JPS5950601B2 - Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment - Google Patents

Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment

Info

Publication number
JPS5950601B2
JPS5950601B2 JP11731482A JP11731482A JPS5950601B2 JP S5950601 B2 JPS5950601 B2 JP S5950601B2 JP 11731482 A JP11731482 A JP 11731482A JP 11731482 A JP11731482 A JP 11731482A JP S5950601 B2 JPS5950601 B2 JP S5950601B2
Authority
JP
Japan
Prior art keywords
sio
nozzle
powder
ultrafine
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11731482A
Other languages
Japanese (ja)
Other versions
JPS598613A (en
Inventor
文雄 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11731482A priority Critical patent/JPS5950601B2/en
Publication of JPS598613A publication Critical patent/JPS598613A/en
Publication of JPS5950601B2 publication Critical patent/JPS5950601B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、少くとも表面を窒化または炭化もしくは酸化
してなる粒径1μ以下のアモルファス状SiOの超微粉
とその製造方法ならびに製造装置に関し、粒体特性のす
ぐれた超微粉の単一な組成を持つアモルファス状SiO
を得ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrafine amorphous SiO powder with a particle size of 1 μm or less obtained by nitriding, carbonizing, or oxidizing at least the surface, a method for producing the same, and an apparatus for producing the same. Amorphous SiO with a single composition of fine powder
The purpose is to obtain.

通常SiOは低温では不安定で分解してSiとSiO2
の混合物になる事が多く、従来SiOの固体と思われて
いたものは電子顕微鏡及びX線ディフラクトメータで調
べた結果、多くはSiとSiO2の混合物である事が分
って来た。
Normally, SiO is unstable at low temperatures and decomposes into Si and SiO2.
In many cases, what was thought to be a solid SiO was examined using an electron microscope and an X-ray diffractometer, and as a result it was found that most of the materials were a mixture of Si and SiO2.

まして純度の高い粉体特性のすぐれたSiOの1μ以下
の超微粉を得る事は非常に困難であった。
Furthermore, it has been extremely difficult to obtain ultrafine SiO powder of 1 μm or less with high purity and excellent powder characteristics.

本発明は、アモルファス状のSiOを、超微粉として少
くともその表面を窒化または炭化もしくは酸化して粒径
1μ以下のものを、純粋な単一組成でかつ良好な粉体特
性を持つものとして量産的に得ることを可能にしたもの
である。
The present invention aims to mass produce amorphous SiO as an ultrafine powder by nitriding, carbonizing, or oxidizing at least its surface so that it has a particle size of 1 μm or less and has a pure single composition and good powder properties. This made it possible to obtain the desired results.

すなわち、本発明は、SiO蒸気を発生させる手段と、
還元窒化または還元炭化もしくは減圧した酸素の雰囲気
を有する捕集箱と、上記SiO蒸気を断熱膨張させて上
記捕集箱内に噴射させるノズルとよりなる、少くとも表
面を窒化または炭化もしくは酸化してなる粒径1μ以下
の超微粉のアモルファス状SiOの製造装置を用いて、
SiO蒸気をノズルに通して還元窒化または還元炭化も
しくは減圧した酸素の雰囲気内に断熱膨張で噴射する工
程よりなる、少くとも表面を窒化または炭化もしくは酸
化してなる粒径1μ以下の超微粉のアモルファス状Si
Oの製造方法により、SiO蒸気を、還元窒化または還
元炭化もしくは減圧した酸素の雰囲気内に断熱膨張で噴
射させて得た、少くとも表面が窒化または炭化もしくは
酸化してなる粒径1μ以下のアモルファス状SiOの超
微粉を得たものである。
That is, the present invention provides means for generating SiO vapor;
At least the surface is nitrided, carbonized, or oxidized, and consists of a collection box having a reduced-nitrided or reduced-carbonized or reduced-pressure oxygen atmosphere, and a nozzle that adiabatically expands the SiO vapor and injects it into the collection box. Using an apparatus for producing ultrafine amorphous SiO with a particle size of 1μ or less,
An amorphous ultrafine powder with a particle size of 1 μm or less that is formed by nitriding, carbonizing, or oxidizing at least the surface, which is made by passing SiO vapor through a nozzle and injecting it into an atmosphere of reduced nitriding, carbonizing, or depressurized oxygen by adiabatic expansion. Si-like
Amorphous particles with a particle size of 1 μm or less, whose surface is nitrided, carbonized, or oxidized, obtained by injecting SiO vapor into an atmosphere of reduced nitriding, carbonizing, or depressurized oxygen using the O production method. This is an ultrafine powder of SiO.

したがって本発明は比較的純度の高いものが安価に得ら
れるSiO2を出発原料とし、下記するが如き方法でS
iO蒸気を発生せしめ、之をノズルを介し分子運動速度
以上の高速で窒素を含む雰囲気又は炭化水素の雰囲気も
しくは1710気圧以下に減圧した酸素を含む雰囲気内
に噴射せしめ、断熱膨張による急冷により表面が窒化ま
たは炭化もしくは酸化されたアモルファスSiOの超微
粉単一組成で且理想的粉体特性をもつ超微粉の形で安価
大量に得ることができるものである。
Therefore, the present invention uses SiO2, which can be obtained at relatively high purity and at low cost, as a starting material, and uses SiO2 as a starting material by the method described below.
iO vapor is generated and injected through a nozzle at a high speed higher than the molecular motion speed into a nitrogen-containing atmosphere, a hydrocarbon atmosphere, or an oxygen-containing atmosphere reduced to 1710 atmospheres or less, and the surface is rapidly cooled by adiabatic expansion. Ultrafine powder of nitrided, carbonized, or oxidized amorphous SiO can be obtained inexpensively and in large quantities in the form of an ultrafine powder with a single composition and ideal powder properties.

更に本発明を段階的に説明すると次の2つの構成よりな
る。
Further explaining the present invention step by step, it consists of the following two configurations.

(1)第一段階として、下記するが如きいずれかの方法
によりSiO蒸気を発生せしめ之をノズルに導き断熱膨
張急冷し、均一なアモルファスSiOの超微粉を得る。
(1) In the first step, SiO vapor is generated by any of the methods described below and is introduced into a nozzle where it is adiabatically expanded and rapidly cooled to obtain uniform ultrafine amorphous SiO powder.

(2)第2段階として上記ノズルの出口雰囲気を窒素を
含む窒化雰囲気又は炭化水素の如き炭化雰囲気にしてお
きそこに噴射されてきた超微粉状のアモルファスSiO
の少くとも表面を窒化又は炭化する。
(2) In the second step, the exit atmosphere of the nozzle is made into a nitriding atmosphere containing nitrogen or a carbonizing atmosphere such as hydrocarbon, and ultrafine powdered amorphous SiO is injected therein.
At least the surface of the material is nitrided or carbonized.

この事によりアモルファスSiO超微粉の凝集又は連鎖
が避けられる。
This avoids agglomeration or chaining of the amorphous SiO ultrafine powder.

上記第1段階はSiO蒸気を発生せしめ之を所定のノズ
ルに導き断熱膨張急冷し均一なアモルファスSiOの超
微粉をうる段階である。
The first stage is a stage in which SiO vapor is generated, introduced into a predetermined nozzle, adiabatically expanded and rapidly cooled, and uniform ultrafine amorphous SiO powder is obtained.

SiOの蒸気を発生する方法は、色々の方法がありいず
れの方法によっても差支えないが代表的なものとして次
の2つが知られている。
There are various methods for generating SiO vapor, and any method may be used without any problem, but the following two are known as representative methods.

即ち、SiO2にメタリックSi又は炭素を加え約13
00℃以上に加熱するとSiO蒸気が多量に発生する。
That is, by adding metallic Si or carbon to SiO2, approximately 13
When heated above 00°C, a large amount of SiO vapor is generated.

SiOの蒸気圧は第1図に示すSi、 Sin、 5i
n2の温度 (ok)−真空圧(Torr)関係線図よ
り明かな如く例えば2000°k (1727℃)では
370TOrrテ、Siや5102 (7)約1.8T
OIT(7)約200倍の蒸気圧をもつ。
The vapor pressure of SiO is shown in Figure 1.
As is clear from the temperature (ok) - vacuum pressure (Torr) relationship diagram of n2, for example, at 2000°k (1727°C), it is 370 TOrr, and for Si and 5102 (7) it is about 1.8 T.
It has a vapor pressure about 200 times that of OIT (7).

比の事は、SiやSiO2を蒸発させる事よりはるかに
豊富なSiOの蒸気を容易に得る事が可能であり、はる
かにSiO蒸気の高速生産が可能である事を意味する。
This ratio means that it is possible to easily obtain a much richer SiO vapor than by evaporating Si or SiO2, and it is possible to produce SiO vapor at a much higher rate.

また、このような蒸気圧の高いSiO蒸気を発生させる
為に、蒸気性の低いSiO2やCの混入が殆んどなく、
又原料中の不純物は一般にSiOの蒸気圧より蒸気圧が
ずっと低い為、比較的安い原料を使って、高純度のSi
O超微粉が量産的に得られる長所がある。
In addition, in order to generate SiO vapor with such high vapor pressure, there is almost no contamination of SiO2 or C, which has low vapor properties.
In addition, impurities in raw materials generally have a much lower vapor pressure than SiO, so relatively cheap raw materials can be used to produce high-purity Si.
It has the advantage that ultrafine O powder can be obtained in mass production.

このようにして豊富に発生したSiO蒸気をノズルに導
き、断熱膨張急冷により均一なアモルファスSiO超微
粉が得られる。
The SiO vapor generated in abundance in this way is guided to the nozzle, and uniform amorphous SiO ultrafine powder is obtained by adiabatic expansion and rapid cooling.

断熱膨張に用いるノズルは、たとえば第3図の断面図に
示す如き従来から用いられているイ先細ノズルロ末広ノ
ズルの2種類がある。
There are two types of nozzles used for adiabatic expansion: a tapered nozzle and a divergent nozzle, which are conventionally used as shown in the sectional view of FIG. 3, for example.

この種先細ノズルイは出口で音速迄、末広ノズル口は超
音速を出しうる事は公知である。
It is known that a tapered nozzle of this type can reach sonic speeds at the exit, and a wide-tailed nozzle can reach supersonic speeds.

一般に蒸気を超急冷すると超微粉を得られる事が知られ
ている。
It is generally known that ultra-fine powder can be obtained by ultra-quenching steam.

本発明では望ましい粒径に応じて、先細ノズルまたは末
広ノズルを使い分ける事が出来る。
In the present invention, a tapered nozzle or a diverging nozzle can be used depending on the desired particle size.

たとえば先細ノズルは1マツバま。で末広ノズルは数マ
ツバまでの音速が得られる。
For example, the tapered nozzle is only 1 matsuba. With the wide end nozzle, sound speeds of up to a few degrees can be obtained.

したがって、粒径に応じその分子運動速度(0,6〜0
.9マツバ)から超音速(数マツバ)に至る速度を使い
分け、断熱膨張急冷する事により1μ〜数拾への範囲で
狙った粒径のアモルファス超微粉を得る事が出来る。
Therefore, the molecular motion velocity (0.6~0
.. By selectively using speeds ranging from 9 matsuba) to supersonic speed (several matsuba) and adiabatic expansion quenching, it is possible to obtain amorphous ultrafine powder with a target particle size in the range of 1 μm to several tens of microns.

また、本発明において、ノズルを使い望ましくは分子運
動速度以上の速度でSiO蒸気を噴射するのは他に2つ
の重要な理由がある。
In addition, in the present invention, there are two other important reasons why the nozzle is used to inject SiO vapor preferably at a speed higher than the molecular motion speed.

すなわち、その1つはSiOは高温例えば1600℃以
上では安定であるが、それ以下の低温では、次の如き分
解する変化を行い、不安定で、 に従って直ちにSiOが分解してSiとSiO2の混合
物になる事である。
One of them is that SiO is stable at high temperatures, such as 1600°C or higher, but at lower temperatures it undergoes the following decomposition changes and is unstable. It is to become.

この変化を有効に阻止するためには少くとも分子運動速
度以上で断熱膨張急冷する事により有効に阻止出来る。
This change can be effectively prevented by performing adiabatic expansion and rapid cooling at least at a rate higher than the molecular motion velocity.

さらに、もう1つの理由は分子運動速度以上の速度でS
iO蒸気をノズルから噴射する事によりノズル下流の窒
化雰囲気又は、炭化雰囲気もしくは減圧した酸化雰囲気
がノズルを介してノズル上流の反応室に逆流する事が有
効に団止される事である。
Furthermore, another reason is that S
Injecting iO vapor from the nozzle effectively prevents the nitriding atmosphere, carbonizing atmosphere, or reduced pressure oxidizing atmosphere downstream of the nozzle from flowing back into the reaction chamber upstream of the nozzle through the nozzle.

もし万一、窒化雰囲気又は炭化水素もしくは酸素が反応
室に逆流すると温度によっては反応室内で窒化又は炭化
もしくは酸化が起り、それによって生じた窒化物又は炭
化物もしくは酸化物は原料のSiO2の粗大な粒径に対
応するためとても超微粒にならずに好ましくない為であ
る。
If the nitriding atmosphere, hydrocarbons, or oxygen flows back into the reaction chamber, nitridation, carbonization, or oxidation may occur in the reaction chamber depending on the temperature, and the resulting nitrides, carbides, or oxides are coarse grains of the raw material SiO2. This is because the grains do not become extremely fine to accommodate the diameter, which is undesirable.

したがって、本発明では、ノズルを使用して望ましくは
分子運動速度以上でSiO蒸気を噴射する事°によりS
iOのSt + 5102への分解を有効に抑える一方
、ノズル下流の雰囲気ガスの反応室への逆流を抑えるこ
とができる上にノズルでの断熱膨張急冷により特性のす
ぐれたアモルファスSiOの超微粉を量産的に得る事を
可能にした。
Therefore, in the present invention, the S
While effectively suppressing the decomposition of iO into St + 5102, it is possible to suppress the backflow of atmospheric gas downstream of the nozzle into the reaction chamber, and mass production of ultrafine amorphous SiO powder with excellent properties is achieved by adiabatic expansion and rapid cooling in the nozzle. It made it possible to obtain a target.

次に本発明の第2段階では上記ノズルの下流雰囲気を窒
化又は炭化もしくは減圧した酸化の雰囲気にしておき、
そこに噴射されてきたSiOの超微粉の少くとも全表面
を窒化又は炭化もしくは酸化する段階である。
Next, in the second step of the present invention, the downstream atmosphere of the nozzle is made into a nitriding or carbonizing atmosphere or a reduced pressure oxidizing atmosphere,
This is the step of nitriding, carbonizing, or oxidizing at least the entire surface of the ultrafine SiO powder that has been injected there.

一般に、超微粉は粒径が小さくなればなる程活性が強く
なり、互に凝結して粗粒となったり、連鎖状をなす事は
よく知られている。
In general, it is well known that the smaller the particle size of ultrafine powder, the stronger its activity, and that it coagulates into coarse particles or forms chains.

したがって、上記発明の第1段階でノズルから噴射され
て生じた超微粉状のアモルファスSiOは当然非常に強
い活性をもち、そのま・では凝結連鎖等を生ずる。
Therefore, the ultrafine powdered amorphous SiO produced by being injected from the nozzle in the first step of the invention naturally has very strong activity and causes a chain of coagulation and the like.

今ノズル下流を窒化又は炭化もしくは減圧した酸化の雰
囲気にしてその雰囲気に之等SiOの超微粉を噴射する
と、直ちに反応して超微粉のSiOの表層に窒化又は炭
化もしくは酸化の外層を生じる為に不必要で有害な凝結
や連鎖が有効に防止できる著しい特長がある。
Now, if we create a nitriding, carbonizing, or depressurized oxidizing atmosphere downstream of the nozzle and injecting ultrafine SiO powder into that atmosphere, it will immediately react and produce a nitriding, carbonizing, or oxidizing outer layer on the surface layer of the ultrafine SiO powder. It has the remarkable feature of effectively preventing unnecessary and harmful coagulation and chains.

アモルファスSiO超微粉は非常に活性があるためもし
上記処理を行わず大気中に取出すと直に酸化を起し燃焼
してSiO2になってしまうが、本発明の如き処理によ
り超微粉の凝結、連鎖による粗大化を防ぐのみならず、
大気中でも燃焼する事なく安全に取扱える少くとも表面
を窒化または炭化もしくは酸化したアモルファスのSi
Oの超微粉を得ることができる。
Amorphous SiO ultrafine powder is very active, so if it is taken out into the atmosphere without the above treatment, it will immediately oxidize and burn to become SiO2. In addition to preventing coarsening due to
Amorphous Si with at least a nitrided, carbonized, or oxidized surface that can be safely handled without burning even in the atmosphere
Ultrafine powder of O can be obtained.

以上本発明の第1段階と第2段階を説明の便宜上分けて
書いたが、実施の場合はこれら2つの段階は殆んど同時
瞬間的に行なわれることになる。
Although the first and second stages of the present invention have been described separately for convenience of explanation, in actual practice, these two stages will be performed almost simultaneously.

次に、本発明の与える種々の工業効果を下記に列記する
Next, various industrial effects provided by the present invention are listed below.

(1) SiO蒸気を発生する際の原料であるSiや
SiO2に比較してSiO蒸気は第1図に示す如< 2
000°に附近では数百倍蒸気圧が高い為噴射されて得
たアモルファスSiOはSiやSiO2の混入が極めて
少く且つ粉体特性が極めてすぐれている。
(1) Compared to Si and SiO2, which are the raw materials for generating SiO vapor, SiO vapor has a
Since the vapor pressure is several hundred times higher near 000°, the amorphous SiO obtained by injection contains very little Si or SiO2 and has excellent powder properties.

又、蒸気圧が非常に高い事は生産性が著しく高い利点が
ある。
In addition, the very high vapor pressure has the advantage of significantly high productivity.

(2) SiO蒸気をノズルにより分子運動速度以上
で噴射し、断熱膨張急冷を行なう事によりSiOの分解
を有効に阻止すると同時にノズル条件の変更による断熱
膨張の急冷条件を変更する事が出来、この変更によって
粒径数十人〜1μの範囲で任意の粒径の比較的揃ったア
モルファスSiOの超微粉を得る事が可能となった。
(2) By injecting SiO vapor through a nozzle at a speed higher than the molecular motion velocity and performing adiabatic expansion quenching, it is possible to effectively prevent the decomposition of SiO, and at the same time to change the quenching conditions of adiabatic expansion by changing the nozzle conditions. By making this change, it has become possible to obtain ultrafine amorphous SiO powder with a relatively uniform particle size in the range of several tens of microns to 1 μm.

(3)ノズル下流の雰囲気を窒化又は炭化雰囲気もしく
は減圧した酸化雰囲気にしておく事により、そこへ噴射
されて来たアモルファスSiOの超微粉の表面はその活
性により瞬間に窒化又は炭化又は酸化される。
(3) By keeping the atmosphere downstream of the nozzle in a nitriding or carbonizing atmosphere or a reduced pressure oxidizing atmosphere, the surface of the amorphous SiO ultrafine powder injected there will be instantly nitrided, carbonized, or oxidized due to its activity. .

この事により一般的に超微粉の生成時に起りやすい粉体
価々の粒径の粗大化や凝結、連鎖等が有効に阻止される
ばかりでなく、活性の強いアモルファスSiOの超微粉
を燃焼させる事なく大気中に取出し、取り扱える道を開
いた。
This not only effectively prevents the coarsening of the powder particle size, agglomeration, and chaining that generally occur when producing ultrafine powder, but also allows the highly active ultrafine powder of amorphous SiO to be combusted. This paved the way for it to be taken out into the atmosphere and handled without any problems.

(4)本発明で得られた粒径の揃った粉体特性の良いア
モルファスSiO超微粉は次工程の熱処理によりアモル
ファスSi3N4、αSi3N4、βSi3N4、β5
iC1αSiC等をそれぞれ単一組成で粉体特性のすぐ
れた超微粉を得る為の出発原料として画期的重要な役割
を果す。
(4) The amorphous SiO ultrafine powder with uniform particle size and good powder properties obtained in the present invention can be transformed into amorphous Si3N4, αSi3N4, βSi3N4, β5 by heat treatment in the next step.
It plays an epoch-making important role as a starting material for obtaining ultrafine powder with excellent powder properties using a single composition of iC1αSiC, etc.

即ち、それぞれの目的により表面を窒化又は炭化又は酸
化したアモルファスSiO超微粉を次工程で熱処理を行
なう場合、積層しても個々の粒体が凝結や連鎖、粒径粗
大化を生じる事なく、良好な粉体特性を保ったまま、還
元窒化や還元炭化及び結晶化する事が可能となった。
In other words, when amorphous SiO ultrafine powder whose surface is nitrided, carbonized, or oxidized for each purpose is heat-treated in the next step, the individual particles do not aggregate, chain, or coarsen the particle size even when stacked. It has become possible to perform reductive nitriding, reductive carbonization, and crystallization while maintaining the powder properties.

更に従来法によるSiの窒化、炭化は個々の粒径が大小
まちまちである為、熱処理条件を極めて精密に決めても
個々の粒の受ける影響が異なり、従って異なる結晶組織
の混在が避けられず且つ長時間を要したが、本発明にお
いては、粒径が揃って居り且つ超微粉である為、極めて
短時間で正確な熱処理が可能であるばかりでなく上記S
i窒化物及び炭化物系を任意、単一組成で浪好な粉体特
性をもつ超微粉の形で経済的に得られる事を可能にした
事は、工業的に画期的な意味をもつ。
Furthermore, in nitriding and carbonizing Si using conventional methods, the individual grain sizes vary, so even if the heat treatment conditions are set extremely precisely, the effects on each grain differ, and therefore the coexistence of different crystal structures is unavoidable. However, in the present invention, since the particle size is uniform and the powder is ultra-fine, not only is it possible to perform accurate heat treatment in an extremely short time, but also the above-mentioned S
The fact that it has become possible to economically obtain nitrides and carbides in the form of ultrafine powders having favorable powder properties with arbitrary, single composition has an epoch-making significance industrially.

次に本発明の実施の一例として図面に示す装置について
説明する。
Next, an apparatus shown in the drawings will be described as an example of implementing the present invention.

第2図は本発明の製造装置の全体の構成を示す断面図で
、大略SiO蒸気を発生させる反応室1と、該反応室1
に連結したSiO蒸気を断熱膨張させるノズル22と、
該ノズル22を開口したSiO蒸気をノズルから噴射さ
せる捕集室34と、該捕集室34を還元窒化または還元
炭化もしくは減圧した酸素の雰囲気にする手段50より
なる。
FIG. 2 is a cross-sectional view showing the overall configuration of the manufacturing apparatus of the present invention, which includes a reaction chamber 1 for roughly generating SiO vapor, and a reaction chamber 1 for generating SiO vapor.
a nozzle 22 that adiabatically expands the SiO vapor connected to the
It consists of a collection chamber 34 which opens the nozzle 22 and injects SiO vapor from the nozzle, and means 50 which makes the collection chamber 34 an atmosphere of reduced nitriding, reduced carbonization, or reduced pressure oxygen.

密閉した耐熱材よりなる反応室1はその外部に断熱材3
および耐真空耐圧容器4ならびに水冷ジャケット5によ
って三重に囲まれている。
A reaction chamber 1 made of a sealed heat-resistant material is provided with a heat insulating material 3 on the outside.
It is triple-surrounded by a vacuum-resistant and pressure-resistant container 4 and a water-cooled jacket 5.

また反応室1と断熱材3の間に発熱体2を設けて反応室
1を常時所定温度に加熱する。
Further, a heating element 2 is provided between the reaction chamber 1 and the heat insulating material 3 to constantly heat the reaction chamber 1 to a predetermined temperature.

反応室1は耐熱材よりなる導管21を介しノズル22の
入口部と気密に連結されている。
The reaction chamber 1 is airtightly connected to the inlet of a nozzle 22 via a conduit 21 made of a heat-resistant material.

ノズル22と導管21よりなるノズル室はその外周にノ
ズル加熱用発熱体23を有し、SiO蒸気の温度降下に
よる逆反応やノズルの閉塞を防止する。
The nozzle chamber consisting of the nozzle 22 and the conduit 21 has a nozzle heating heating element 23 on its outer periphery to prevent reverse reaction and nozzle clogging due to temperature drop of the SiO vapor.

なお、ノズル室は反応室と同様に断熱材24および耐真
空耐圧容器25ならびに水冷ジャケット26によって囲
まれている。
Note that, like the reaction chamber, the nozzle chamber is surrounded by a heat insulating material 24, a vacuum-resistant and pressure-resistant container 25, and a water-cooling jacket 26.

ノズル22の開口部は密閉した捕集室34に向って開口
して取付けられる。
The nozzle 22 is mounted with an opening opening toward a closed collection chamber 34 .

ノズル22は第3図に示す末広ノズル又は先細ノズルを
用いる。
As the nozzle 22, a diverging nozzle or a tapering nozzle shown in FIG. 3 is used.

ノズルの開口部を除いてノズル室25と捕集室34は仕
切板47で仕切られる。
The nozzle chamber 25 and the collection chamber 34 are partitioned off by a partition plate 47 except for the nozzle opening.

耐真空耐圧容器よりなる捕集室34はその中に断熱材3
3と金属製の捕集筒30が設けられ、それらの間に発熱
体32を備えて常時捕集室34内を適温に加熱する事が
可能になっている。
A collection chamber 34 made of a vacuum-resistant and pressure-resistant container has a heat insulating material 3 therein.
3 and a metal collection cylinder 30 are provided, and a heating element 32 is provided between them, making it possible to constantly heat the inside of the collection chamber 34 to an appropriate temperature.

捕集室34の捕集筒30の上部に設けたガス分配リング
29は開閉弁51を介して公知の窒素ボンベまたは炭素
ボンベもしくは酸素ボンベ50に接続される。
A gas distribution ring 29 provided above the collection tube 30 of the collection chamber 34 is connected to a known nitrogen cylinder, carbon cylinder, or oxygen cylinder 50 via an on-off valve 51.

また、捕集室は底部開口に開閉自在に密閉した製品取出
用の蓋を備えると共に排気管48及びダストフィルター
39並びに開閉弁43を介して真空ポンプ44に連結さ
れる。
Further, the collection chamber is provided with a lid for taking out the product which is closed and openable at the bottom opening, and is connected to a vacuum pump 44 via an exhaust pipe 48, a dust filter 39, and an on-off valve 43.

反応室1の上部は連結管8及び開閉弁10を介してSi
O2の原料を貯蔵した貯槽11に連結される一方、反応
室1の下部は連結管14及び開閉弁16を介して残渣を
取り出す残渣槽17に連結している。
The upper part of the reaction chamber 1 is connected to Si through a connecting pipe 8 and an on-off valve 10.
The reaction chamber 1 is connected to a storage tank 11 storing raw materials for O2, and the lower part of the reaction chamber 1 is connected via a connecting pipe 14 and an on-off valve 16 to a residue tank 17 from which the residue is taken out.

貯槽及び残渣槽には夫々開閉弁を介して真空ポンプに連
結されると共に貯槽の上部開口及び残渣槽の下部開口に
は夫々開閉蓋を備える。
The storage tank and the residue tank are each connected to a vacuum pump via an on-off valve, and the upper opening of the storage tank and the lower opening of the residue tank are each provided with an opening/closing lid.

なお、反応容器1、ノズル室25、捕集室34、ダスト
フィルター39等は耐真空、耐圧構造で一体構造として
組立てられ、かつボンベ50、貯槽11.残渣槽17等
は夫々開閉弁を介して一体的に連結され、これら全体が
それぞれ真空バッキング9. 13. 15. 19.
20. 35. 38.42等を使用し耐真空耐圧構
造を成している。
The reaction vessel 1, the nozzle chamber 25, the collection chamber 34, the dust filter 39, etc. are assembled as an integral structure with a vacuum-proof and pressure-proof structure, and the cylinder 50, the storage tank 11. The residue tanks 17 and the like are integrally connected via respective on-off valves, and the entirety thereof is provided with a vacuum backing 9. 13. 15. 19.
20. 35. 38.42 etc. is used to create a vacuum-resistant and pressure-resistant structure.

上記の如き構造よりなる製造装置を用いて、超微粉のア
モルファス状SiOを得るには、先ず、原料として、S
iO2とSi又はSiO2とCを略等モルの比率で良く
混合し適当な圧力でブリケットして貯槽11内に投入、
収納する。
In order to obtain ultrafine amorphous SiO using a manufacturing apparatus having the structure described above, first, S is used as a raw material.
iO2 and Si or SiO2 and C are well mixed in a substantially equimolar ratio, briquettered at an appropriate pressure, and put into the storage tank 11.
Store it.

次に真空ポンプ44を作動して、反応室に一連に連通し
た導管21.ノズル22、捕集室34、ダストフィルタ
ー39を介して該反応室1を真空ポンプ44で減圧し乍
ら発熱体2で1300℃以上に加熱する一方、捕集室3
4内の捕集筒30の上部には、ガス分配リング29があ
り第2図のガス導入管46を介し、外部のボンベ50か
ら窒素又はアンモニヤもしくは酸素を送り込むようにす
る。
Next, the vacuum pump 44 is activated, and the conduit 21. which is connected to the reaction chamber in series. The reaction chamber 1 is depressurized by the vacuum pump 44 through the nozzle 22, the collection chamber 34, and the dust filter 39, and heated to 1300° C. or higher by the heating element 2.
A gas distribution ring 29 is provided above the collection cylinder 30 in the cylinder 4, and nitrogen, ammonia, or oxygen is fed from an external cylinder 50 through a gas introduction pipe 46 shown in FIG.

この時(図省略)ガス分配リング29には斜下方に向っ
て小孔が均等に適当偏設けられ、上記ガスが比較的均一
に下方に噴射される。
At this time, the gas distribution ring 29 (not shown) has small holes evenly and appropriately biased downwardly, so that the gas is injected relatively uniformly downward.

このような状態で、次に開閉弁10を開いて貯槽11内
にある原料ブリケットを反応室1に投下すると、反応室
1内にSiO蒸気が直に発生する。
In this state, when the on-off valve 10 is next opened and the raw material briquettes in the storage tank 11 are dropped into the reaction chamber 1, SiO vapor is immediately generated in the reaction chamber 1.

反応室内に発生したSiO蒸気は導管21を通りノズル
22を介して捕集室34内に向けて断熱膨張で噴射され
る。
The SiO vapor generated in the reaction chamber passes through the conduit 21 and is injected into the collection chamber 34 through the nozzle 22 by adiabatic expansion.

捕集室34とノズル室25との間には仕切板47がある
が、ノズルから噴射されるSiO蒸気は分子運動速度以
上の速度で捕集室の捕集筒30内に噴射され、上記ガス
が反応室1へ逆流出来ない構造となっている。
There is a partition plate 47 between the collection chamber 34 and the nozzle chamber 25, and the SiO vapor injected from the nozzle is injected into the collection cylinder 30 of the collection chamber at a speed higher than the molecular motion speed, and the gas is The structure is such that it cannot flow back into the reaction chamber 1.

ノズル22から捕集筒30内に噴出したSiO蒸気は急
速な断熱膨張により超急速冷却を受けSiOの非常に活
性のある超微粉体となるが、捕集筒30に充満している
窒素あるいはアンモニヤ又は炭素、もしくは酸素により
直に表面に窒化層又は炭化層もしくは酸化層を作る事に
より、粒同志の凝集や連鎖を作ることなく超微粉のま・
捕集筒30の下部に堆積する。
The SiO vapor ejected from the nozzle 22 into the collection tube 30 undergoes ultra-rapid cooling due to rapid adiabatic expansion and becomes a highly active ultrafine powder of SiO. By creating a nitrided layer, carbonized layer, or oxidized layer directly on the surface with ammonia, carbon, or oxygen, ultrafine powder can be formed without forming agglomerations or chains among particles.
It is deposited at the bottom of the collection cylinder 30.

上記ガスの内の未反応分及び反応により生成したガス及
び蒸気等は捕集筒30下部に設けられた小孔を通り、排
気管48及びダストフィルター39を介し真空ポンプ4
4で排気される。
The unreacted portion of the gas and the gas and steam generated by the reaction pass through a small hole provided at the bottom of the collection cylinder 30 and are passed through the vacuum pump 4 through the exhaust pipe 48 and dust filter 39.
Exhausted at 4.

真空ポンプ44より排出されたガス及蒸気の処置は通常
の方法で処理される。
The gas and vapor discharged from the vacuum pump 44 are disposed of in a conventional manner.

また、捕集筒30の下部に堆積したアモルファスSiO
の超微粉は開閉蓋37を開いて取り出される。
In addition, amorphous SiO deposited at the bottom of the collection tube 30
The ultrafine powder is taken out by opening the lid 37.

このようにしてアモルファスSiOの超微粉はバッチ形
式であるいは連続形式で大量に生産される。
In this way, ultrafine amorphous SiO powder is produced in large quantities either batchwise or continuously.

実験例 1 上記装置を用いてSiO超微粉の製造例として、−30
0メツシユSiO粉末と一200メツシュの金属Si粉
末を略等モルを良く混合し、20mmφX12mmの円
柱状ブリケットを作り之を上記装置の反応室1に入れて
真空ポンプ44で10 ”Tonに減圧する。
Experimental Example 1 As an example of producing ultrafine SiO powder using the above apparatus, -30
0 mesh SiO powder and 1,200 mesh metal Si powder are mixed in approximately equal moles to form a 20 mm φ x 12 mm cylindrical briquette, which is then placed in the reaction chamber 1 of the above-mentioned apparatus, and the pressure is reduced to 10'' Ton using the vacuum pump 44.

つづいて反応室1を発熱体2で昇温すると約1500℃
附近からSiO蒸気の噴出が反応室1内で認められる。
Next, the temperature of reaction chamber 1 is raised by heating element 2 to approximately 1500°C.
SiO vapor is observed to be ejected from the vicinity within the reaction chamber 1.

次にSiO蒸気の噴出が始ったら直にNH3(又はN2
とH2混合ガス)を反応室に連通してノズル22の下方
の捕集室34にボンベ50から充填し該捕集室34内の
圧力が数tonから数十tonになる様NH3の流量を
調節する。
Next, as soon as the SiO vapor starts to blow out, NH3 (or N2
and H2 mixed gas) is communicated to the reaction chamber, and the collection chamber 34 below the nozzle 22 is filled from the cylinder 50, and the flow rate of NH3 is adjusted so that the pressure within the collection chamber 34 is from several tons to several tens of tons. do.

一方反応室1は更に昇温をつづけ1600〜1800℃
とする。
Meanwhile, the temperature in reaction chamber 1 continues to rise to 1600-1800℃.
shall be.

この温度でノズルから噴射されたSiO超微粉は捕集室
34のNH3雰囲気の中で直に表面窒化され見かけ比率
0.06〜0.1の範囲にある黄土色のふわふわしたア
モルファスSiO超微粉の集合体が捕集室に貯っな。
The surface of the SiO ultrafine powder injected from the nozzle at this temperature is directly nitrided in the NH3 atmosphere of the collection chamber 34, resulting in fluffy ocher amorphous ultrafine SiO powder with an apparent ratio of 0.06 to 0.1. The aggregates will accumulate in the collection room.

この生成物は、軽く振動を与える程度で容易に分離して
超微粉単体とすることができる。
This product can be easily separated into a single ultrafine powder by applying slight vibration.

これを電子顕微鏡で調べると個々の粉体の粒径は略30
0人〜400人で、粒の形状は球形であり、それらの球
形は大略揃っていた。
When this was examined with an electron microscope, the particle size of each powder was approximately 30
For 0 to 400 people, the shape of the grains was spherical, and the spherical shapes were almost uniform.

これを従来から用いられている電子顕微鏡の観察とX線
ディフラクトメーターよりアモルファス状SiOの超微
粉である事を第5図に示すX −ray 5ource
Cuにdの反射X線相対強度と超微粉回転角度の関係
線図の波形から確認した。
This was observed using a conventionally used electron microscope and using an X-ray diffractometer.
This was confirmed from the waveform of the relationship diagram between the relative intensity of reflected X-rays of Cu and d and the rotation angle of the ultrafine powder.

このアモルファス状SiOの超微粉を28000倍の電
子顕微鏡で撮影した電子顕微鏡写真が第6図に示す黒色
のものであり、該写真は粗大粒子であるかの如くみえる
が之は凝結ではなく、軽い振動を与えれば容易に微細単
粒子に分れるものである。
An electron micrograph of this ultrafine amorphous SiO powder taken with an electron microscope at a magnification of 28,000 times is shown in Figure 6, which is black in color, and although the photograph appears to be coarse particles, it is not agglomerated, but light particles. If vibration is applied, it can easily be separated into fine single particles.

実験例 2 上記実験例1における捕集室34のNH3の代りに炭化
水素例えばCH4を充填しても同様に表面が炭化したア
モルファスSiOの超微粉が得られた。
Experimental Example 2 Even when the collection chamber 34 in Experimental Example 1 was filled with a hydrocarbon such as CH4 instead of NH3, an amorphous SiO ultrafine powder with a carbonized surface was similarly obtained.

実験例 3 上記実験例1における捕集室34のNH3の代りに1/
10気圧に減圧した状態で酸素ガスを充填しても同様に
表面が酸化したアモルファスSiOの超微粉が得られた
Experimental Example 3 Instead of NH3 in the collection chamber 34 in Experimental Example 1 above, 1/
Even when oxygen gas was filled with the pressure reduced to 10 atm, ultrafine amorphous SiO powder with an oxidized surface was similarly obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSi、 Sin、 5in2の温度−真空圧の
関係線図、第2図は本発明に用いる製造装置の全体構成
の概略を示す断面図、第3図イ、町よ夫々第2図の装置
に用いるノズルの断面図、第4図は第2図の装置の一部
の拡大図、第5図は本発明で得たアモルファス状SiO
の超微粉の反射X線相対強度−超微粉回転角度の関係線
図、第6図は図面に代り本発明で得たアモルファス状S
iOの超微粉の28000倍の電子顕微鏡写真である。 1・・・反応室、22・・・ノズル、34・・・捕集室
、50・・・ボンベ。
Fig. 1 is a temperature-vacuum pressure relationship diagram for Si, Sin, 5in2, Fig. 2 is a sectional view schematically showing the overall configuration of the manufacturing equipment used in the present invention, Fig. 3 A, and Fig. 2, respectively. 4 is an enlarged view of a part of the device shown in FIG. 2, and FIG. 5 is a cross-sectional view of the nozzle used in the device shown in FIG.
Fig. 6 is a diagram showing the relationship between the relative intensity of reflected X-rays of the ultrafine powder and the rotation angle of the ultrafine powder.
This is an electron micrograph of ultrafine iO powder magnified 28,000 times. DESCRIPTION OF SYMBOLS 1... Reaction chamber, 22... Nozzle, 34... Collection chamber, 50... Cylinder.

Claims (1)

【特許請求の範囲】 I SiO蒸気を、還元窒化または還元炭化もしくは
減圧した酸素の雰囲気内に断熱膨張で噴射させて得た、
少くとも表面が窒化または炭化もしく(、lt酸化して
なる粒径1μ以下のアモルファス状SiOの超微粉。 2 SiO蒸気をノズルに通して還元窒化または還元
炭化もしくは減圧した酸素の雰囲気内に断熱膨張で噴射
する工程よるなる、少くとも表面を窒化または炭化もし
くは酸化してなる粒径1μ以下の超微粉のアモルファス
状SiOの製造方法。 3 SiO蒸気を発生させる手段と、還元窒化または
還元炭素もしくは減圧した酸素の雰囲気を有する捕集箱
と、上記SiO蒸気を断熱膨張させて上記捕集箱内に噴
射させるノズルとよりなる、少くとも表面を窒化または
炭化もしくは酸化してなる粒径1μ以下の超微粉のアモ
ルファス状SiOの製造装置。
[Claims] I SiO vapor is obtained by injecting it into an atmosphere of reduced nitriding, reducing carbonization, or reduced pressure by adiabatic expansion.
Ultrafine amorphous SiO powder with a particle size of 1μ or less whose surface is at least nitrided, carbonized, or oxidized. 2 SiO vapor is passed through a nozzle and heat-insulated in a reduced-nitrided, reduced-carbonized, or reduced-pressure oxygen atmosphere. A method for producing ultrafine amorphous SiO powder with a particle size of 1 μm or less, which is obtained by nitriding, carbonizing, or oxidizing at least the surface, and comprising a step of injecting by expansion. A collection box having a reduced pressure oxygen atmosphere and a nozzle that adiabatically expands the SiO vapor and injects it into the collection box, the surface of which is at least nitrided, carbonized or oxidized and has a particle size of 1 μm or less. Equipment for producing ultrafine amorphous SiO.
JP11731482A 1982-07-05 1982-07-05 Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment Expired JPS5950601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11731482A JPS5950601B2 (en) 1982-07-05 1982-07-05 Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11731482A JPS5950601B2 (en) 1982-07-05 1982-07-05 Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS598613A JPS598613A (en) 1984-01-17
JPS5950601B2 true JPS5950601B2 (en) 1984-12-10

Family

ID=14708679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11731482A Expired JPS5950601B2 (en) 1982-07-05 1982-07-05 Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS5950601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581363B2 (en) * 1987-03-27 1993-11-12 Ikura Seiki Seisakusho Kk

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227318A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Method and apparatus for producing pulverous sio powder
BR9814468A (en) 1997-12-25 2000-10-10 Nippon Steel Corp High purity silicon production process and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581363B2 (en) * 1987-03-27 1993-11-12 Ikura Seiki Seisakusho Kk

Also Published As

Publication number Publication date
JPS598613A (en) 1984-01-17

Similar Documents

Publication Publication Date Title
EP0087798B1 (en) A method and apparatus for making a fine powder compound of a metal and another element
US20080019903A1 (en) Process and apparatus for prodcing concrrently hydrogen or ammonia and metal oxide nanoparticles
US8859931B2 (en) Plasma synthesis of nanopowders
JPS63221842A (en) Manufacturing method of metallic powder, metallic compound powder and ceramic powder and device thereof
JPH0433490B2 (en)
US4632849A (en) Method for making a fine powder of a metal compound having ceramic coatings thereon
JPH0359964B2 (en)
US5147831A (en) Method for producing a fine grained powder consisting of nitrides and carbonitrides of titanium
US4533382A (en) Device and method for making and collecting fine metallic powder
US4594101A (en) Fine composite powder material and method and apparatus for making the same
JPS5950601B2 (en) Ultrafine amorphous SiO powder, its manufacturing method, and manufacturing equipment
JP2000203825A (en) Gas carburization for production of pure tungsten carbide powder
US20070252313A1 (en) Particle producing method and particle producing apparatus
Chang et al. Kinetics and mechanisms for nitridation of floating aluminum powder
JPS5913616A (en) Hyperfine powder of sic, method and apparatus for manufacturing it
JPH0359006B2 (en)
JPS6135121B2 (en)
JPH05213606A (en) Production of lower metal oxide
JPH0127773B2 (en)
JPH0255481B2 (en)
JPS60251928A (en) Preparation of ultra-fine metal compound particle
JPS6042164B2 (en) Powder manufacturing method
JPS58153533A (en) Production of fine alloy powder
Vissokov High chemical activity and passivation of ultradispersed particles synthesized under the conditions of electric-arc low-temperature plasma
JP2929815B2 (en) Method for producing carbide powder