JPS5891018A - Manufacture of fine nitride powder - Google Patents

Manufacture of fine nitride powder

Info

Publication number
JPS5891018A
JPS5891018A JP18967581A JP18967581A JPS5891018A JP S5891018 A JPS5891018 A JP S5891018A JP 18967581 A JP18967581 A JP 18967581A JP 18967581 A JP18967581 A JP 18967581A JP S5891018 A JPS5891018 A JP S5891018A
Authority
JP
Japan
Prior art keywords
chloride
product
imide
ammonia
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18967581A
Other languages
Japanese (ja)
Inventor
Tadasuke Shigi
志儀 忠輔
Masaji Ishii
石井 正司
Masashi Hasegawa
正志 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP18967581A priority Critical patent/JPS5891018A/en
Publication of JPS5891018A publication Critical patent/JPS5891018A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Abstract

PURPOSE:To continuously obtain high purity fine nitride powder by reacting metallic chloride or metallic chlorohydride with ammonia at a prescribed temp. and by thermally decomposing the resulting intermediate product at a prescribed high temp. CONSTITUTION:Ammonia and metallic chloride or metallic chlorohydride are introduced into a reactor 1 directly or with an inert fluid and reacted at <=200 deg.C to produce imide or ammoniated metallic chloride. This product is introduced into a cyclone 2 together with ammonium chloride as a by-product and a secondary fluid for forming a whirling flow to separate and capture the solid matter. The captured solid matter (imide or ammoniated metallic chloride) is purified by thermal decomposition at >=1,300 deg.C. Thus, high purity fine nitride powder is obtd. continuously.

Description

【発明の詳細な説明】 本発明f3’、高純度耐熱性窒化物微粉末の製造方法、
特に高純度のSi、 At、 Ti、Zr、 Ta等の
屋化物微粉末の製造方法に関する〇 窒化けい素全中’Dとする耐熱性窒化物は、耐熱性に優
れ、強贋特に1200℃以上での強度が大きいことから
、エンジン部品、タービン部品などの制熱金域に替る材
料、すなわち高温構造材として利用される事が期待され
ている。
DETAILED DESCRIPTION OF THE INVENTION The present invention f3', a method for producing high-purity heat-resistant nitride fine powder,
In particular, the heat-resistant nitride containing high-purity Si, At, Ti, Zr, Ta, etc., has excellent heat resistance, and is particularly durable at temperatures above 1200°C. Because of its high strength, it is expected to be used as a material to replace the heat-reducing metal area of engine parts, turbine parts, etc., that is, as a high-temperature structural material.

尚温構造材用セラミック材料は、原料粉末に必要に応じ
て添加物を加え、又はそのま\でホットプレス又は直圧
あるいは常圧下で焼結し製造される。この椋にして製造
されるセラミック材料の性能は、ヤの成形法、添加物の
種類・閂に影響されるのは勿論であるが、原料粉末の緒
特性すなわち、純度、不純′$/J計、粒子径及びその
分布、粒子の形状等の影響も亦大きく重要である。
Ceramic materials for still-temperature structural materials are manufactured by adding additives to raw material powder as needed, or by sintering the powder as it is by hot pressing or under direct pressure or normal pressure. The performance of the ceramic material manufactured using this method is of course influenced by the molding method, the type of additives, and the bars, but also the characteristics of the raw material powder, such as purity, impurity, , the influence of particle size, its distribution, particle shape, etc. is also very important.

耐熱性窒化物の製法として、次の6つに大別される方法
が知られている。
The following six methods for producing heat-resistant nitrides are known.

(1)  単体元素を直接窒素と反応させる方法(2)
酸化物粉末と炭素粉末との混合物を窒素の存在下で加熱
する方法 t31  塩化物、父は堝水累化物をアンモニアと面接
高温で反応させる方法 しかしながら、これらの方法の中で、(1)は高純度な
単体微粉末の入手が困難であり、尚純度な窒化物が得難
い事並びに反応が叡しい発熱のため反応熱による原料、
反応生成物の焼結が生し微粉末が#燕く、高温構造材用
原料粉末の製造に適さない。(2)の方法は、製品中に
原料中に含まれる炭素、酸素が残留し易く、高温構造材
用原料粉末の製造に適芒ない。(3)の方法は、高純贋
微粉窒化物の製法として好ましいものであるが、反応の
コントロールが行ない難いため製品がバラツキ易く又製
品中に塩素が残留する欠点があった。このため(3)の
方法の改良法として、原料を低温の反応で中間生成物で
あるイミ1あるいは金属塩化物アンモニア化物とし、こ
れを加熱分解して輩化物微粉末を得る方法が提案されて
いる。しかし、この方法は、中…1生成物が酸素あるい
は水分と極めて反応し易く不安定である事から、複雑な
プロセス・装置を必要とする欠点かあった。例えは、ピ
、イ、ディ。
(1) Method of directly reacting a simple element with nitrogen (2)
However, among these methods, (1) is It is difficult to obtain high-purity single powder, it is difficult to obtain even pure nitride, and the raw material due to the heat of reaction is difficult to obtain.
Sintering of the reaction product results in fine powder formation, making it unsuitable for producing raw material powder for high-temperature structural materials. Method (2) is not suitable for producing raw material powder for high-temperature structural materials because carbon and oxygen contained in the raw materials tend to remain in the product. Method (3) is preferable as a method for producing high-purity counterfeit fine powder nitride, but it has the disadvantage that the product is easily inconsistent because it is difficult to control the reaction, and chlorine remains in the product. Therefore, as an improvement to method (3), a method has been proposed in which the raw material is converted into an intermediate product, imi-1 or metal chloride ammonium, through a low-temperature reaction, and then thermally decomposed to obtain fine powder of the chloride. There is. However, this method has the disadvantage that it requires complicated processes and equipment because the intermediate product is extremely reactive with oxygen or moisture and is unstable. For example, P, I, D.

モルガン(P、 E、 D、 Morgan )の方法
すなわちレボ−トAD−757748フランクリン イ
ンスチチュト リサーチラボラトリ発行(Report
 AD−757748Franklin In5tit
ute Re5earch Lab、 )によれば極め
て複軸な形状・構造の反応器を必要とするし、また、U
、S、P 6,959,446によれは、アンモニアと
金属塩化物とから得られた非常に酸化され易い反応中間
生成物を反応器から加熱用容器に移し変えねばならず、
この際酸化し最終窒化物微粉末中に酸素が入り易い欠点
がある。
The method of Morgan (P, E, D, Morgan), published by Franklin Institute Research Laboratory (Report
AD-757748Franklin In5tit
According to Ute Research Lab, ), it requires a reactor with an extremely biaxial shape and structure, and
, S. P 6,959,446, the highly oxidizable reaction intermediate obtained from ammonia and metal chlorides must be transferred from the reactor to a heating vessel;
At this time, there is a drawback that oxygen tends to be oxidized and enter the final nitride fine powder.

本発明は、この欠点を解決したものであり、簡便なプロ
セス・装置により、金属塩化物又は金属環水素化物とを
200°C以下で反応させ中間生成物を得、これを16
00°C以上の高温に加熱・分解して高温栴造材原料用
として適する窒化物微粉末を製造するものである。以下
図面に従って本発明の実施例を祝明する。
The present invention solves this drawback, and uses a simple process and equipment to react a metal chloride or a metal ring hydride at 200°C or less to obtain an intermediate product, which is
This method produces fine nitride powder suitable for use as a raw material for high-temperature drilling materials by heating and decomposing it to a high temperature of 00°C or higher. Embodiments of the present invention will be described below with reference to the drawings.

図面は、本発明の実施例の装置の説明図である。The drawings are explanatory diagrams of an apparatus according to an embodiment of the present invention.

図面において、1は金属塩化物又は塩水素化物とアンモ
ニアとの反応器、2は生成中間体の分離用サイクロン、
3は中間生成物の加熱装置4を具えた貯槽、5は原料ア
ンモニアガス導入口、6は金属塩化物又は塩水素化物の
導入口を示す0金属塩化物又は塩水素化物は、ガス状態
で不活性ガスと混合されるか又は単独で導入してもよく
、さらには、アンモニアと反応しない適当な有機溶媒、
すなわちベンゼン、ヘキサン、1,1.1−)リクロル
エタン等に溶解させ導入してもよい。有機溶媒を使用す
る際、1.1.1−)リクロルエタンは中間生成物の嵩
密度が大きくなり、装置の効率かよくなるので特に好ま
しい。7はサイクロン内の旋回流れ用二次流体の導入口
であり、金属塩化物又は塩水素化物がガス状で導入され
る場合は、窒素、アルゴン等の不活性ガスが二次流体と
して利用される○金属塩化物又は塩水素化物を有機溶媒
に溶解して導入される場合は、二次流体も亦、同種の有
機溶媒を利用するのが好ましい。3は中間生成物の加熱
装置を具えた貯槽であり、8は二次流体の排出口を示す
。有機溶媒使用時には過剰の一部有磯浴媒も亦8から排
出される。10は中間生成物の加熱分解時に雰囲気調整
用に導入するガスの導入口9より導入するガス及び中間
生成物加熱分解時Vこ発生するガスの排出口である。有
機溶媒使用時は3に摘果される一部有機浴媒も亦加熱あ
るいは減圧操作により9より排出される。
In the drawing, 1 is a reactor for metal chloride or chloride hydride and ammonia, 2 is a cyclone for separating the produced intermediate,
Reference numeral 3 indicates a storage tank equipped with a heating device 4 for intermediate products, 5 indicates an inlet for raw material ammonia gas, and 6 indicates an inlet for a metal chloride or chloride hydride. a suitable organic solvent which may be mixed with the active gas or introduced alone and which does not react with ammonia;
That is, it may be introduced by dissolving it in benzene, hexane, 1,1.1-)lychloroethane, or the like. When using an organic solvent, 1.1.1-)lichloroethane is particularly preferred since it increases the bulk density of the intermediate product and improves the efficiency of the apparatus. 7 is the introduction port for the secondary fluid for swirling flow in the cyclone, and when metal chloride or chloride hydride is introduced in gaseous form, an inert gas such as nitrogen or argon is used as the secondary fluid. o When a metal chloride or a chloride hydride is dissolved in an organic solvent and introduced, it is preferable to use the same kind of organic solvent for the secondary fluid as well. 3 is a storage tank equipped with an intermediate product heating device, and 8 is a secondary fluid outlet. When an organic solvent is used, an excess of a part of the bath medium is also discharged from 8. Reference numeral 10 denotes a gas inlet 9 for introducing gas for atmosphere adjustment during the thermal decomposition of the intermediate product, and an exhaust port for the gas generated during the thermal decomposition of the intermediate product. When an organic solvent is used, a portion of the organic bath medium removed in step 3 is also discharged from step 9 by heating or reducing pressure.

5より導入された^純度アンモニアガスと6より導入さ
れたSiO4,、5iHO63,Tie/−、、At0
43゜Z r O14等の金属塩化物、塩水素化物とが
反応器1内で反応し、イミド、金属塩化物アンモニア化
物及び削生成物であるNH40tが生成する。この反応
は激しい発熱反応であるので原料の導入速度を調節して
反応温度を200℃以下、好ましくは100″C以下に
抑える。温度が高すぎると反応生成物(窒化物製造の中
間生成物)が#染面化したり、NH4Clの昇華が生じ
反応器内壁への付着の原因となり好ましくない。気相又
は液相での反応により生成した反応生成物は固体であり
、二次流体と共に2のサイロンに送られ大部分の流体と
分離される。捕集された反応生成物はコック11を通し
て3の貯槽に送り込まれる。
Purity ammonia gas introduced from 5 and SiO4,,5iHO63,Tie/-,,At0 introduced from 6
43°Z r O14 and other metal chlorides and chloride hydrides react in the reactor 1 to produce imide, metal chloride ammonide, and NH40t, which is a cutting product. Since this reaction is a violently exothermic reaction, the rate of introduction of raw materials is adjusted to keep the reaction temperature below 200°C, preferably below 100"C. If the temperature is too high, reaction products (intermediate products of nitride production) This is undesirable because it causes dyeing and sublimation of NH4Cl, which causes it to adhere to the inner wall of the reactor.The reaction product produced by the reaction in the gas phase or liquid phase is solid, and is transferred to the silon of 2 along with the secondary fluid. The collected reaction products are sent to a storage tank 3 through a cock 11.

貯[3に送り込まれた補果物は4の加熱装置により熱分
解される。
The fruits fed into the storage [3] are thermally decomposed by the heating device 4.

すなわち、反応生成物貯槽3はコック11を切換え2と
通断した後、9,10に通じるコックを島き10よV)
 IJH,、、kJkr叫の雰囲気調整用ガスを流し、
加熱装置4により加熱する。約400“′Cまでの力n
熱により副生NH,Otか蒸発し系外に取出される。更
に約1000°C1で加熱う゛ると反応生成物が分解し
、窒化物微粉末が出来る。しかし、ここで生成した屋化
物微粉末は非晶質であり、一般に少量の塩素、酸素を含
むため、央に1600°C以上の高温に壕で加熱するこ
とにより結晶質高純度の窒化物粉末を製造出来る。16
00”C以下では製品中にCZが残留し易いの従って3
の貯槽は充分な耐熱性の材質で作る必要かあ、る。しか
し、最も一般的な耐熱材であるアルミナ質あるいはアル
ミナシリカ質セラミック製レトルトをオリ用すると、高
温加熱の際、レトルトからAt203及び焼結用添加剤
であるアルカリ金属、アルカリ土類金属酸化物が蒸発し
、製品窒化物への汚染の原因となる。このため、この貯
槽3の材質は高純度炭化けい素質を使用するのが好まし
い、加熱後レトルトは冷却し製品窒化物を取出す。本発
明においては、捕集物貯槽3は1つの例をあけたが2個
以上と切換コックで切替可能とすれば、1つの容器をイ
ミドもしくは金網塩化物アンモニア化物の捕集に使用し
ている時は、他の容器は、コック類の切換で雰囲気を調
整するのみで、内部の捕集物固体を別の加熱用容器など
に移j7変える事な(7に、そのま\加熱分解梢製し、
更にこの操作を繰返して高純度窒化物微粉末を連続的に
得られる。
That is, after connecting the reaction product storage tank 3 with the cock 11 and connecting it to the switch 2, the cocks leading to the valves 9 and 10 are connected to the tank 10 and V).
IJH,...kJkr flowing atmosphere adjustment gas,
Heating is performed by the heating device 4. Force n up to approximately 400"'C
By-products NH and Ot are evaporated by the heat and taken out of the system. Further heating at about 1000° C. decomposes the reaction product to produce fine nitride powder. However, the fine nitride powder produced here is amorphous and generally contains small amounts of chlorine and oxygen, so by heating it in a trench at a high temperature of 1600°C or more in the center, it becomes crystalline high-purity nitride powder. can be manufactured. 16
At temperatures below 00"C, CZ tends to remain in the product.
Does the storage tank need to be made of a material that is sufficiently heat resistant? However, when a retort made of alumina or alumina-silica ceramic, which is the most common heat-resistant material, is used, At203 and alkali metal and alkaline earth metal oxides, which are additives for sintering, are released from the retort during high-temperature heating. Evaporates and causes contamination of product nitrides. For this reason, it is preferable to use high-purity silicon carbide as the material for this storage tank 3. After heating, the retort is cooled and the product nitride is taken out. In the present invention, only one collected material storage tank 3 is used, but if two or more containers can be switched with a switching cock, one container can be used for collecting imide or wire mesh chloride ammonide. When using other containers, simply adjust the atmosphere by switching the cocks, and do not transfer the collected solids inside to another heating container. death,
Further, by repeating this operation, high purity nitride fine powder can be continuously obtained.

この様に、本発明によれば、尚温構造材用原料として適
する高性能屋化物粉末を、非常に不安定な中間反応生成
物を経由するにもか\わらず容易に効率良く、半連続的
に製造する事が出来る。
As described above, according to the present invention, high-performance compound powder suitable as a raw material for still-temperature structural materials can be easily and efficiently produced semi-continuously, even though it passes through very unstable intermediate reaction products. It can be manufactured.

次に実施例をあげて本発明を更に詳細に説明する。Next, the present invention will be explained in more detail by giving examples.

実施例1 第1図に示す反応装置を用い、反応器1は、直径80φ
高さ250mmのガラス製のもの、サイクロン2は直径
50φ高さ18 [) mmのガラス製のも(7) の、3の貯槽は牛導体拡散゛g用高純度SiO羽で作っ
た120φ径6を用セパラブルフラスコ(内面CVD5
iOコーテイング、フタは石英ガラス製)を使用し、5
のアンモニア導入口よりガス状高純度アンモニア(市販
E、Gグレード純度9999%)を塩化物又は塩水素化
物の導入口6より不活性ガスに同伴された金属塩化物ガ
スを次光に従がい導入し、1で反応させた。この時の反
応温度はいずれも100℃前後であった0又、同時に7
から不活性ガスを尋人し3に反応中間生成物を貯めた。
Example 1 The reactor shown in Fig. 1 was used, and the reactor 1 had a diameter of 80φ.
The cyclone 2 is made of glass with a height of 250 mm, and the cyclone 2 is made of glass with a diameter of 50 mm and a height of 18 [) mm.The storage tank 3 is a 120 mm diameter 6 made of high-purity SiO blades for dispersing conductors. Separable flask (inner surface CVD5
iO coating, lid made of quartz glass), 5
Gaseous high-purity ammonia (commercially available E, G grade purity 9999%) is introduced from the ammonia inlet of the chloride or chloride hydride inlet 6, and a metal chloride gas accompanied by an inert gas is introduced according to the following light. and reacted with 1. The reaction temperature at this time was around 100℃ in both cases.
Inert gas was introduced from the tank, and reaction intermediate products were stored in the tank.

反応は60分間行った。反応終了後コック11を切換え
10より高純度アンモニアo、 2 t7分を流しなが
ら、9.10に通じるコックを開き、4を炭化けい素質
発熱体を備えた電気炉内にセットし加熱し、1500°
Cで6時間加熱した。
The reaction was run for 60 minutes. After the completion of the reaction, switch the cock 11 and while flowing high purity ammonia from 10 for 2 t7 minutes, open the cock leading to 9.10, set 4 in an electric furnace equipped with a silicon carbide heating element and heat it to 1500 t. °
The mixture was heated at C for 6 hours.

(8) 尚、比較例として、貯槽3としてアルミナ質のものを用
い、A1と同じ条件で反応を行った時の結果を屋6に示
した。At、 C!a、 Mg等不純物が非常に多く、
高温構造材原料粉末として不適である0
(8) As a comparative example, alumina was used as the storage tank 3 and the reaction was carried out under the same conditions as A1. The results are shown in Section 6. At, C! a. There are a lot of impurities such as Mg,
0 unsuitable as raw material powder for high-temperature structural materials

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例の装置の説明図である。 符号 1・・・反応器   2・・・サイクロン3・・・貯 
槽   4・・・加熱装置5・・・アンモニア導入口6
・・・塩化物又は塩水素化物の尋人ロア・・・二次流体
導入口8・・・二次流体排出口9・・・ガス排出口  
10・・・ガス導入口11・・・コック 特許出願人 電気化学工業株式会社 (11)
The drawing is an explanatory diagram of an apparatus according to an embodiment of the present invention. Code 1...Reactor 2...Cyclone 3...Storage
Tank 4...Heating device 5...Ammonia inlet 6
... Chloride or chloride hydride lower body ... Secondary fluid inlet port 8 ... Secondary fluid outlet port 9 ... Gas discharge port
10...Gas inlet 11...Cook Patent applicant Denki Kagaku Kogyo Co., Ltd. (11)

Claims (1)

【特許請求の範囲】[Claims] アンモニアと金属塩化物もしくは金属塩水素化物を原料
とし、アンモニアと金属塩化物もしくは金属塩水素化物
とを面接にもしくは、不活性流体と共に反応器内に導入
し200′C以下で反応させ、イミドもしくは金属塩化
物7ンモニア化物を住成させる第一工程と、この生成し
たイミドもしくは金属塩化物アンモニア化物を副生成物
である塩化アンモニウム及び旋回流形成用二次流体と共
にサイクロン内に導入し、固体分を分離捕集する第二工
程と、捕集されたイミドもしくは金属塩化物アンモニア
化物e1300’0以上に加熱鞘製分解し窒化物微粉末
とする第三工程とからなる高純度窒化物微粉末の製造方
法。
Ammonia and metal chloride or metal salt hydride are used as raw materials, and ammonia and metal chloride or metal salt hydride are introduced into the reactor face-to-face or together with an inert fluid and reacted at 200'C or less to produce imide or metal salt hydride. The first step is to form a metal chloride heptammonide, and the generated imide or metal chloride ammonium is introduced into a cyclone together with ammonium chloride as a by-product and a secondary fluid for forming a swirl flow, and the solid content is The second step is to separate and collect the collected imide or metal chloride ammonide, and the third step is to decompose the collected imide or metal chloride ammonide into nitride fine powder using a heated sheath. Production method.
JP18967581A 1981-11-26 1981-11-26 Manufacture of fine nitride powder Pending JPS5891018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18967581A JPS5891018A (en) 1981-11-26 1981-11-26 Manufacture of fine nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18967581A JPS5891018A (en) 1981-11-26 1981-11-26 Manufacture of fine nitride powder

Publications (1)

Publication Number Publication Date
JPS5891018A true JPS5891018A (en) 1983-05-30

Family

ID=16245292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18967581A Pending JPS5891018A (en) 1981-11-26 1981-11-26 Manufacture of fine nitride powder

Country Status (1)

Country Link
JP (1) JPS5891018A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162610A (en) * 1986-01-09 1987-07-18 Agency Of Ind Science & Technol Production of silicon nitride powder
US4859639A (en) * 1987-06-22 1989-08-22 Basf Aktiengesellschaft Process of making amorphous silicon nitride powder
FR2652345A1 (en) * 1989-09-27 1991-03-29 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF METAL NITRIDE
US5403563A (en) * 1991-05-28 1995-04-04 Ford Motor Company Apparatus for silicon nitride precursor solids recovery
JP2016179928A (en) * 2015-03-24 2016-10-13 太平洋セメント株式会社 Method for producing metal nitride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145400A (en) * 1978-05-08 1979-11-13 Ube Ind Ltd Production of metal nitride powder
JPS5595605A (en) * 1979-01-10 1980-07-21 Toyo Soda Mfg Co Ltd High purity silicon nitride and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145400A (en) * 1978-05-08 1979-11-13 Ube Ind Ltd Production of metal nitride powder
JPS5595605A (en) * 1979-01-10 1980-07-21 Toyo Soda Mfg Co Ltd High purity silicon nitride and production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162610A (en) * 1986-01-09 1987-07-18 Agency Of Ind Science & Technol Production of silicon nitride powder
US4859639A (en) * 1987-06-22 1989-08-22 Basf Aktiengesellschaft Process of making amorphous silicon nitride powder
FR2652345A1 (en) * 1989-09-27 1991-03-29 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF METAL NITRIDE
EP0420718A1 (en) * 1989-09-27 1991-04-03 Rhone-Poulenc Chimie Process for the preparation of metallic nitrides
US5403563A (en) * 1991-05-28 1995-04-04 Ford Motor Company Apparatus for silicon nitride precursor solids recovery
JP2016179928A (en) * 2015-03-24 2016-10-13 太平洋セメント株式会社 Method for producing metal nitride

Similar Documents

Publication Publication Date Title
NO174694B (en) Apparatus and method for producing uniform, fine, boron-containing ceramic powders
JPS6112844B2 (en)
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US4900531A (en) Converting a carbon preform object to a silicon carbide object
JPS5891018A (en) Manufacture of fine nitride powder
US4552740A (en) Process for producing amorphous and crystalline silicon nitride
JPS6111886B2 (en)
JPH0221938A (en) Circular heating fluidized bed reactor
JPH02233509A (en) Manufacture of powdery matallic nitride
JPH02164711A (en) Manufacture of high-purity boron
EP0272773A2 (en) Process for production silicon carbide whiskers
JP2003049201A (en) Spherical powder of metal and metallic compound, and manufacturing method thereof
JPS5855315A (en) Manufacture of silicone nitride powder
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPH10203806A (en) Production of boron nitride powder
JPS644999B2 (en)
JPH0226812A (en) Production of aluminum nitride powder having high purity
JPH03187998A (en) Production of aluminum nitride whisker
JPS59121109A (en) Production of high purity silicon
JPS58172206A (en) Manufacture of metallic nitride
JPS60251928A (en) Preparation of ultra-fine metal compound particle
JPS616113A (en) Manufacture of metallic silicon
JPS6077114A (en) Production of spherical sic powder
JPH0497998A (en) Production of aluminum nitride whisker
JPS6010081B2 (en) Powder manufacturing method