JPS5976922A - Manufacture of carbon fiber - Google Patents

Manufacture of carbon fiber

Info

Publication number
JPS5976922A
JPS5976922A JP18472882A JP18472882A JPS5976922A JP S5976922 A JPS5976922 A JP S5976922A JP 18472882 A JP18472882 A JP 18472882A JP 18472882 A JP18472882 A JP 18472882A JP S5976922 A JPS5976922 A JP S5976922A
Authority
JP
Japan
Prior art keywords
zone
carbon fiber
preheating zone
vapor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18472882A
Other languages
Japanese (ja)
Inventor
Kunio Komaki
小巻 邦雄
Makoto Watanabe
誠 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP18472882A priority Critical patent/JPS5976922A/en
Publication of JPS5976922A publication Critical patent/JPS5976922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a carbon fiber having uniform diameter, in high productivity, using a vapor-phase process, by placing a preheating zone having a specific temperature before the zone for the forming of the carbon fiber. CONSTITUTION:The objective carbon fiber is manufactured by scattering metallic (compound) powder on a substrate placed in the carbon fiber deposition zone, placing a preheating zone of 450-700 deg.C before the carbon fiber forming zone, retaining a mixture of hydrocarbon vapor (e.g. benzene vapor) and a carrier gas (e.g. hydrogen gas) in the preheating zone preferably for 3-10min, and thermally decomposing the hydrocarbon in the forming zone heated at about 1,000-1,300 deg.C.

Description

【発明の詳細な説明】 本発明は炭化水素の熱分解によるいわゆる気相法による
炭素繊維の製造法に関し、目的は炭素繊維の収率を4二
げること及び生成した炭素繊維の太さをできるたけ均一
にすることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon fibers by the so-called gas phase method using thermal decomposition of hydrocarbons, and the purpose is to increase the yield of carbon fibers by 42 and to increase the thickness of the produced carbon fibers. The goal is to make it as uniform as possible.

ベンゼンその他の炭化水素から気相法によって炭素繊維
が得られることは公知である。この際、周期律表の第8
族、5a族等の金属あるいはその化合物粉末が触媒とし
て有効であることも知られている。(特開昭52−10
3528)気相法による炭素繊維は有機繊維の炭化した
繊維にくらべ特性上も優れた点カーある外、ベンゼン等
の原料から単純な装置で製造できる利点があるが、生産
性が低いこと及び生成条件を厳密に制御しないと太さが
バラツキ易いなどの問題がある。
It is known that carbon fibers can be obtained from benzene and other hydrocarbons by a gas phase method. At this time, the 8th part of the periodic table
It is also known that powders of metals of groups 5a, 5a, etc. or their compound powders are effective as catalysts. (Unexamined Japanese Patent Publication No. 52-10
3528) Carbon fiber produced by the vapor phase method has superior properties compared to carbonized organic fibers, and also has the advantage that it can be produced from raw materials such as benzene with simple equipment, but it has low productivity and production If the conditions are not strictly controlled, there are problems such as the thickness tends to vary.

本発明は鋭意研究の結果、炭素繊維の生成帯域の前に予
熱帯を設けることにより、炭素繊維の直径が揃うこと並
びに基板の単位面積当りに生成する炭素繊維の数が大巾
に増えることにより収率も上ることを発見したものであ
る。
As a result of intensive research, the present invention was developed by providing a preheating zone in front of the carbon fiber production zone, which allows the diameters of the carbon fibers to be uniform and greatly increases the number of carbon fibers produced per unit area of the substrate. It was discovered that the yield was also increased.

即ち、本発明は金属粉末又はその金属化合物粉末を炭素
繊維の析出基板上等に存在させ、炭化水素の熱分解によ
って炭素繊維を製造する方法において、炭素繊維生成帯
域の前に450〜700℃の温度からなる炭化水素の予
熱帯域を設けることを特徴とする方法である。
That is, the present invention provides a method for producing carbon fibers by thermal decomposition of hydrocarbons, in which a metal powder or a metal compound powder thereof is present on a carbon fiber deposition substrate, etc. This method is characterized by providing a hydrocarbon preheating zone consisting of a temperature.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

炭化水素はベンゼン、トルエン、メタン、エタン、エチ
レン、プロパンなどが用いられる外、それらの混合物、
揮発油、灯油等でもよい。
Hydrocarbons include benzene, toluene, methane, ethane, ethylene, propane, etc., as well as mixtures thereof,
Volatile oil, kerosene, etc. may also be used.

炭化水素ガスはキャリアガスに希釈して用いられるが、
キャリアカスとしてi’j: N2 、 Ar 、N2
等を用いることができるが、好ましいのはN2ガスであ
る。
Hydrocarbon gas is used diluted with carrier gas, but
i'j as carrier waste: N2, Ar, N2
N2 gas is preferred.

これら両者の混合ガス中炭化水素ガスの望ましい濃度は
1〜50容量係である。
The preferred concentration of hydrocarbon gas in the mixed gas is 1 to 50 volumes.

微粉末の種類、その用い方は特開昭52−103528
と同様である。即ち周期律表の第8族、又は第5a族の
金属、及びこれら金属の化合物の微粉末である。これを
炭素繊維の析出帯域に設けた基板上に散布する等の方法
で存在させればよい。
Types of fine powder and how to use them are disclosed in JP-A-52-103528.
It is similar to That is, they are fine powders of metals of Group 8 or Group 5a of the periodic table, and compounds of these metals. This may be made present by a method such as scattering it on a substrate provided in the carbon fiber precipitation zone.

またこの外機粉末を炭素繊維生成帯域に浮遊させるよう
にしてもよい。
Alternatively, this outer powder may be suspended in the carbon fiber production zone.

炭素繊維の生成帯域の温度は約1000〜1300℃が
適し、また生成帯域のガス圧は常圧が取扱い易く問題な
いが、必要により多少の減圧や加圧も可能である。
The temperature of the carbon fiber production zone is suitably about 1,000 to 1,300°C, and the gas pressure in the production zone is easy to handle and poses no problem, but it is possible to reduce or increase the pressure to some extent if necessary.

本発明はに記の方法において、第1図のように予熱帯6
を設けることを特徴とする。
In the method described in the present invention, a preheating zone 6 as shown in FIG.
It is characterized by providing.

予熱帯は450〜700℃の範囲が適する。これより低
いと予熱帯を設けた意味がなく、反面高過ぎると予熱帯
で炭化水素カー熱分解し、煤状の生成物ができる。予熱
帯の作用機構については定かでないが何らかの中間化合
物が1部生成し、これが次の生成帯域において繊維発生
の密度を高めるのに寄与するものと推定される。
A range of 450 to 700°C is suitable for the preheating zone. If it is lower than this, there is no point in providing a preheating zone, while if it is too high, hydrocarbons will thermally decompose in the preheating zone, producing soot-like products. Although the mechanism of action of the pre-preparation zone is not clear, it is presumed that some intermediate compound is partially generated, and this contributes to increasing the density of fiber generation in the next generation zone.

予熱帯に炭化水素を帯留させる時間は01〜20分でよ
いが好ましくは3〜10分である。
The time for retaining hydrocarbons in the preheating zone may be 01 to 20 minutes, but preferably 3 to 10 minutes.

図においては1本の炉芯管に予熱帯と生成帯を設けてい
るが、別々の管にしてこの間を連結してもよい。
In the figure, a single furnace core tube is provided with a preheating zone and a generation zone, but they may be made into separate tubes and connected together.

図は横型の場合を示す力t、これは縦型でもよい。The figure shows the force t for a horizontal type, but it may also be for a vertical type.

この場合、ガスの流れは上向きでも下向きでも可能であ
る。予熱帯は当然ガスの入口側である。基板は縦にして
も微粉は付着しているので問題はない。
In this case, the gas flow can be either upward or downward. The preheating zone is naturally on the gas inlet side. Even if the board is held vertically, there is no problem because the fine powder is still attached.

実施例 第1図に示すように電気環状炉内にアルミナ質炉心管(
内径60WrIn、長さ1200+na+)を配置し、
予熱帯及び生成帯を設けた。基板はアルミナ製で長さ3
00−1巾50mのものを用いた。
Example As shown in Fig. 1, an alumina core tube (
Inner diameter 60WrIn, length 1200+na+) is arranged,
A preheating zone and generation zone were provided. The board is made of alumina and has a length of 3
00-1 with a width of 50 m was used.

予熱帯は最高温度部で650℃、生成帯は最高1100
℃とした。
The preheating zone has a maximum temperature of 650℃, and the generation zone has a maximum temperature of 1100℃.
℃.

ガスはベンゼンとN2 の混合・でベイゼン7容量係含
むものを用いた。圧力は常圧である。
The gas used was a mixture of benzene and N2 containing 7 volumes of benzene. The pressure is normal pressure.

予熱帯の帯留時間は平均3分、生成帯域のそれは約24
分とした。 こ〜で帯留時間とは炉芯管の容@ (/?
)/送入量(2/分)で表わしたものである。
The average residence time in the preparatory zone is 3 minutes, and that in the generation zone is approximately 24 minutes.
It was a minute. Here, the retention time is the capacity of the furnace core tube @ (/?
)/feeding amount (2/min).

アルミナ基板にには約5 N9のFe 粉末(300A
以下)を散布した。
Approximately 5N9 Fe powder (300A
The following) were sprayed.

比較のため第1図で仕切体8から左側がない装置を用い
、即ち直接生成帯に混合ガスを送太し、実験した。その
他は全く同じである。
For comparison, an experiment was conducted using an apparatus without the left side from the partition 8 in FIG. 1, that is, by directly sending the mixed gas to the generation zone. Everything else is exactly the same.

結果(4時間後) 本発明    比較例 収  量        1.26  !jO,59g
平均径    約9 μ 約15  μ径のバラツキ(
2σ) 140 %  314 %平均長さ     
  約 8Crn    約 5ctn上記結果から本
発明のものは繊維は細いカー、収量が増していることか
ら、生成した繊維の数は大巾に増えていることがわかる
。また繊維の太さのバラツキも小さいことカーわかる。
Results (after 4 hours) Invention Comparative Example Yield 1.26! jO, 59g
Average diameter: approx. 9 μm Approximately 15 μm diameter variation (
2σ) 140% 314% average length
Approximately 8 Crn Approximately 5 ctn From the above results, it can be seen that the fibers of the present invention are thinner, the yield is increased, and the number of produced fibers is greatly increased. It is also clear that the variation in fiber thickness is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の炭素繊維の製造法に用いる装置の1例
を示す断面図である。 1・・・・・・炉芯管、 2・・・・・・基板、 5・
・・・・・ヒーター、  6・・・・・・予熱帯、  
7・・・・・・生成帯。 特許出願人 昭和電工株式会社 代理人 弁理士菊地精−
FIG. 1 is a cross-sectional view showing an example of an apparatus used in the method for producing carbon fibers of the present invention. 1... Furnace core tube, 2... Substrate, 5.
... Heater, 6 ... Preliminary zone,
7...Generation zone. Patent applicant Showa Denko K.K. agent Patent attorney Sei Kikuchi

Claims (1)

【特許請求の範囲】[Claims] 金属粉末又はその金属化合物粉末を存在させ、炭化水素
の熱分解によって炭素繊維を製造する方法において、炭
素繊維生成帯域の前に450〜700℃の温度からなる
予熱帯域を設けることを特徴とする炭素繊維の製造法。
A method for producing carbon fibers by thermal decomposition of hydrocarbons in the presence of metal powder or metal compound powder, characterized in that a preheating zone having a temperature of 450 to 700° C. is provided before the carbon fiber production zone. Fiber manufacturing method.
JP18472882A 1982-10-22 1982-10-22 Manufacture of carbon fiber Pending JPS5976922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18472882A JPS5976922A (en) 1982-10-22 1982-10-22 Manufacture of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18472882A JPS5976922A (en) 1982-10-22 1982-10-22 Manufacture of carbon fiber

Publications (1)

Publication Number Publication Date
JPS5976922A true JPS5976922A (en) 1984-05-02

Family

ID=16158322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18472882A Pending JPS5976922A (en) 1982-10-22 1982-10-22 Manufacture of carbon fiber

Country Status (1)

Country Link
JP (1) JPS5976922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments

Similar Documents

Publication Publication Date Title
JPH0424320B2 (en)
KR101274492B1 (en) Process for producing carbon nanotube
US3900540A (en) Method for making a film of refractory material having bi-directional reinforcing properties
US4101639A (en) Process for production of carbon black
US20090191352A1 (en) Combustion-Assisted Substrate Deposition Method For Producing Carbon Nanosubstances
JPS599220A (en) Production of silicon carbide whisker
US20060257309A1 (en) Carbon fiber, method for producing the same and apparatus therefor
US3379555A (en) Vapor deposition of pyrolytic graphite on tungsten
JPH02167898A (en) Production of graphite whisker
JPS5976922A (en) Manufacture of carbon fiber
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
EP0717721A1 (en) Process for the preparation of fullerenes
JP5036564B2 (en) Method for producing platelet-type slit vapor-grown carbon fiber
KR20010104262A (en) Carbon fibrils and method for producing same
JPS6278217A (en) Vapor-phase production of carbon fiber
JPH03104927A (en) Coil-like carbon fiber and carbon composite material
JP2005015339A (en) Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber
JPS62104920A (en) Method for forming graphite fiber
JPS61194223A (en) Production of carbon fiber by gaseous phase method
JPS61136992A (en) Growth of graphite fiber using nucleus derived from iron pentacarbonyl
US1938609A (en) Production of diphenyl from benzene
RU2431600C1 (en) Method of producing carbon nanotubes
JPS5947424A (en) Manufacture of carbon-silicon carbide composite fiber
JPH0192424A (en) Production of carbon fiber with vapor growth
JPS62238826A (en) Production of carbon fiber