ino solid is often a mixture of Si and Si02, but as a result of investigation using a deuteron microscope and an
I came to understand. Moreover, S with high purity and excellent powder properties.
It has been extremely difficult to obtain ultrafine iO powder of 1 μm or less.

木発゛明は、アモルファス状のSjO’fr、超微粉と
して少くともその表面を窒化または炭化もしくは酸化し
て粒径1μ以下のものを、純粋な単一組成でかつ良好な
粉″体特性を持つものとして亀産的に得ることを可能に
したものである。
Kiyoshi's research is to produce amorphous SjO'fr, which has a particle size of 1 μm or less by nitriding, carbonizing, or oxidizing its surface as an ultrafine powder, with a pure single composition and good powder characteristics. It is something that has made it possible to obtain it as a natural resource.

すなわち、本発明は、Sin蒸気を発生させる手段と、
還元窒化または還元炭化もしくは減圧した酸素の雰囲気
を有する捕集箱と、上記Sin蒸気を断熱膨張させて上
記捕集箱内に噴射させるノズ〔以下余白〕 ルとよりなる、少くとも表面を窒化捷たは炭化もしくは
酸化してなる粒径lμ以下の超微粉のアモルファス状S
iOの製造装置を用いて、Sin蒸気をノズルに通して
還元窒化または還元炭化もしくは減圧した酸素の雰囲気
内に断熱膨張で噴射する工程よりなる、少くとも表面を
窒化捷たは炭化もしくは酸化してなる粒径lμ以下の超
微粉のアモルファス状SiOのIM造方法により、Si
n蒸気を、還元窒化または還元炭化もしくは減圧した酸
素の雰囲気内に断熱膨張で噴射させて得た、少くとも表
面が窒化または炭化もしくは酸化してなる粒径lμ以下
のアモルファス状SiOの超微粉。
That is, the present invention provides means for generating Sin vapor;
At least the surface is nitrided, consisting of a collection box having an atmosphere of reduced nitriding, reduced carbonization, or reduced pressure oxygen, and a nozzle (hereinafter referred to as the margin) that adiabatically expands the Sin vapor and injects it into the collection box. or carbonized or oxidized ultrafine powder S with a particle size of lμ or less
Using an iO production device, at least the surface is nitrided, carbonized, or oxidized, and consists of a process of passing the Sin vapor through a nozzle and injecting it into an atmosphere of reduced nitriding, reduced carbonization, or reduced pressure oxygen by adiabatic expansion. Si
Ultrafine amorphous SiO powder with a particle size of 1μ or less, which has at least a surface that is nitrided, carbonized, or oxidized, and is obtained by injecting n vapor into an atmosphere of reduced nitriding, reducing carbonization, or reduced pressure oxygen by adiabatic expansion.

を得たものである。This is what I got.

したがって本発明は比較的純度の高いものが゛安価に得
られるS io 2を出発原料とし、下記するが如き方
法でSiO蒸気を発生せしめ、之をノズルを介し分子運
動速度量」二の高速で窒素を含む雰囲圧した酸素を含む
雰囲気内に噴射せしめ、断熱膨張による急冷により表面
が窒化または炭化もしくは酸化されたアモルファスSi
Oの超微粉単一組成で目、理想的粉体特性をもつ超微粉
の形で安価大量に得ることができるものである。
Therefore, the present invention uses SiO 2, which is relatively pure and can be obtained at low cost, as a starting material, generates SiO vapor by the method described below, and generates SiO vapor through a nozzle at a high speed of molecular motion velocity of 2. Amorphous Si whose surface is nitrided, carbonized, or oxidized by rapid cooling by adiabatic expansion by injecting it into a pressurized atmosphere containing nitrogen
Ultrafine powder of O can be obtained in large quantities at low cost with a single composition and in the form of ultrafine powder with ideal powder characteristics.

更に本発明を段階的に説明すると次の2つの構成よりな
る。
Further explaining the present invention step by step, it consists of the following two configurations.

階 (1)第一段にして、下記するが如きいずれかの方法l
こよりSin蒸気を発生せしめ之をノズルに導き断熱膨
張急冷し、均一なアモルファスSiOの又は炭化水素の
如き炭化メ、tstzw;i:z記雰囲気にしておきそ
こに噴射されてきた超微粉状のアモルファスSiOの少
くとも表面を窒化又は炭化する。この事によりアモルフ
ァスSiO超微粉の凝集又は連鎖が避けられる。
Step (1) In the first step, use one of the following methods.
This generates Sin vapor, which is then guided to the nozzle where it is adiabatically expanded and rapidly cooled to form a homogeneous amorphous SiO or carbonized material such as hydrocarbons. At least the surface of the amorphous SiO is nitrided or carbonized. This avoids agglomeration or chaining of the amorphous SiO ultrafine powder.

上記第1段階はSiO蒸気を発生せしめ之を所定のノズ
ルに導き断熱膨張急冷し均一なアモルファスSiOの超
微粉をうる段階である。
The first stage is a stage in which SiO vapor is generated, introduced into a predetermined nozzle, adiabatically expanded and rapidly cooled, and uniform ultrafine amorphous SiO powder is obtained.

SiOの蒸気を発生する方法は、色々の方法がありいず
れの方法によっても差支えないが代表的なものとして次
の2つが知られている。
There are various methods for generating SiO vapor, and any method may be used without any problem, but the following two are known as representative methods.

SiO−1−5+   Sin  ・・・・・■2  
   (− 5i02斗Cニー Sin十GO・・・・・・■即ち、
SiO□にメタリックSi又は伏索を加え約1300’
c以−I:lこ加熱するとSin蒸気が多量番こ発生す
る。SiOの蒸気圧は第1図に示すSi。
SiO-1-5+ Sin...■2
(-5i02斗Cnee SinjuGO...■i.e.
Approximately 1300' by adding metallic Si or binder to SiO□
C-I: When heated, a large amount of Sin vapor is generated. The vapor pressure of SiO is shown in FIG.

SiO* S + 02の温度(0K)−真空圧(To
rr)関係線図より明かな如く例えば2000K(17
27°C)では37QTorrで、SiやS r 02
の約1.8Torrの約200倍の蒸気圧をもつ。比の
事は、SiやS r 02を蒸発させる事よりはるかに
豊富なSiOの蒸気を容易に得る事が可能であり、はる
かに5i07蒸気の高速生産が可能である事を意味する
。また、このような蒸気圧の高いSin蒸気を発生させ
る為lこ、蒸気圧の低いS x O2やCの混入が殆ん
どなく、又原料中の不純物は一般にSiOの蒸気圧より
蒸気圧がずっと低い為、比較的安い原料を使って、高純
度のSiO超微粉が量産的に得られる長所がある。
SiO* S + 02 temperature (0K) - vacuum pressure (To
rr) As is clear from the relationship diagram, for example, 2000K (17
27°C), it is 37QTorr, and Si and S r 02
It has a vapor pressure of about 200 times that of about 1.8 Torr. The ratio means that it is possible to easily obtain a much richer SiO vapor than by evaporating Si or S r 02, and that it is possible to produce 5i07 vapor at a much higher rate. In addition, in order to generate such high vapor pressure Sin vapor, there is almost no contamination of S x O2 or C, which have low vapor pressure, and impurities in the raw materials generally have a vapor pressure higher than that of SiO. Since it is much lower, it has the advantage that high-purity ultrafine SiO powder can be mass-produced using relatively cheap raw materials.

このようにして豊富に発生したSin蒸気をノズルに導
き、断熱膨張急冷により均一なアモルファスSiO超微
粉が得られる。断熱膨張に用いるノズルは、たとえば第
3図の断面図(こ示す〆如き従来から用いられている(
イ)先軸ノズル(ロ)末拡ノズルの2種類がある。この
種先細ノズル(イ)は出口で音速迄、末拡ノズル(CI
)は超音速を出しうる事は公知である。一般に蒸気を超
急冷すると超微粉が得られる事が知られている。本発明
では望ましい粒径に応して、先細ノズルまたは末拡ノズ
ルを使い分ける事が出来る。たとえば先細ノズルぞは1
マツハまで末拡ノズルは数マツハまでの音速が得られる
。したがって、粒径(こ応じその分子運動速度(0,6
〜0.9マツハ)から超8速(数マツハ)に至る速度を
使い分け、断熱膨張急冷する事により1μ〜数拾’Aの
範囲で狙った粒径のアモルファス超微粉を得る事が出来
る。
The abundant Si vapor generated in this way is guided to the nozzle, and uniform amorphous SiO ultrafine powder is obtained by adiabatic expansion and rapid cooling. The nozzle used for adiabatic expansion is, for example, the cross-sectional view shown in FIG.
There are two types: a) front shaft nozzle and (b) widening end nozzle. This type of tapered nozzle (A) reaches the speed of sound at the exit, and the converging nozzle (CI)
) is known to be capable of achieving supersonic speeds. It is generally known that ultra-fine powder can be obtained by ultra-quenching steam. In the present invention, a tapered nozzle or a diverging nozzle can be used depending on the desired particle size. For example, the tapered nozzle is 1
A widening nozzle up to Matsuha can obtain sound speeds up to several Matsuha. Therefore, the molecular motion velocity (0,6
By selectively using speeds ranging from ~0.9 mA) to super 8 speed (several mA) and performing adiabatic expansion and rapid cooling, it is possible to obtain amorphous ultrafine powder with a target particle size in the range of 1 μm to several tens of microns.

また、本発明において、ノズルを使い望ましくは分子運
動速度以上の速度でSiO蒸気を噴射するのは他に2つ
の重要な理由がある。
In addition, in the present invention, there are two other important reasons why the nozzle is used to inject SiO vapor preferably at a speed higher than the molecular motion speed.

すなわち、その1つはSiOは高温例えば1600°C
以上では安定であるが、それ以下の低温では、る 次の如き分解力す化を行い、不安定で、2SiO→S 
r +S + 02  ・・・・・・■に従って直ちに
SiOが分解してSlと5in2の混合物になる事であ
る。この変化を有効に明止するためには少くとも分子運
動速度以上で断熱膨張急冷する事により有効に阻11:
出来る。
That is, one of them is that SiO is heated to a high temperature, for example, 1600°C.
It is stable at temperatures above that, but at lower temperatures, the decomposition power decreases as follows, making it unstable, and 2SiO→S
r + S + 02 ... SiO immediately decomposes into a mixture of Sl and 5in2 according to ■. In order to effectively prevent this change, it is necessary to perform adiabatic expansion and rapid cooling at least at a rate higher than the molecular motion velocity11:
I can do it.

さらに、もう1つの理由は分子運動速度以上の速度でS
iO蒸気をノズルから噴射する事(こよりノズル下流の
窒化雰囲気又は、炭化雰囲気もしくは減圧した酸化雰囲
気がノズルを介してノズル上流の反応室に逆流する事が
有効に阻市される事である。もし万一 、窒化雰囲気又
は炭化水素もしくは酸素が反応室に逆流すると温度によ
っては反応室内で窒化又は炭化もしくは酸化が起り、そ
れによって生じた窒化物又は炭化物もしくは酸化物は原
料のS io 2  の粗大な粒径に対応するためとて
も超微粒にならずに好ましくない為である。
Furthermore, another reason is that S
Injecting iO vapor from the nozzle effectively prevents the nitriding atmosphere, carbonizing atmosphere, or reduced pressure oxidizing atmosphere downstream of the nozzle from flowing back through the nozzle into the reaction chamber upstream of the nozzle. In the unlikely event that the nitriding atmosphere, hydrocarbons, or oxygen flows back into the reaction chamber, nitridation, carbonization, or oxidation will occur in the reaction chamber depending on the temperature, and the resulting nitrides, carbides, or oxides will become coarse particles of the raw material S io 2 . This is because the grains do not become extremely fine due to the grain size, which is not desirable.

したがって、本発明では、ノズルを使用して望ましくは
分子運動速度量」二でSiO蒸気を噴射する事lこより
SiOのSi+SiO3への分解を有効に抑える一方、
ノズル下流の雰囲気ガスの反応室への逆流を抑えること
ができる上にノズルでの断熱膨張急冷により特性のすぐ
れたアモルファスSiOの超微粉を量産的に得る事を可
能1こした。
Therefore, in the present invention, while effectively suppressing the decomposition of SiO into Si+SiO3 by injecting SiO vapor preferably with a molecular momentum amount of 2 using a nozzle,
In addition to being able to suppress the backflow of atmospheric gas downstream of the nozzle into the reaction chamber, it has also become possible to mass-produce ultrafine amorphous SiO powder with excellent properties by adiabatic expansion and rapid cooling in the nozzle.

次に本発明の第2段階では上記ノズルの下流雰囲気を窒
化又は炭化もしくは減圧した酸化の雰囲気にしておき、
そこに噴射されてきたSiOの超微粉の少くとも全表面
を窒化又は炭化もしくは酸化する段階である。
Next, in the second step of the present invention, the downstream atmosphere of the nozzle is made into a nitriding or carbonizing atmosphere or a reduced pressure oxidizing atmosphere,
This is the step of nitriding, carbonizing, or oxidizing at least the entire surface of the ultrafine SiO powder that has been injected there.

一般に、超微粉は粒径が小さくなればなる程活性が強く
なり、互番こ凝結して粗粒となったり、連鎖状をなす事
はよく知られている。したがって、上記本発明の第1段
階でノズルから噴射されて生じた超微粉状のアモルファ
スSiOは当然非常に強い活性をもち、その1′>では
凝結連鎖等を生ずる。今ノズル下流を窒化又は炭化もし
くは減圧した酸化の雰囲気にしてその雰囲気に之等Si
め超微粉を噴射すると、直ちに反応して超微粉のSiO
の表層に窒化又は炭化もしくは酸化の外層を生じる為に
不必要で有害な凝結や連鎖が有効に防止できる著しい特
長がある。
In general, it is well known that the smaller the particle size of ultrafine powder, the stronger its activity, and that it coagulates in turns to form coarse particles or form chains. Therefore, the ultrafine amorphous SiO produced by being injected from the nozzle in the first step of the present invention naturally has very strong activity, and causes a chain of coagulation and the like at 1'>. Now, create a nitriding, carbonizing, or depressurized oxidizing atmosphere downstream of the nozzle, and add Si to that atmosphere.
When ultrafine powder is injected, it immediately reacts to form ultrafine SiO powder.
It has the remarkable feature that it can effectively prevent unnecessary and harmful condensation and chains because it forms a nitrided, carbonized, or oxidized outer layer on its surface.

アモルファスSiO超微粉は非常に活性があるためもし
上記処理を行わず大気中に取出すと直に酸化を起し燃焼
して5i02になってしまうが、本発明の如き処理によ
り超微粉の凝結、連鎖による粗大化を防ぐのみならず、
大気中でも燃焼する事なく安全に増扱える少くとも表面
ケ窒化捷たFi広化もしくは酸化したアモルファスのS
iOの超微粉を得ることができる。
Amorphous SiO ultrafine powder is very active, so if it is taken out into the atmosphere without the above treatment, it will immediately oxidize and burn to become 5i02, but by the treatment of the present invention, the ultrafine powder will coagulate and chain. In addition to preventing coarsening due to
At least surface nitrided Fi-broadened or oxidized amorphous S can be safely handled without burning in the atmosphere.
Ultrafine powder of iO can be obtained.

以上本発明の第1段階と第2段階を説明の便宜上分けて
書いたが、実施の場合はこれら2つの段階は殆んど同時
瞬間的に行なわれることになる。
Although the first and second stages of the present invention have been described separately for convenience of explanation, in actual practice, these two stages will be performed almost simultaneously.

次に、本発明の与える種々の工業効果を下記に列記する
Next, various industrial effects provided by the present invention are listed below.

(11siO蒸気を発生する際の原料であるSiや5i
n2に比較してSiO蒸気は第1図に示す如<2000
°に附近では数百倍蒸気圧が高い為噴射されて得たアモ
ルファスSiO[3iヤ5io2の混入が極めて少く且
つ粉体特性が極めてすぐれている。又、蒸気圧が非常に
高い事は生産性が著しく高い利点がある。
(Si and 5i, which are the raw materials for generating 11siO vapor,
Compared to n2, SiO vapor is <2000 as shown in Figure 1.
Since the vapor pressure is several hundred times higher in the vicinity of 100 °C, there is very little contamination of the injected amorphous SiO [3i and 5io2, and the powder properties are extremely excellent. In addition, the very high vapor pressure has the advantage of significantly high productivity.

(2)  SiO蒸気をノス)Vにより分子運動速度以
上で噴射し、断熱膨張急冷をイ1なう事によりSiOの
分解全有効に阻止すると同時にノズル条件の変更による
断熱膨張の急冷条件を変更する事が出来、この変更によ
って粒径数十A〜1μの範囲で任意の粒径の比較的揃っ
たアモルファスSiOの超微粉ケ得る事が可能と々つだ
(2) SiO vapor is injected with V at a speed higher than the molecular motion velocity and adiabatic expansion quenching is performed to completely prevent the decomposition of SiO, and at the same time, the adiabatic expansion quenching conditions are changed by changing the nozzle conditions. By this change, it is possible to obtain ultrafine amorphous SiO powder with a relatively uniform particle size in the range of several tens of amps to 1 μm.

(3)ノスル乍流の雰囲気を窒化又は炭化雰囲気もしく
は減圧した酸化雰囲気にしておく事により、そこへ噴射
されて来たアモルファヌSiOの超微粉の表面はその活
性によね瞬間に窒化又は炭化又は酸化される。この事に
より一般的[超微粉の生成時に起りやすい粉体側々の粒
径の粗大化や凝結。
(3) By making the atmosphere of the Nosuru flow a nitriding or carbonizing atmosphere or a reduced pressure oxidizing atmosphere, the surface of the ultrafine powder of Amorphanu SiO injected there will be instantly nitrided, carbonized, or oxidized due to its activity. be done. This causes general problems such as coarsening and coagulation of the particle size on the sides of the powder, which tends to occur when ultrafine powder is produced.

連鎖等が有効に阻水されるばかりでなく、活性の強いア
モルファヌSiOの超微粉を燃焼させる事なく大気中に
取出し、取り扱える道を開いた。
This not only effectively blocked water chains, etc., but also opened the way for the highly active ultrafine powder of amorphanu SiO to be taken out into the atmosphere and handled without burning.

(4)本発明で得られた粒径の揃った粉体特性の良いア
モルファスSiO超微粉は次工程の熱処理(10) にエリアモルファヌ5iaN4.α5iaN〜β5ia
N+。
(4) The amorphous SiO ultrafine powder with uniform particle size and good powder properties obtained in the present invention is subjected to the next heat treatment (10) using Elia Morphanu 5iaN4. α5iaN~β5ia
N+.

βS 1 c、 p S t C等をそれぞれ単−組成
で粉体特性のすぐれた超微粉を得る為の出発原料として
画期的重要な役割を果す。即ち、それぞれの目的により
表面を窒化又は炭化又は酸化したアモルファスSiO超
微粉を次工程で熱処理を行なう場合、積層しても個々の
粒体が凝結や連鎖、粒径粗大化を生じる事なく、良好な
粉体特性全体った[L還元窒化や還元炭化及び結晶化す
る事が可能となった。更に従来法によるSiの窒化、炭
化は個々の粒径が大小まちまちである為、熱処理条件を
極めて精密に沃めても個々の粒の受ける影響が異り、従
って異なる結晶組織の混在が避けられず且つ長時間を要
したが、本発明においては、粒径が揃ってf居り且つ超
微粉である為、極めて短時間で正確な熱処理が可能であ
るばかりでなく上記St窒化物系及び炭化物系を任意、
単一組成で良好な粉体特性をもつ超微粉の形で経済的に
得られる事を可能にした事は、工業的に画期的な意味を
もつ。
βS 1 c, p S t C, etc. each play an epoch-making important role as a starting material for obtaining ultrafine powder with a single composition and excellent powder characteristics. In other words, when amorphous SiO ultrafine powder whose surface is nitrided, carbonized, or oxidized for each purpose is heat-treated in the next step, the individual particles do not aggregate, chain, or coarsen the particle size even when stacked. The overall powder properties were improved, making it possible to perform reduction nitridation, reduction carbonization, and crystallization. Furthermore, when Si is nitrided and carbonized by conventional methods, the individual grain sizes vary, so even if the heat treatment conditions are extremely precise, each grain will be affected differently, and the coexistence of different crystal structures can therefore be avoided. However, in the present invention, since the grain size is uniform and the powder is ultra-fine, not only can accurate heat treatment be performed in an extremely short time, but also the above-mentioned St nitride-based and carbide-based Any,
The ability to economically obtain ultrafine powder with a single composition and good powder properties has an epoch-making significance industrially.

(10) 次に本発明の実施の一例として図面に示す装置について
説明する。
(10) Next, an apparatus shown in the drawings will be described as an example of implementing the present invention.

第2図は本発明の製造装置の全体の構成を示す断面図で
、大略SiO蒸気を発生させる反応室1と、該反応室1
に連結したSiO蒸気を断熱膨張させるノズル22と、
該ノズル22を開口したSiO蒸気をノズルから噴射さ
せる捕集室34と、該捕集室34を還元窒化または還元
炭化もしくは減圧した酸素の雰囲気にする手段50より
なる。
FIG. 2 is a cross-sectional view showing the overall configuration of the manufacturing apparatus of the present invention, which includes a reaction chamber 1 for roughly generating SiO vapor, and a reaction chamber 1 for generating SiO vapor.
a nozzle 22 that adiabatically expands the SiO vapor connected to the
It consists of a collection chamber 34 which opens the nozzle 22 and injects SiO vapor from the nozzle, and means 50 which makes the collection chamber 34 an atmosphere of reduced nitriding, reduced carbonization, or reduced pressure oxygen.

密閉した耐熱材よりなる反応室lはその外部に断熱材3
および耐真空耐圧容器4ならびに水冷ジャケット5によ
って三重に囲まれている。また反応室1と断熱材3の間
に発熱体2を設けて反応室lを常時所定温度に加熱する
。反応室lは耐熱材よりなる導管21を介しノズル22
の入口部と気密に連結されている。ノズル22と導管2
■よりなるノズル室はその外周にノズル加熱用発熱体2
3を有し、SiO蒸気の温度降下による逆反応やノズル
の閉塞を防止する。なお、ノズル室は反応室と同様に断
熱材24および耐真空耐圧容器25ならびに水冷ジャケ
ット26によって囲まれている。
The reaction chamber 1 is made of a sealed heat-resistant material and has a heat insulating material 3 on the outside.
It is triple-surrounded by a vacuum-resistant and pressure-resistant container 4 and a water-cooled jacket 5. Further, a heating element 2 is provided between the reaction chamber 1 and the heat insulating material 3 to constantly heat the reaction chamber 1 to a predetermined temperature. The reaction chamber l is connected to a nozzle 22 through a conduit 21 made of a heat-resistant material.
is airtightly connected to the inlet of the Nozzle 22 and conduit 2
■The nozzle chamber consists of two heating elements for heating the nozzle on its outer periphery.
3 to prevent reverse reactions and nozzle clogging due to a drop in the temperature of SiO vapor. Note that, like the reaction chamber, the nozzle chamber is surrounded by a heat insulating material 24, a vacuum-resistant and pressure-resistant container 25, and a water-cooling jacket 26.

ノズル22の開口部は密閉した捕集室34に向って開]
]シて取付けられる。ノズル22は第3図に示す末広ノ
ズル又は先細ノズルを用いる。ノズルの開口部を除いて
ノズル室25と捕集室34は仕切板47で仕切られる。
The opening of the nozzle 22 opens toward a sealed collection chamber 34]
] Mounted. As the nozzle 22, a diverging nozzle or a tapering nozzle shown in FIG. 3 is used. The nozzle chamber 25 and the collection chamber 34 are partitioned off by a partition plate 47 except for the nozzle opening.

1liit真空耐圧容器よりなる捕集室34はその中に
断熱材33と金属製の捕集筒30が設けられ、それらの
間に発熱体32を備えて常時捕集室34内を適温に加熱
する事が可能になっている。捕集室34の捕集筒30の
上部に設けたガス分配リング29は開閉弁51を介して
公知の窒素ボンベまたは炭素ボンベもしくは酸素ボンベ
50に接続される。また、捕集室は底部開口に開閉自在
に密閉した製品取出用の蓋を備えると共に排気管48及
びダストフィルター39並びに開閉弁43を介して真空
ポンプ44に連結される。反応室1 針部は連結管8及
び開閉弁10’1してSiO3の原料を貯蔵した貯槽1
1に連結される一方、反応室lの下部は連結管14及び
開閉弁16を介して残渣を取り出す残渣槽17に連結し
ている。貯槽及び残渣槽には夫々開閉弁を介して真空ポ
ンプに連結されると共に貯槽の上部開口及び残渣槽の下
部開口には夫々開閉蓋を備える。
A collection chamber 34 made of a 1LIIT vacuum pressure-resistant container is provided with a heat insulating material 33 and a metal collection cylinder 30, and a heating element 32 is provided between them to constantly heat the inside of the collection chamber 34 to an appropriate temperature. Things are now possible. A gas distribution ring 29 provided above the collection tube 30 of the collection chamber 34 is connected to a known nitrogen cylinder, carbon cylinder, or oxygen cylinder 50 via an on-off valve 51. Further, the collection chamber is provided with a lid for taking out the product which is closed and openable at the bottom opening, and is connected to a vacuum pump 44 via an exhaust pipe 48, a dust filter 39, and an on-off valve 43. Reaction chamber 1 The needle part is connected to a connecting pipe 8 and an on-off valve 10'1 to a storage tank 1 in which raw materials for SiO3 are stored.
1, and the lower part of the reaction chamber 1 is connected via a connecting pipe 14 and an on-off valve 16 to a residue tank 17 from which the residue is taken out. The storage tank and the residue tank are each connected to a vacuum pump via an on-off valve, and the upper opening of the storage tank and the lower opening of the residue tank are each provided with an opening/closing lid.

なお、反応容器l、ノズル室25、捕集室34、体構造
とし戸立てられ、かつボンベ5o、貯槽11、残渣槽1
7等は夫々開閉弁を介して一体的に連結され、これら全
体がそれぞれ真空パツキン9・13・15.19,20
,35,38e42等を使用し耐真空耐圧構造を成して
いる。
In addition, the reaction vessel 1, the nozzle chamber 25, the collection chamber 34, the body structure is made up of a door, and the cylinder 5o, the storage tank 11, and the residue tank 1.
7 etc. are integrally connected via on-off valves, and the whole is vacuum packing 9, 13, 15, 19, 20, respectively.
, 35, 38e42, etc., to form a vacuum-resistant and pressure-resistant structure.

上記のり1き構造よりなる製造装置を用いて、超微粉の
アモルファス状SiOを得るには、先ず、原料として、
S r 02とSi又はS io 2とCを略等モルの
比率で良く混合し適当な圧力でブリケットして貯槽11
内に投入、収納する。
In order to obtain ultrafine amorphous SiO using the above-mentioned manufacturing apparatus having the glue structure, first, as a raw material,
S r 02 and Si or S io 2 and C are mixed well in a substantially equimolar ratio, briquettered at an appropriate pressure, and stored in a storage tank 11.
Put it in and store it inside.

次に真空ポンプ44を作動して、反応室に一連に連通し
た導管21.ノズル22.捕集室34゜ダストフィルタ
ー39を介して該反応室lを真空ポンプ44で減圧し乍
ら発熱体2で1300°C以上に加熱する一方、捕集室
3・4内の捕集筒13jOの(13) 上部には、ガス分配リング29があり第2図のガス導入
管46を介し、外部のボンベ50から窒素又はアンモニ
ヤもしくは酸素を送り込むようにする。この時(図省略
)ガス分配リング29には斜下方に向って小孔が均等に
適当細膜けられ、」二重ガスが比較的杓−に下方に噴射
される。このような状態で、次に開閉弁10を開いて貯
槽11内にある原料ブリケットを反応室lに投下すると
、反応室l内にSiO蒸気が直に発生する。反応室内に
発生したSiO蒸気は導管21を通りノズル22を介し
て捕集室34内に向けて断熱膨張で噴射される。捕集室
34とノズル室25との間には仕切板47があるが、ノ
ズルから噴射される5iOi5は分子運動速度以上の速
度で捕集室の捕集筒30内に噴射され、上記ガスが反応
室1へ逆流出来ない構造となっている。ノズル22から
捕集筒30内に噴出したSiO蒸気は急速な断熱膨張に
より超急速冷却を受けSiOの非常に活性のある超微(
14) 窒化層又は炭化層もしくは酸化層を作る事により、粒同
志の凝集や連鎖を作ることなく超微粒のま\捕集筒30
の下部に堆積する。上記ガスの内の未反応分及び反応に
より生成したガス及び蒸気等は捕集筒30下部に設けら
れた小孔を通り、排気管48及びダストフィルター39
を介し真空ポンプ44で排気される。真空ポンプ44よ
り排出されたガス及蒸気の処置は通常の方法で処理され
る。
Next, the vacuum pump 44 is activated, and the conduit 21. which is connected to the reaction chamber in series. Nozzle 22. The reaction chamber 1 is depressurized by the vacuum pump 44 through the collection chamber 34° dust filter 39 and heated to 1300°C or higher by the heating element 2. (13) At the top, there is a gas distribution ring 29 for feeding nitrogen, ammonia, or oxygen from an external cylinder 50 through a gas introduction pipe 46 shown in FIG. At this time, the gas distribution ring 29 (not shown) has small holes evenly formed in a diagonally downward direction, and the double gas is injected downward in a relatively ladle manner. In this state, when the on-off valve 10 is then opened and the raw material briquettes in the storage tank 11 are dropped into the reaction chamber 1, SiO vapor is immediately generated in the reaction chamber 1. The SiO vapor generated in the reaction chamber passes through the conduit 21 and is injected into the collection chamber 34 through the nozzle 22 by adiabatic expansion. There is a partition plate 47 between the collection chamber 34 and the nozzle chamber 25, and the 5iOi5 injected from the nozzle is injected into the collection tube 30 of the collection chamber at a speed higher than the molecular motion speed, and the gas is The structure is such that it cannot flow back into the reaction chamber 1. The SiO vapor ejected from the nozzle 22 into the collection tube 30 undergoes ultra-rapid cooling due to rapid adiabatic expansion, resulting in extremely active ultrafine particles of SiO (
14) By creating a nitrided layer, a carbonized layer, or an oxidized layer, ultrafine particles can be collected without forming agglomerations or chains of particles.
deposits at the bottom of the The unreacted portion of the gas and the gas and steam generated by the reaction pass through a small hole provided at the bottom of the collection tube 30, and pass through the exhaust pipe 48 and the dust filter 39.
The air is evacuated via a vacuum pump 44. The gas and vapor discharged from the vacuum pump 44 are disposed of in a conventional manner.

また、捕集筒30の下部゛に堆積したアモルファスSi
Oの超微粉は開閉i37を開いて取り出される。このよ
うにしてアモルファスSiOの超微粉はバッチ形式であ
るいは連続形式で大量に生産される。
In addition, amorphous Si deposited on the lower part of the collection tube 30
The ultrafine powder of O is taken out by opening the opening/closing i37. In this way, ultrafine amorphous SiO powder is produced in large quantities either batchwise or continuously.

実験例1:上記装置を用いてSiO超微粉の製201%
 12rimの円柱状ブリケットを作り之を上記装置の
反応、室1に入れて真空ポンプ44で1O−21On 
に減圧する。つづいて反応室lを発熱体2でJA、温す
ると約1500″C附近からSiO蒸気の噴出が反応室
1内で認められる。
Experimental example 1: Production of ultrafine SiO powder by 201% using the above device
A cylindrical briquette with a size of 12 rim was made, and the briquette was put into the reaction chamber 1 of the above-mentioned apparatus, and the vacuum pump 44 was used to turn the briquette into 1O-21On.
Reduce the pressure to Subsequently, when the reaction chamber 1 was heated to 100 ℃ by the heating element 2, SiO vapor was observed to be ejected from around 1500''C inside the reaction chamber 1.

次にSiO蒸気の噴出が始ったら直にNF13(又はN
2とH2混合ガス〕を反応室に連通してノズル22の下
方の捕集室34にボンベ5oから充填し該捕集室34内
の圧力が数−から数十りになる様NH3の流量を調節す
る。一方反応室lは更に昇温をつづけ1600〜180
0°Cとする。この温度でノズルから噴射されたSiO
超微粉は捕集室34のNH3雰囲気の中で直に表面窒化
され見かけ比率0.06〜0.■の範囲にある黄土色の
ふわふわしたアモルファスSiO超微粉の集合体が捕集
室に貯った。この生成物は、軽く振動を与える程度で容
易に分離して超微粉単体とすることができる。これを電
子顕微鏡で調べると個々の粉体の粒径は略300^〜4
00°A−で、粒の形状は球形であり、それらの球形は
大略揃っていた。これを従来から用いられている。電子
顕微鏡の観察とX線ディ7ラクトメーターよりアモルフ
ァス状SiOの超微粉である事を第5図に示すX −r
ay 5ourceCu にdの反射X線相対強度と超
微粉回転角度の′    関係線図の波形から確認した
。このアモルファス状SiOの超微粉を28000倍の
電子顕微鏡で撮影した電子顕嶽鏡写真が第6図に示す黒
色のものであり、該写真は粗大粒子であるかの如くみえ
るが之は凝結ではなく、軽い振動を与えれば容易に微細
単粒子に分れるものである。
Next, as soon as the SiO vapor starts to blow out, immediately
2 and H2 mixed gas] is communicated to the reaction chamber, and the collection chamber 34 below the nozzle 22 is filled from the cylinder 5o, and the flow rate of NH3 is adjusted so that the pressure in the collection chamber 34 is from several to several tens of degrees. Adjust. On the other hand, the temperature of reaction chamber 1 continues to rise to 1600~180
Set it to 0°C. SiO injected from the nozzle at this temperature
The surface of the ultrafine powder is directly nitrided in the NH3 atmosphere in the collection chamber 34, and the apparent ratio is 0.06 to 0. An aggregate of ocher-colored, fluffy amorphous SiO ultrafine powder in the range (2) was accumulated in the collection chamber. This product can be easily separated into a single ultrafine powder by applying slight vibration. When this was examined with an electron microscope, the particle size of each powder was approximately 300~4
At 00°A-, the shape of the particles was spherical, and the spherical shapes were almost uniform. This has been used conventionally. X-r shown in Figure 5 is an ultrafine powder of amorphous SiO from observation with an electron microscope and an X-ray ditractometer.
It was confirmed from the waveform of the relationship diagram between the relative intensity of reflected X-rays and the rotation angle of the ultrafine powder. An electron micrograph of this ultrafine amorphous SiO powder taken with an electron microscope at 28,000x magnification is shown in Figure 6, which is black in color, and although it appears to be coarse particles, it is not condensation. , it can be easily separated into fine single particles by applying light vibrations.

Nll3の代りに伏化水チ(充填しても同様+rモルフ
ァスSiOの超微粉が得られた。
Even when Nll3 was replaced with hydrated water (filling), ultrafine powder of +rmorphous SiO was similarly obtained.

実験例3:上記実験例1における捕集室34の粉が得ら
れた。
Experimental Example 3: The powder in the collection chamber 34 in Experimental Example 1 was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSi、SiO、SiO3の温度−真空圧の関係
線図、第2図は本発明に用いる製造装置の全体構成の概
略を示す断面図、第3図り+(ロ)は夫々第2図の装置
に用いるノズルの断面図、第4図は第2図の装置の一部
の拡大図、第5図は本発明で得たアモルファス状SiO
の超微粉の反射X線相(17) 図1面に代り 倍の電子顕嶽鏡写貞である。 l・・・反応室、 22・・・ノズル、 34・・・捕
集室、50・・・ボンベ。 特許111願大堀 文 雄 代 理 人 弁理士 青白 葆ほか2名(18) 第1図 →湯−/j1m  +04 第2図 第3図(イ) 第3図cロン ρC 第4図 う9 0    。 o    o    0 CIJ        g+
Fig. 1 is a temperature-vacuum pressure relationship diagram of Si, SiO, and SiO3, Fig. 2 is a sectional view schematically showing the overall configuration of the manufacturing equipment used in the present invention, and Fig. 4 is an enlarged view of a part of the device shown in FIG. 2, and FIG. 5 is a cross-sectional view of the nozzle used in the device shown in the figure.
Reflected X-ray phase of ultrafine powder (17) This is an electron microscope photo taken in place of the one in Figure 1. l...Reaction chamber, 22... Nozzle, 34... Collection chamber, 50... Cylinder. Patent 111, Fumi Ohori, Attorney, Yuyo, Patent attorney, Seohaku, Sho, and 2 others (18) Fig. 1 → Yu-/j1m +04 Fig. 2 Fig. 3 (a) Fig. 3 cron ρC Fig. 4 U90. o o 0 CIJ g+

Claims (1)

【特許請求の範囲】 1)SiO蒸気を、還元窒化または還元炭化もしくは減
圧した酸素の雰囲気内に断熱膨張で噴射させて得た、少
くども表面が窒化または炭化もしくは酸化してなる粒径
1μ以下のアモルファス状SiOの超微粉′。 2)SiO蒸気をノズルに通して還元窒化または還元炭
化もしくは減圧した酸素の雰囲気内に断熱膨張で噴射す
る工程よりなる、少くとも表面を窒化または炭化もしく
は酸化してなる粒径lμ以下の超微粉のアモルファス状
SiOのia方法。 3)SiO蒸気を発生させる手段と、還元窒化または還
元炭化もしくは減圧した酸素の雰囲気を有する捕集箱と
゛、上記SiO蒸気を断熱膨張させて上記捕集箱内に噴
射させるノズルとよりなる、少くとも表面を窒化または
炭化もしくは酸化してなる粒径1μ以下の超微粉のアモ
ルファス状SiOの製造装置。
[Claims] 1) Particles with a particle size of 1 μm or less whose surface is at least nitrided, carbonized, or oxidized, obtained by injecting SiO vapor into an atmosphere of reduced nitriding, carbonizing, or reduced pressure oxygen under adiabatic expansion. ultrafine amorphous SiO powder'. 2) Ultrafine powder with a particle size of 1μ or less, which is formed by nitriding, carbonizing, or oxidizing at least the surface, which is made by passing SiO vapor through a nozzle and injecting it into an atmosphere of reduced nitriding, carbonizing, or reduced pressure oxygen by adiabatic expansion. IA method for amorphous SiO. 3) A method consisting of a means for generating SiO vapor, a collection box having an atmosphere of reduced nitriding, reduced carbonization, or reduced pressure oxygen, and a nozzle that adiabatically expands the SiO vapor and injects it into the collection box. This is an apparatus for producing ultrafine amorphous SiO powder with a particle size of 1 μm or less, which is obtained by nitriding, carbonizing, or oxidizing the surface.
JP11731482A 1982-07-05 1982-07-05 Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment Expired JPS5950601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11731482A JPS5950601B2 (en) 1982-07-05 1982-07-05 Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11731482A JPS5950601B2 (en) 1982-07-05 1982-07-05 Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS598613A true JPS598613A (en) 1984-01-17
JPS5950601B2 JPS5950601B2 (en) 1984-12-10

Family

ID=14708679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11731482A Expired JPS5950601B2 (en) 1982-07-05 1982-07-05 Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS5950601B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216649A2 (en) * 1985-07-29 1987-04-01 Kawasaki Steel Corporation Method and system for manufacturing fine-grained silicon monoxide
US6395249B1 (en) 1997-12-25 2002-05-28 Nippon Steel Corporation Production process and apparatus for high purity silicon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278703A (en) * 1987-03-27 1988-11-16 Ikura Seiki Seisakusho:Kk Steady rest for automatic lathe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096685A (en) * 1985-07-27 1992-03-17 Kawasaki Steel Corporation Method for manufacturing fine-grained silicon monoxide
EP0216649A2 (en) * 1985-07-29 1987-04-01 Kawasaki Steel Corporation Method and system for manufacturing fine-grained silicon monoxide
US6395249B1 (en) 1997-12-25 2002-05-28 Nippon Steel Corporation Production process and apparatus for high purity silicon

Also Published As

Publication number Publication date
JPS5950601B2 (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US4484943A (en) Method and apparatus for making a fine powder compound of a metal and another element
JPS63221842A (en) Manufacturing method of metallic powder, metallic compound powder and ceramic powder and device thereof
JPH0433490B2 (en)
Lee et al. Preparation of ultrafine silicon nitride, and silicon nitride and silicon carbide mixed powders in a hybrid plasma
US20080019903A1 (en) Process and apparatus for prodcing concrrently hydrogen or ammonia and metal oxide nanoparticles
JPH11502760A (en) Fast cooling reactor and method
KR20070050983A (en) Metal carbides and process for producing same
JPS58171502A (en) Pulverized composite powder of ceramic and metal
US3848068A (en) Method for producing metal compounds
JPS62203B2 (en)
US4594101A (en) Fine composite powder material and method and apparatus for making the same
JPS598613A (en) Ultrafine powder of sio in amorphous state, its preparation and device for preparing it
JPS5913616A (en) Hyperfine powder of sic, method and apparatus for manufacturing it
JPH01306510A (en) Improvement for manufacturing super fine particle powder
JPH05213606A (en) Production of lower metal oxide
JPS5913611A (en) Hyperfine powder of si3n4, method and apparatus for manufacturing it
JPS63266001A (en) Production of composite spherical powder
JPH0127773B2 (en)
Radwan et al. Growth of Quasi‐Aligned AlN Nanofibers by Nitriding Combustion Synthesis
RU2321543C1 (en) Titanium nanoxide synthesis method
JPS6042164B2 (en) Powder manufacturing method
David et al. Fe3C nanopowder synthesized by laser pyrolysis and its annealing behaviour
JPS60251928A (en) Preparation of ultra-fine metal compound particle
JPS5891018A (en) Manufacture of fine nitride powder
JPS6317885B2 (en)