JPS5975560A - Catalyst manufacturing method for fuel cell - Google Patents

Catalyst manufacturing method for fuel cell

Info

Publication number
JPS5975560A
JPS5975560A JP57185115A JP18511582A JPS5975560A JP S5975560 A JPS5975560 A JP S5975560A JP 57185115 A JP57185115 A JP 57185115A JP 18511582 A JP18511582 A JP 18511582A JP S5975560 A JPS5975560 A JP S5975560A
Authority
JP
Japan
Prior art keywords
particles
ozone
carbon particles
carbon
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57185115A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Umiga
信好 海賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57185115A priority Critical patent/JPS5975560A/en
Publication of JPS5975560A publication Critical patent/JPS5975560A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent the cohesion and coarseness of platinum colloid particles and obtain catalyst with a long life by supporting the platinum colloid particles on the surface of carbon particles and allowing them to touch ozone in suspension status or powder-type floating status. CONSTITUTION:Ultrasonic treatment is performed by suspending and mixing carbon particles in a hexachloroplatinic acid solution and applying a sodium formate solution to the said solution while irradiating both solutions with ultrasonic waves and platinum colloid particles are supported on the surface of the carbon particles. Then they are washed by centrifugal separation and pure water and are transferred to an acrylic reaction cone while being suspended in pure water. Subsequently, they are ozone-treated while injecting oxygen gas and suspending the carbon particles. After they are ozone- treated, they are centrifugally separated and washed by pure water again. Then an electrode is manufactured by adding a suspension made of polytetrafluoroethylene to the carbon particles and coating the top of carbon paper with them. Thus manufactured electrodes are built in as the fuel side electrode 1 and air side electrode 2 of a fuel cell, and a single cell is formed by providing an electrolytic holding layer 3 between the electrodes 1 and 2. As a result, the performance of the cell can be stabilized.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池の触媒製造方法に係り、特に白金コロ
イド粒子を炭素粒子上に安定化させ得るようにした燃料
電池の触媒製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a fuel cell catalyst, and more particularly to a method for producing a fuel cell catalyst in which colloidal platinum particles can be stabilized on carbon particles.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

燃料電池の一つとして、水素含有ガスを燃料とし、酸素
含有がスを酸化剤とし、燃料側電極と空気側電極との間
にはさまれた電解液保持層内に液体リン酸を用いたもの
がある。両電極は、カーdζンベーノや−等の上に、−
リテトラフロロエチレンと共に白金コロイド粒子を担持
した炭素粒子を触媒層として付けたものである・一方、
従来白金コロイド粒子を炭素粒子に担持させる方法とし
て、次のような方法がある。
As a type of fuel cell, hydrogen-containing gas is used as the fuel, oxygen-containing gas is used as the oxidizing agent, and liquid phosphoric acid is used in the electrolyte holding layer sandwiched between the fuel side electrode and the air side electrode. There is something. Both electrodes are placed on top of the card dζembeno or -, etc.
Carbon particles supporting colloidal platinum particles are attached as a catalyst layer along with litertrafluoroethylene.On the other hand,
Conventional methods for supporting platinum colloid particles on carbon particles include the following methods.

つまり、白金錯体水溶液に還元剤として蟻酸。That is, formic acid as a reducing agent in a platinum complex aqueous solution.

ホルマリン等を攪拌混合して白金コロイド粒子を生成さ
せ、次に炭素粒子を加え、粒子表面にコロイド粒子を付
着させるか、あるいは、白金錯体水浴液に、あらかじめ
炭素粒子を加えてから還元剤を添加混合し、炭素粒子表
面に白金コロイド粒子企生成させる沈殿法によって作ら
れN不用の無機イオン、薬品を水洗により除き触媒とし
て利用される。
Stir and mix formalin etc. to generate platinum colloid particles, then add carbon particles to adhere the colloid particles to the particle surface, or add carbon particles in advance to the platinum complex water bath solution and then add the reducing agent. They are mixed and produced by a precipitation method in which colloidal platinum particles are formed on the surface of carbon particles, and unnecessary inorganic ions and chemicals are removed by washing with water and used as a catalyst.

上記で担体となる炭素粒子は、小さな粒子のカー、rf
ンブラノクで直径0.1〜0.01μ、大きな粒子であ
る粉末活性炭でも100μ以下であり、表面に付着する
白金コロイド粒子は、大きくども200X(0,02μ
)、製造法によりては30〜50Xの直径を持ったもの
である。
The carbon particles that serve as the carrier in the above are small particle car, rf
The diameter of Mburanoku is 0.1 to 0.01μ, and the diameter of powdered activated carbon, which is a large particle, is less than 100μ.
), depending on the manufacturing method, it has a diameter of 30 to 50X.

白金コロイド粒子を担持した炭素粒子は、がス拡散が行
なわれる電極上で電解質の液体リン酸につつまれ、水素
がスもしくは酸素含有ガスと接触している。100℃以
上の燃料電池作動条件下では、長時間の使用によって性
能が低下する。これは、熱的運動によって炭素粒子上の
白金コロイド粒子が表面上を移動し、コロイド粒子同士
の接触が起って凝集し、遂には大きな一つの粒子へと粗
大化が起り、触媒としての有効な表面積を減少させるた
めと考えられている。
Carbon particles supporting platinum colloid particles are surrounded by liquid phosphoric acid as an electrolyte on an electrode where gas diffusion takes place, and are in contact with hydrogen gas or oxygen-containing gas. Under fuel cell operating conditions of 100° C. or higher, performance deteriorates with prolonged use. This is because colloidal platinum particles on carbon particles move on the surface due to thermal movement, and the colloidal particles come into contact with each other, coagulate, and eventually coarsen into one large particle, making it less effective as a catalyst. This is thought to be due to the reduction of surface area.

そこで、このコロイド粒子同士の接触、凝集を防ぐ方法
として、炭素粒子表面に凹凸をつけて白金コロイド粒子
を担持させる方法がある。
Therefore, as a method for preventing contact and aggregation between colloidal particles, there is a method of making the surface of carbon particles uneven to support platinum colloidal particles.

例えば、炭素粒子に金属酸化物の触媒を担持し、次に加
熱することによって炭素粒子表面の触媒近傍を酸化せし
めて凹部を形成し、しかる後金属酸化物触媒を除いてか
ら白金コロイド粒子を表面に生成付着させる方法である
。しかし乍ら、かかる方法では操作条件が複雑であるば
かりでなく、加熱条件のコントロールが困難で、炭素粒
子自身が発火してしまうことがある。
For example, a metal oxide catalyst is supported on carbon particles, then heated to oxidize the vicinity of the catalyst on the surface of the carbon particles to form recesses, and then the metal oxide catalyst is removed and platinum colloid particles are placed on the surface. This is a method of generating and adhering it to the surface. However, in such a method, not only the operating conditions are complicated, but also the heating conditions are difficult to control, and the carbon particles themselves may ignite.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題を解決するもので、その目的は白金コ
ロイド粒子相互の接触、凝集による粗大化を防止して性
能の低下しない長寿命の触媒を安価に得ることが可能な
燃料電池の触媒製造方法を提供することにある。
The present invention solves the above problems, and its purpose is to produce a catalyst for fuel cells that can prevent platinum colloid particles from contacting each other and from becoming coarse due to aggregation, thereby producing a long-life catalyst that does not deteriorate in performance at a low cost. The purpose is to provide a method.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、炭素粒子表面に
白金コロイド粒子を担持させて白金触媒を生成し、しか
る後懸濁状態若しくは粉末状浮遊状態でオゾンと接触さ
せ、オゾンの酸化力により白金コロイド粒子近傍の炭素
を優先的に酸化せしめて凹部を形成し、炭素粒子表面に
凹凸をつけることを特徴とする。
In order to achieve the above object, in the present invention, platinum colloid particles are supported on the surface of carbon particles to produce a platinum catalyst, which is then brought into contact with ozone in a suspended or powdered suspended state, and platinum is oxidized by the oxidizing power of ozone. It is characterized by preferentially oxidizing carbon in the vicinity of colloidal particles to form concave portions, thereby making the surface of the carbon particles uneven.

〔発明の実施例〕[Embodiments of the invention]

一般に、オゾンは強い酸化力を有するがスで、無声放電
によって酸素から簡単に作ることができ、上水の殺菌、
排水の処理等衛生、環境保全に広く利用されている。一
方、オゾンの分解処理に活性炭が利用されていることは
周知の通りであり、更に活性炭表面に白金コロイド粒子
を担持することにより、オゾンの分解効率1分解速度が
高くなることが知られている。粉末活性炭、白金コロイ
ド粒子ともにオゾンを分解する能力を有し、粉末活性炭
では、次の反応の通り触媒として作用する場合と、活性
炭自身が消耗する反応とが平行して行なわれる。
In general, ozone has strong oxidizing power, but it can be easily made from oxygen by silent discharge, and it can be used to sterilize water,
It is widely used for sanitary and environmental conservation purposes such as wastewater treatment. On the other hand, it is well known that activated carbon is used for ozone decomposition treatment, and it is also known that the ozone decomposition efficiency 1 decomposition rate increases by supporting platinum colloid particles on the activated carbon surface. . Both powdered activated carbon and platinum colloid particles have the ability to decompose ozone, and powdered activated carbon acts as a catalyst and a reaction in which the activated carbon itself is consumed occurs in parallel, as shown in the following reaction.

002+0 20    0□ o3+o −一→20□ C+03−一→CO□+O C+0−一→CO C+0−一→CO十02 一方、白金コロイド粒子は次の反応に示されるように、
触媒としてのみオゾンを分解するため、消耗することな
く触媒効果が持続する。
002+0 20 0□ o3+o -1 → 20□ C+03-1 → CO□+O C+0-1 → CO C+0-1 → CO102 On the other hand, platinum colloid particles, as shown in the following reaction,
Since it decomposes ozone only as a catalyst, the catalytic effect continues without being consumed.

〇 −巴一一一〇□+0 002 0 +0−一→ 202 白金コロイドを表面に担持した粉末活性炭の充填層を用
いて、長時間希Hなオゾンの分解を行なうと、活性炭の
消耗によって見かけ体積が40%程度に減少しても、オ
ゾンの分解性能には差がなく、このときの白金の含址を
、王水で加熱溶解して測定したところ、白金の減少量は
6%であった。つまり、粉末活性炭のオゾンによる消耗
により見かけ体積が大巾に減少しても、初めに担持され
た白金コロイド粒子は剥離、飛散することなく、小さく
なった活性炭表面に付着し続けていることが判った。
〇 - Tomoe 11 〇□ +0 002 0 +0-1 → 202 When decomposing dilute H ozone for a long time using a packed bed of powdered activated carbon carrying platinum colloid on the surface, the apparent volume decreases due to consumption of the activated carbon. Even if the amount decreased to about 40%, there was no difference in ozone decomposition performance, and when the platinum content at this time was measured by heating and dissolving it in aqua regia, the amount of decrease in platinum was 6%. . In other words, even though the apparent volume of powdered activated carbon is greatly reduced due to consumption by ozone, the initially supported platinum colloid particles continue to adhere to the activated carbon surface, which has become smaller, without peeling off or scattering. Ta.

本発明は、これらオゾンに対する粉末活性炭と白金コロ
イド粒子の挙動から、燃料電池の触媒製造法にオゾンを
利用するものである。つまり、白金コロイド粒子を炭素
粒子表面に担持させ、しかる後にオゾン処理を行なうも
ので、これによって長期間触媒性能を持続することがで
きる。これは、炭素粒子表面に白金コロイド粒子を付着
させた後、水中に懸濁させた状態でオゾン含有ガスを注
入すると、オゾンが溶存オゾンとして炭素粒子、白金コ
ロイド粒子に作用し、前記したオゾン分解反応に類似し
た反応が水中でも起り、炭素粒子表面の白金コロイド粒
子の付着部が、優先的にオゾンもしくはオゾン分解によ
って生じる発生期の酸素によって酸化消耗するためであ
ると考えられる。すなわち、炭素粒子上に微少な白金コ
ロイド粒子が、ファンデルワールス力に似た弱い力によ
って散らばって付着されていたものが、オゾンによる付
着部の消耗により形成された凹部に入り込んだため、白
金コロイド粒子同士の凝集がなくなり、燃料電池の触媒
として優れた効果を示すものであると考えられる。
The present invention utilizes ozone in a fuel cell catalyst production method based on the behavior of powdered activated carbon and platinum colloid particles with respect to ozone. That is, colloidal platinum particles are supported on the surface of carbon particles, and then ozone treatment is performed, thereby making it possible to maintain catalyst performance for a long period of time. This is because when colloidal platinum particles are attached to the surface of carbon particles and then a gas containing ozone is injected into the suspended state in water, the ozone acts on the carbon particles and colloidal platinum particles as dissolved ozone, causing the ozone decomposition described above. This is thought to be because a reaction similar to the reaction occurs in water, and the adhering portion of the platinum colloid particles on the carbon particle surface is preferentially oxidized and consumed by ozone or nascent oxygen generated by ozone decomposition. In other words, minute colloidal platinum particles that were scattered and attached to carbon particles by a weak force similar to van der Waals force entered the recesses formed by the wear of the attached part by ozone, causing the colloidal platinum to disappear. It is considered that particles do not aggregate with each other and exhibit excellent effects as a fuel cell catalyst.

以下、本発明による具体的な触媒製造方法の一例につい
て説明する。
An example of a specific catalyst manufacturing method according to the present invention will be described below.

(実施例1・) 0.1M/、のヘキサクロロ白金酸(H2PtC)、)
溶液600wLlに炭素粒子65gを懸濁混合し、超音
波を照射しながら20チ蟻酸ナトリウム溶液200−を
加えて3時間超音波処理し、白金錯イオンを還元する。
(Example 1) 0.1M/, hexachloroplatinic acid (H2PtC), )
65 g of carbon particles are suspended and mixed in 600 wL of a solution, and 200% of sodium formate solution is added while irradiating ultrasonic waves, followed by ultrasonication for 3 hours to reduce platinum complex ions.

そして遠心分離と純水による洗浄を行なって塩素イオン
を除去する。次に、底部に多孔質散気板をつけた内径5
 cm +高さ100 cmのアクリル製反応塔に、約
1.21の純水に懸濁して移した。次に、底部散気板よ
りオゾン濃度35 fnf/l含有する酸素ガスを、細
かな気泡として1v−のガス流量で注入し、炭素粒子の
懸濁した状態でオゾン処理を12時間行なう。このオゾ
ン処理後、再び遠心分離を行ない約11の純水で洗浄す
る。しかる後、この炭素粒子にポリテトラフルオロエチ
Vンの懸濁液を5 Q wtチ加え、カーゼンペーノ9
−上に塗布して電極を製造し、第1図に示すような燃料
電池を組み立てる。
Then, chlorine ions are removed by centrifugation and washing with pure water. Next, the inner diameter 5 with a porous air diffuser attached to the bottom.
The suspension was suspended in approximately 1.21 cm of pure water and transferred to an acrylic reaction tower with a height of 100 cm + 100 cm. Next, oxygen gas containing an ozone concentration of 35 fnf/l was injected from the bottom diffuser plate as fine bubbles at a gas flow rate of 1 v-, and ozone treatment was performed for 12 hours with the carbon particles suspended. After this ozone treatment, centrifugation is performed again and washing is performed with approximately 11 ml of pure water. Thereafter, 5 Q wt of a suspension of polytetrafluoroethylene was added to the carbon particles.
- Coating on top to produce electrodes and assemble a fuel cell as shown in FIG.

かかる燃料電池の単セルの大きさは20X20備の大き
さで、燃料側電極lと、空気側電極2と、これら両電極
1.2の間にはさまれた電解液保持層3と、それぞれの
極の基材となるカーゼンペーノ4−4とより構成されて
いる。ここで、燃料側電極1〜は0.3号勺の白金量、
空気側電極2は0.7 tIV′cdの白金量を有する
。また、電解′液保持層3は高分子不織布、または無機
不織布にリン酸が含浸されている。さらに、各単セルは
隔離板5を介して積層され、図示しない容器内に収納し
て燃料電池が構成される。また、隔離板5に互いに直交
する溝6,7が両面に設けられ、図示しない供給源から
供給される燃料ガスおよび空気の通路を形成している。
The size of a single cell of such a fuel cell is 20 x 20, and includes a fuel side electrode 1, an air side electrode 2, and an electrolyte holding layer 3 sandwiched between these electrodes 1.2. It is composed of Kazenpeno 4-4, which is the base material of the pole. Here, the fuel side electrodes 1~ have a platinum amount of No. 0.3,
The air side electrode 2 has a platinum content of 0.7 tIV'cd. The electrolyte holding layer 3 is made of a polymeric nonwoven fabric or an inorganic nonwoven fabric impregnated with phosphoric acid. Further, each single cell is stacked with a separator 5 in between and housed in a container (not shown) to form a fuel cell. Further, grooves 6 and 7 which are orthogonal to each other are provided on both sides of the separator plate 5 to form passages for fuel gas and air supplied from a supply source (not shown).

このように構成された燃料電池の特性を第2図に、縦軸
に電池電圧、横軸に作動時間をとって示す。図において
、製造方法による電池の特性をA1従来の方法によって
作られた電池の特性をBで夫々示している。図から明ら
かなように、本製造方法にて作られた触媒を用いた電極
では、長時間電池電圧の降下がなく、安定した性能が得
られることがわかる。
The characteristics of the fuel cell constructed in this manner are shown in FIG. 2, with the cell voltage plotted on the vertical axis and the operating time plotted on the horizontal axis. In the figure, the characteristics of the battery produced by the manufacturing method are indicated by A, and the characteristics of the battery produced by the conventional method are indicated by B, respectively. As is clear from the figure, the electrode using the catalyst produced by this manufacturing method shows no drop in battery voltage over a long period of time, and stable performance can be obtained.

(実施例2) 上記実施例1と同様にヘキサクロロ白金酸溶液6001
1Llに炭素粒子65.9を混合し、超音波を照射しな
がら蟻酸ナトリウム溶液200dを加えて3時間超音波
処理を行ない、炭素粒子表面に白金コロイド粒子を担持
させる。そして、遠心分離、純水による洗浄を行なった
後、オゾン含有空気によるオゾン処理を行なう。次に実
施例1と同様に内径5 cm +高さ100 cmのア
クリル製反応塔に、白金コロイド粒子を担持した炭素粒
子を懸濁状態で入れる。(このときの全量は約700 
mlである。)次に、オゾン濃度121ノ含有のオゾン
化空気を細かい気泡として、10−のガス流量で36時
間注入してオゾン処理を行なう。このオゾン処理後、上
記実施例1と同構成の燃料電池に組み立てたところ第2
図と同一の特性が得られ、本方法で得た触媒からなる電
極が安定していることが確認された。
(Example 2) Hexachloroplatinic acid solution 6001 as in Example 1 above.
65.9 liters of carbon particles are mixed in 1 L, 200 d of sodium formate solution is added while irradiating ultrasonic waves, and ultrasonication is performed for 3 hours to make colloidal platinum particles supported on the surface of the carbon particles. After centrifugation and washing with pure water, ozone treatment is performed using ozone-containing air. Next, as in Example 1, carbon particles carrying platinum colloid particles were placed in a suspended state in an acrylic reaction tower having an inner diameter of 5 cm and a height of 100 cm. (The total amount at this time was approximately 700
ml. ) Next, ozonized air containing an ozone concentration of 121 mm was injected as fine bubbles at a gas flow rate of 10 mm for 36 hours to carry out ozone treatment. After this ozone treatment, the second fuel cell was assembled into a fuel cell having the same configuration as in Example 1.
The same characteristics as shown in the figure were obtained, confirming that the electrode made of the catalyst obtained by this method is stable.

尚、上記各実施例の他に、白金コロイド粒子 −を表面
に担持させた炭素粒子を乾燥後、オゾン含有ガスで処理
する方法もある。との場合、炭素粒子を高濃度で充填し
た状態で行なうと、層の上下でオゾン接触による差が生
じてし1い、オゾン濃度が高く、酸素ガスを用いると炭
素粒子は層の下部より燃焼しはじめるため、大きな容器
内の下部から薄いオゾン含有ガスを注入し、炭素粒子が
容器内に浮遊しているような流動層でのオゾン接触を行
なえばオゾン分解による熱の蓄積もなく、粒子全体から
均一な処理が行なえる。
In addition to the above embodiments, there is also a method in which carbon particles having colloidal platinum particles supported on their surfaces are dried and then treated with an ozone-containing gas. In this case, if carbon particles are filled at a high concentration, a difference may occur between the upper and lower parts of the layer due to ozone contact.If the ozone concentration is high and oxygen gas is used, the carbon particles will be burned from the bottom of the layer. Therefore, if a thin ozone-containing gas is injected from the bottom of a large container and the carbon particles are brought into contact with ozone in a fluidized bed where they are suspended in the container, there will be no heat accumulation due to ozone decomposition, and the entire particle will be decomposed. Uniform processing can be performed from

また、上記実施例以外の触媒担持方法によって得られた
炭素粒子にも本発明は適用可能であり、炭素粒子はカー
Cノブラック粉末活性炭以外にコークス、人工黒鉛、天
然石墨などの粉末から構成されることもあり、さらに白
金以外にオゾン分解性を有するパラジウム、銀、マンガ
ン等も炭素粒子表面上に凹部を作ることができる。
The present invention is also applicable to carbon particles obtained by catalyst supporting methods other than the above-mentioned examples, and the carbon particles may be composed of powders such as coke, artificial graphite, natural graphite, etc., in addition to Kerr C Noblack powder activated carbon. In addition to platinum, palladium, silver, manganese, and the like, which have ozone-decomposing properties, can also form recesses on the surface of carbon particles.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による触媒製造方法は、白金
コロイド粒子を炭素粒子表面へ担持させた後、懸濁状態
若しくは粉末状浮遊状態でオゾン含有ガスと接触させる
方法であるので、操作条件が簡単であり製造工程上都合
がよい。
As explained above, the catalyst manufacturing method according to the present invention is a method in which colloidal platinum particles are supported on the surface of carbon particles and then brought into contact with an ozone-containing gas in a suspended or powdered suspended state, so the operating conditions are simple. This is convenient for the manufacturing process.

また、本方法は炭素粒子上に金属酸化物を担持させて高
温度に加熱し、表面の一部を燃焼させる方法に比べ、水
中に懸濁、若しくはがス中に浮遊させた状態で酸化力の
強いオゾンと接触させるものであるので、低温度による
処理となり、表面に担持されている微少な白金コロイド
粒子を不要に運動させることはなく、効率よく炭素粒子
表面に凹部を形成することができ、もって100℃以上
で液体リン酸、水素もしくは酸素と接触する比較的過酷
な条件でも、白金コロイド粒子の凝集、粗大化を防止し
て、燃料電池の性能を安定化することができる。
In addition, compared to the method of supporting metal oxides on carbon particles, heating them to high temperature, and burning part of the surface, this method has oxidizing power while suspended in water or suspended in gas. Since the carbon particles are brought into contact with strong ozone, the treatment is carried out at low temperatures, and the minute colloidal platinum particles supported on the surface are not moved unnecessarily, making it possible to efficiently form depressions on the carbon particle surface. Therefore, even under relatively severe conditions such as contact with liquid phosphoric acid, hydrogen, or oxygen at temperatures of 100° C. or higher, platinum colloid particles can be prevented from agglomeration and coarsening, and the performance of the fuel cell can be stabilized.

【図面の簡単な説明】 第1図は本発明による触媒を用いた燃料電池の構成を示
す斜視図、第2図は本発明による触媒と従来法による触
媒とからなる燃料電池の特性を示す図である。 l・・・燃料側電極、2・・・空気側電極、3・・・電
解質保持層。 第1図 1、( 、セ 0.1 ’IL 第2図 )[ ・[ 500100015002000 □ イ土 動 時 (句  (H)
[Brief Description of the Drawings] Fig. 1 is a perspective view showing the structure of a fuel cell using a catalyst according to the present invention, and Fig. 2 is a diagram showing characteristics of a fuel cell comprising a catalyst according to the present invention and a conventional catalyst. It is. l... fuel side electrode, 2... air side electrode, 3... electrolyte holding layer. Fig. 1 1, ( , se 0.1 'IL Fig. 2)

Claims (1)

【特許請求の範囲】[Claims] 炭素粒子表面に白金コロイド粒子を担持させ、しかる後
懸濁状態若しくは粉末状浮遊状態でオゾンと接触させる
ようにしたことを特徴とする燃料電池の触媒製造方法。
A method for producing a catalyst for a fuel cell, characterized in that colloidal platinum particles are supported on the surface of carbon particles, and then brought into contact with ozone in a suspended or powdered suspended state.
JP57185115A 1982-10-21 1982-10-21 Catalyst manufacturing method for fuel cell Pending JPS5975560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185115A JPS5975560A (en) 1982-10-21 1982-10-21 Catalyst manufacturing method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185115A JPS5975560A (en) 1982-10-21 1982-10-21 Catalyst manufacturing method for fuel cell

Publications (1)

Publication Number Publication Date
JPS5975560A true JPS5975560A (en) 1984-04-28

Family

ID=16165119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185115A Pending JPS5975560A (en) 1982-10-21 1982-10-21 Catalyst manufacturing method for fuel cell

Country Status (1)

Country Link
JP (1) JPS5975560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252058A (en) * 1990-02-28 1991-11-11 Fuji Electric Co Ltd Electrode catalyst layer for fuel cell
US7244688B2 (en) * 2002-03-16 2007-07-17 Studiengesellschaft Kohle Mbh Method for in situ immobilization of water-soluble nanodispersed metal oxide colloids
EP1905113A1 (en) * 2005-07-19 2008-04-02 LG Chem, Ltd. Electrode catalyst with improved longevity properties and fuel cell using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252058A (en) * 1990-02-28 1991-11-11 Fuji Electric Co Ltd Electrode catalyst layer for fuel cell
US7244688B2 (en) * 2002-03-16 2007-07-17 Studiengesellschaft Kohle Mbh Method for in situ immobilization of water-soluble nanodispersed metal oxide colloids
EP1905113A1 (en) * 2005-07-19 2008-04-02 LG Chem, Ltd. Electrode catalyst with improved longevity properties and fuel cell using the same
EP1905113A4 (en) * 2005-07-19 2010-01-06 Lg Chemical Ltd Electrode catalyst with improved longevity properties and fuel cell using the same
US8470495B2 (en) 2005-07-19 2013-06-25 Lg Chem, Ltd. Electrode catalyst with improved longevity properties and fuel cell using the same
US9054384B2 (en) 2005-07-19 2015-06-09 Lg Chem, Ltd. Electrode catalyst with improved longevity properties and fuel cell using the same

Similar Documents

Publication Publication Date Title
CN102709573B (en) Fuel cell air electrode catalyst and manufacture method thereof
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
Erikson et al. Oxygen electroreduction on carbon-supported Pd nanocubes in acid solutions
CN107746051A (en) A kind of nitrogen-doped graphene nanobelt nano-cobaltic-cobaltous oxide hybrid material and preparation method thereof
JP2006228450A (en) Platinum-carbon complex made by having sponge-like platinum nano sheet carried by carbon, and its manufacturing method
CN109860643A (en) A kind of oxygen reduction electro-catalyst and preparation method thereof of aromatic diazo salt surface modification MXene Supported Pt Nanoparticles
CN108520965A (en) A kind of preparation method of platinum-noble metal-copper ternary alloy nano hollow cube
Zhang et al. Sulfur induced surface reconfiguration of Ni1Cu3-ST/CP anode for high-efficiency ammonia electro-oxidation
CN113101955A (en) Preparation method of iron phosphide nano material and application of iron phosphide nano material as electrocatalyst
CN1185738C (en) Preparation method of nano catalyst for low-temp. fuel cell
JPS5975560A (en) Catalyst manufacturing method for fuel cell
CN113235108A (en) MXene supported noble metal cluster catalyst and preparation method and application thereof
CN106848339A (en) A kind of cobalt/cobalt oxide and N doping charcoal composite oxygen precipitation/oxygen reduction reaction bifunctional catalyst
JP3628756B2 (en) Gas diffusion electrode
CN106532195A (en) Ferrous ion/air battery and preparation method thereof
CN104651877B (en) Preparation method of two metal composite materials and application
RU2324538C1 (en) Catalyst with nanoparticles on carrier and method of its production
CN100467125C (en) Carbon supported nanometer WC reinforced oxidation-reduction electrocatalyst and its prepn process
CN100443167C (en) Method for reduce deposition of high dispersible Pt catalyst granule in batches
JPH0636771A (en) Gas diffusion electrode and its manufacture
JPWO2006112368A1 (en) Fuel cell electrode catalyst and method for producing the same
CN109244488A (en) A kind of carbon multi-wall nano tube loaded nano silver oxygen reduction catalyst and preparation method
JPH02114452A (en) Manufacture of fuel electrode catalyst for liquid fuel battery
CN108911048A (en) A kind of preparation method of multiple dimensioned bump electrode
CN109768288A (en) A kind of biomorph Ni-Li/C catalyst and its preparation method and application