JP2006228450A - Platinum-carbon complex made by having sponge-like platinum nano sheet carried by carbon, and its manufacturing method - Google Patents

Platinum-carbon complex made by having sponge-like platinum nano sheet carried by carbon, and its manufacturing method Download PDF

Info

Publication number
JP2006228450A
JP2006228450A JP2005037405A JP2005037405A JP2006228450A JP 2006228450 A JP2006228450 A JP 2006228450A JP 2005037405 A JP2005037405 A JP 2005037405A JP 2005037405 A JP2005037405 A JP 2005037405A JP 2006228450 A JP2006228450 A JP 2006228450A
Authority
JP
Japan
Prior art keywords
platinum
carbon
carbon composite
sponge
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005037405A
Other languages
Japanese (ja)
Other versions
JP4934799B2 (en
Inventor
Takeshi Kijima
剛 木島
Takeshi Sakai
剛 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki NUC
Original Assignee
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki NUC filed Critical University of Miyazaki NUC
Priority to JP2005037405A priority Critical patent/JP4934799B2/en
Priority to PCT/JP2006/301924 priority patent/WO2006087928A1/en
Publication of JP2006228450A publication Critical patent/JP2006228450A/en
Application granted granted Critical
Publication of JP4934799B2 publication Critical patent/JP4934799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/58
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To realize hitherto unknown performance and action effect by creating a novel form of a platinum-carbon complex carrying a platinum nano sheet and applying it for catalyst, an electrode or the like. <P>SOLUTION: Platinum complex oxide, two kinds of non-ionic surfactants or a kind of non-ionic surfactant and a kind of ionic surfactant totalling two kinds of surfactants, water, and a reaction mixture of various kinds of carbon are prepared, to which, a reducer agent aqueous solution is added for reaction to form its skeleton by platinum (Pt) as a precious metal element. And a platinum-carbon complex body is generated with a platinum nano sheet in a sheet shape with single crystal or crystal of an outer diameter of 20 to 100 nm with rod-like bent skeletons of a diameter of 1.5 to 4 nm three-dimensionally coupled, and having a sponge-like form with mesh gaps made of slit-shaped pores of a width of 0.3 to 2 nm made carried by carbon, and is recovered. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属白金の化学的および電気化学的特性を利用した燃料電池用電極触媒、自動車排ガス処理用触媒等、各種化学反応に対する触媒、燃料電池用ガス拡散電極、金属―空気電池用ガス拡散電極、食塩電解用ガス拡散電極、電気分解用等のガス拡散電極等、各種態様の電極材料、さらにはマイクロリアクター構成部材、物質貯蔵材料などとして使用される、特定の構造のスポンジ状白金ナノシートをカーボンに担持せしめてなる、新規な形態の白金−カーボン複合体とその製造方法に関する。   The present invention relates to a catalyst for various chemical reactions, such as an electrode catalyst for a fuel cell and a catalyst for automobile exhaust gas treatment utilizing the chemical and electrochemical characteristics of metal platinum, a gas diffusion electrode for a fuel cell, and a gas diffusion for a metal-air cell. Sponge-like platinum nanosheets with a specific structure used as electrode materials for various aspects such as electrodes, gas diffusion electrodes for salt electrolysis, gas diffusion electrodes for electrolysis, etc., as well as microreactor components, substance storage materials, etc. The present invention relates to a novel form of platinum-carbon composite which is supported on carbon and a method for producing the same.

燃料電池やエネルギー変換および物質変換のための各種電極触媒およびガス拡散電極は、一般に、カーボン等の導電性担体に、金属塩の水溶液あるいはコロイド分散系を用いて、含浸法、イオン交換法、共沈法などによって金属成分を導入したのち、焼成、水素還元などの処理を行なうことにより調製される(非特許文献1)。すなわち、電極触媒は、固体担体の表面に金属粒子を担持した複合粒子の形で反応に供され、その活性は、金属種はもとより、担持された金属微粒子の大きさ、結晶面の種類、担体の種類などによって変化し、その中でも活性に与える影響の大きな要素としては、金属微粒子の形状および大きさの制御は特に重要である。担持される金属の粒子径および形状は調製条件に依存し、例えば、テトラアンミンジクロロ白金を原料としてゼオライトに担持した白金微粒子の平均粒径は、空気中焼成では6nm、真空中焼成では1nm以下になることが報告されている(非特許文献2)。   Various electrocatalysts and gas diffusion electrodes for fuel cells, energy conversion and material conversion are generally impregnated, ion-exchanged, and co-dispersed using an aqueous solution or colloidal dispersion of a metal salt on a conductive carrier such as carbon. It is prepared by introducing a metal component by a precipitation method or the like and then performing a treatment such as calcination or hydrogen reduction (Non-patent Document 1). That is, the electrode catalyst is subjected to the reaction in the form of composite particles in which metal particles are supported on the surface of a solid support, and the activity is not only the metal species but also the size of the supported metal fine particles, the type of crystal plane, the support The shape and size of the metal fine particles is particularly important as an element that varies depending on the type of the material and has a great influence on the activity. The particle diameter and shape of the supported metal depend on the preparation conditions. For example, the average particle diameter of platinum fine particles supported on zeolite using tetraamminedichloroplatinum as a raw material is 6 nm in air firing and 1 nm or less in vacuum firing. (Non-Patent Document 2).

さらに、金属触媒の活性と粒子サイズとの関係は、対象とする反応によって異なり、粒子サイズが大きくなるにつれて活性が低下する系(例:Pt/活性炭による2,3−ジメチルブタンの脱水素反応)、逆に増大する系(例:Pt/アルミナによるメチルシクロペンタンの水素化分解反応)、さらには活性が粒子サイズによらない系(例:Pt触媒によるSOおよびHの酸化反応)の存在も報告されている(非特許文献3)。 Furthermore, the relationship between the activity of the metal catalyst and the particle size varies depending on the target reaction, and the activity decreases as the particle size increases (for example, dehydrogenation of 2,3-dimethylbutane with Pt / activated carbon). , Conversely increasing systems (eg, hydrocracking of methylcyclopentane with Pt / alumina), and even systems where the activity does not depend on particle size (eg, SO 2 and H 2 oxidation with Pt catalyst) Has also been reported (Non-patent Document 3).

このため、白金触媒および白金電極触媒の調製法として、上記の一般的な方法を様々に工夫することに加えて、ポリビニールピロリドンなどの保護剤存在下で液相還元し貴金属コロイドを作製する方法(非特許文献4)なども開発されてきている。さらに最近、メソポーラスシリカの細孔内に導入した塩化白金酸を水素還元または光還元することにより、各々直径2.5nmの白金粒子と白金ワイヤーが得られ、ブタン水素化反応に対して後者は前者の数十倍高い活性を示すことも報告されている(非特許文献5)。   For this reason, as a method for preparing platinum catalyst and platinum electrode catalyst, in addition to devising the above general method in various ways, a method of producing a noble metal colloid by liquid phase reduction in the presence of a protective agent such as polyvinylpyrrolidone (Non-Patent Document 4) has also been developed. More recently, platinum particles and platinum wires each having a diameter of 2.5 nm are obtained by hydrogen reduction or photoreduction of chloroplatinic acid introduced into the pores of mesoporous silica, and the latter is the former for butane hydrogenation reaction. It has also been reported that the activity is several tens of times higher than that of Non-Patent Document 5.

一方、本発明者らは、二種類の界面活性剤から成る液晶を鋳型として塩化白金酸を還元する手法を開発し、還元剤および白金塩の種類によって、外径6〜7nm、内径3〜4nmの白金、パラジウムなどの貴金属ナノチューブおよびスポンジ状貴金属ナノ粒子を開発するのに成功し、その成果を先に特許出願した(特許文献1、特許文献2)。   On the other hand, the present inventors have developed a technique for reducing chloroplatinic acid using a liquid crystal composed of two kinds of surfactants as a template, and an outer diameter of 6 to 7 nm and an inner diameter of 3 to 4 nm depending on the kind of the reducing agent and the platinum salt. Have succeeded in developing noble metal nanotubes such as platinum and palladium, and sponge-like noble metal nanoparticles, and have filed patent applications for the results (Patent Documents 1 and 2).

しかしながら、本発明者らにおいて開発した白金ナノ構造体に関する上記文献2の記載内容は、白金ナノ構造体が独立して生成するバルクの超微粉を製造するプロセスについて提示しているが、この生成物を担体に担持せしめることについては具体的な開示がなされていなかった。白金は、資源的に希少であり、世界的にも分布している地域が極めて偏在し、高価である。したがって、前記白金ナノ構造体(シート)を、触媒、電極触媒、ガス拡散電極等において今後一層の有効活用を図っていくためには、実効性のある使用形態、すなわち、白金の形状をナノサイズで制御して白金ナノ構造体を担体に担持することが極めて重要であり、早急にその完成が待たれている。   However, the description of the above-mentioned document 2 regarding the platinum nanostructure developed by the present inventors presents a process for producing a bulk ultrafine powder independently produced by the platinum nanostructure. No specific disclosure has been made on the support of the carrier. Platinum is scarce in terms of resources and is highly ubiquitous and expensive in regions where it is distributed worldwide. Therefore, in order to further effectively utilize the platinum nanostructure (sheet) in the future in catalysts, electrode catalysts, gas diffusion electrodes, etc., the effective usage, that is, the shape of platinum is nanosized. It is extremely important to control the platinum nanostructure on the carrier under the control of the above, and its completion is awaited immediately.

一般に、白金粒子を担体に担持することについては、これまで多数の報告例がある。例えば、燃料電池用の電極触媒およびガス拡散電極として、難黒鉛化性炭素を主成分とし、構造の一部に乱層構造を有する炭素材料に、貴金属粒子が担持されている燃料電池用電極触媒(特許文献3)や、白金粒子の平均粒径が1.9〜2.3nmであり、白金粒子が60〜80wt%であることを特徴とする電極(特許文献4)など、ガス拡散性に着目した電極触媒およびその製造方法が提案されている。しかしながら、本発明のように、反応活性中心である白金の形状をナノサイズで制御してカーボン担体に担持した例はこれまでにない。   In general, there have been many reports on supporting platinum particles on a carrier. For example, as an electrode catalyst and gas diffusion electrode for a fuel cell, a fuel cell electrode catalyst in which noble metal particles are supported on a carbon material mainly composed of non-graphitizable carbon and having a turbulent layer structure in a part of the structure. (Patent Document 3) and electrodes having an average particle diameter of platinum particles of 1.9 to 2.3 nm and platinum particles of 60 to 80 wt% (Patent Document 4) A focused electrode catalyst and a method for producing the same have been proposed. However, as in the present invention, there has never been an example in which the shape of platinum, which is a reaction active center, is controlled on a nanosize and supported on a carbon support.

さらに、触媒層が、触媒金属、炭素粒子および水素イオン伝導性高分子電解質とからなる複次粒子であり、複次粒子の表層部には、内部よりも高濃度で前記触媒金属が含まれていることを特徴とするもの(特許文献5)や触媒粒子としての白金粒子表面上に導電性高分子層と、水溶性高分子保護層とからなる白金ナノパーティクル(特許文献6)などが提案されているが、これらはいずれも、白金の微粒子上に高分子などを取り付けて機能化したものであり、白金そのものの形状を制御しているものではない。   Furthermore, the catalyst layer is a composite particle composed of a catalyst metal, carbon particles, and a hydrogen ion conductive polymer electrolyte, and the surface layer portion of the composite particle contains the catalyst metal at a higher concentration than the inside. Proposed is a platinum nanoparticle comprising a conductive polymer layer and a water-soluble polymer protective layer on a platinum particle surface as a catalyst particle (Patent Document 5), and the like (Patent Document 6). However, all of these are functionalized by attaching a polymer or the like on platinum fine particles, and the shape of platinum itself is not controlled.

上記以外にも、合金粒子が平均的な結晶の大きさ0.5〜2nmを有することを特徴とする、粉末形の電気伝導性担体材料上に微細に分散された合金粒子を含有する白金/ルテニウム合金触媒(特許文献7)や、2つの貴金属が相互に合金されておらずかつ高分散された形で担体材料上に存在しており、この際白金のクリスタリットの大きさは、2nm未満でありかつルテニウムのクリスタリットの大きさは、1nm未満である触媒(特許文献8)などがあるが、合金化あるいは2種類の元素を用いているにすぎず、形状の制御は行なわれていない。   In addition to the above, platinum / containing platinum containing finely dispersed alloy particles on an electrically conductive carrier material in powder form, characterized in that the alloy particles have an average crystal size of 0.5-2 nm Ruthenium alloy catalyst (Patent Document 7) and two noble metals are not alloyed with each other and are present on the support material in a highly dispersed form. In this case, the size of the platinum crystallite is less than 2 nm. The ruthenium crystallite has a size of less than 1 nm (Patent Document 8), but the alloy is formed or only two kinds of elements are used, and the shape is not controlled. .

ガス拡散電極としては、導電性担体に担持させた銀微粒子と希土類酸化物微粒子の複合触媒であって、希土類酸化物微粒子にアルカリ土類金属を固溶させることで、酸素還元活性が高い電極触媒を実現したもの(特許文献9)や、撥水化処理したカーボンシートをオゾン処理してカーボン表面を酸化した後、白金錯体陽イオンを溶存種として含有する溶液中に浸漬してイオン交換し、次いで還元剤により還元することを特徴とするガス拡散電極(特許文献10)などが提案されているが、これらもやはり、活性中心としての貴金属触媒の形状は制御されていない。   The gas diffusion electrode is a composite catalyst of silver fine particles and rare earth oxide fine particles supported on a conductive carrier, and an electrode catalyst having high oxygen reduction activity by dissolving an alkaline earth metal in the rare earth oxide fine particles. (Patent Document 9), and the water-repellent treated carbon sheet is treated with ozone to oxidize the carbon surface, and then immersed in a solution containing a platinum complex cation as a dissolved species to perform ion exchange. Next, a gas diffusion electrode (Patent Document 10), which is characterized by being reduced by a reducing agent, has been proposed, but again, the shape of the noble metal catalyst as an active center is not controlled.

富永博夫ほか1名、化学総説「触媒設計」、日本化学会編、1982年、p.50−63Hiroo Tominaga et al., Chemical Review “Catalyst Design”, edited by The Chemical Society of Japan, 1982, p. 50-63 内田正之ほか2名、触媒、22、310(1977)Masayuki Uchida and two others, catalyst, 22, 310 (1977) 荒井弘通ほか1名、「超微粒子―その化学と機能」、朝倉書店、1993年、p.124−128Hiromichi Arai and one other, “Ultrafine Particles-Its Chemistry and Functions”, Asakura Shoten, 1993, p. 124-128 N. Toshimaほか1名、Bull. Chem. Soc. Jpn., 65, 400 (1992)N. Toshima and others, Bull. Chem. Soc. Jpn. , 65, 400 (1992) A. Fukuokaほか7名、Catalysis Today, 66, 23−31 (2001)A. Fukuoka and 7 others, Catalysis Today, 66, 23-31 (2001) 木島 剛、特開2004−034228Tsuyoshi Kijima, JP2004-034228 木島 剛 ほか1名、特願2004−223809Tsuyoshi Kijima and 1 other, Japanese Patent Application No. 2004-223809 尾崎 純一 ほか2名、特開2005−019332Junichi Ozaki and two others, JP2005-019332 寺田 智明 ほか4名、特開2004−335252Tomoaki Terada and 4 others, JP2004-335252 内田 誠 ほか4名、特開2004−139789Makoto Uchida and 4 others, JP2004-139789 榎本 正、特開2003−282078Masaru Enomoto, JP2003-282078 エマヌエル アウアー ほか3名、特開平11−250918Emmanuel Auer and 3 others, JP 11-250918 エマヌエル アウアー ほか5名、特開平10−334925Emmanuel Auer and 5 others, JP 10-334925 蜂谷 敏徳 ほか1名、特開2004−209468Toshinori Hachiya and 1 other, JP2004-209468 安田 和明 ほか3名、特開平8−162124Kazuaki Yasuda and three others, JP-A 8-162124

以上のように、白金に代表される貴金属およびその合金をカーボン上に担持する従来技術は、還元剤の添加や各種反応の利用によって自己組織的に形成される球状もしくは不定形の超微粒子であり、新規な物性の発現および燃料電池用電極の性能向上のために、白金をナノサイズレベルで形状制御してカーボンに担持させ、これによって従来とは異なる形態、性質を有する新規な白金−カーボン複合体の開発が諸分野から望まれている。   As described above, the conventional technology for supporting a noble metal typified by platinum and an alloy thereof on carbon is spherical or irregular ultrafine particles formed in a self-organized manner by adding a reducing agent or utilizing various reactions. In order to develop new physical properties and improve the performance of fuel cell electrodes, platinum is supported on carbon by controlling its shape at the nano-size level, thereby making it a new platinum-carbon composite having a form and properties different from conventional ones. Development of the body is desired from various fields.

白金触媒は、それ自体汎用性のある触媒であること、各種化学反応に供されていることは周知であり、いちいち列挙する暇がないが、その中でも、近年、注目されている重要な利用分野の一つに燃料電池が挙げられる。燃料電池設計においては、燃料電池用のアノード電極とカソード電極のうち、酸素還元活性が低いことに起因するカソード過電圧の低減が強く望まれている。本発明は、この期待に応えられる形状制御した白金系電極触媒を提供しようと言うものである。   It is well known that platinum catalyst itself is a versatile catalyst and is used in various chemical reactions, and there is no time to list it. One of them is a fuel cell. In the fuel cell design, it is strongly desired to reduce the cathode overvoltage resulting from the low oxygen reduction activity among the anode and cathode electrodes for fuel cells. The present invention is intended to provide a platinum-based electrode catalyst whose shape is controlled to meet this expectation.

そのため、本発明者らにおいては、以上紹介した従来技術を前提技術とし、さらに従来技術とは異なる形態の、形状制御した白金系触媒を開発すべく、本発明者らが先に提案し、特許出願した特許文献2に記載の複合界面活性剤系を基礎とする鋳型合成法をさらに発展させた結果、白金塩を含む特定の反応混合物を調製し、反応混合物に予めカーボン粉末を混合し、還元反応をすることによってカーボン粉末に特定の構造をしたスポンジ状白金ナノシートを析出させることに成功し、これによって新規な形態の白金―カーボン複合体を提供することができることを知見した。本発明は、この知見に基づいてなされたものであり、その構成は以下(1)から(10)に記載の通りである。   Therefore, in the present inventors, the present inventors previously proposed and developed a patent based on the conventional technology introduced above, and further to develop a shape-controlled platinum-based catalyst having a different form from the conventional technology. As a result of further development of the template synthesis method based on the composite surfactant system described in Patent Document 2, the specific reaction mixture containing platinum salt was prepared, and carbon powder was mixed in advance with the reaction mixture, followed by reduction. The present inventors have succeeded in precipitating a sponge-like platinum nanosheet having a specific structure on carbon powder by reacting, and found that it is possible to provide a platinum-carbon composite in a novel form. This invention is made | formed based on this knowledge, The structure is as following (1) to (10).

すなわち、第1の発明は、(1)貴金属元素である白金(Pt)によってその骨格が形成され、かつ直径1.5〜4nmの彎曲したロッド状骨格が3次元的に連結した外径20〜100nmの単結晶および微結晶が連結したシート状を呈し、かつ幅0.3〜2nmのスリット状細孔から成る網状間隙を持つスポンジ状形態を有する白金ナノシートがカーボンに担持してなる、白金−カーボン複合体である。   That is, according to the first aspect of the present invention, (1) an outer diameter 20 to 20 having a skeleton formed of platinum (Pt), a noble metal element, and three-dimensionally connected bent rod-like skeletons having a diameter of 1.5 to 4 nm. Platinum having a sheet shape in which single crystals and fine crystals of 100 nm are connected, and platinum nanosheets having a sponge-like shape having a mesh-like gap composed of slit-shaped pores having a width of 0.3 to 2 nm are supported on carbon Carbon composite.

第2の発明は、前記第1の発明の製造方法を提示するものである。すなわち、(2) ヘキサクロロ白金酸塩等の白金錯化合物よりなる群から選択された一種類の白金錯化合物、ノナエチレングリコールモノヘキサデシルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレン脂肪酸エステル類、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等の有機硫黄酸塩、ヘキサデシルトリメチルアンモニウムブロミド等のアルキルアンモニウム塩、ポリオキシエチレンソルビタンモノステアレート等のポリオキシエチレンソルビタンエステル、ポリオキシエチレンアルキルフェニールエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマーよりなる群から選択された二種類の非イオン性界面活性剤または非イオン性界面活性剤一種とイオン性界面活性剤一種の合わせて二種類の界面活性剤、水、および各種カーボンからなる反応混合物を調製し、次いでこの反応混合物に還元剤水溶液を添加して反応させることにより、貴金属元素である白金(Pt)によってその骨格が形成され、かつ直径1.5〜4nmの彎曲したロッド状骨格が3次元的に連結した外径20〜100nmの単結晶および結晶が連結したシート状であり、かつ幅0.3〜2nmのスリット状細孔から成る網状間隙を持つスポンジ状形態を有する白金ナノシートをカーボンに担持した、白金−カーボン複合体を生成し、これを回収することを特徴とする、白金−カーボン複合体の製造方法である。
第3の発明は、第2の発明の態様発明である。すなわち、
(3) 前記還元剤が水素化ホウ素ナトリウムである、(2)記載の白金−カーボン複合体の製造方法である。
The second invention presents the manufacturing method of the first invention. (2) One kind of platinum complex compound selected from the group consisting of platinum complex compounds such as hexachloroplatinate, polyoxyethylene alkyl ethers such as nonaethylene glycol monohexadecyl ether, polyoxyethylene fatty acid esters , Organic sulfur salts such as sodium dodecyl sulfate and sodium dodecylbenzenesulfonate, alkylammonium salts such as hexadecyltrimethylammonium bromide, polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan monostearate, polyoxyethylene alkyl phenyl ether, Two types of nonionic surfactants selected from the group consisting of polyoxyethylene polyoxypropylene block polymers or a combination of one type of nonionic surfactant and one type of ionic surfactant Then, a reaction mixture composed of two types of surfactant, water, and various carbons is prepared, and then the reaction mixture is added with a reducing agent aqueous solution and reacted, whereby the skeleton is obtained by platinum (Pt) which is a noble metal element. And a single crystal having an outer diameter of 20 to 100 nm in which curved rod-like skeletons having a diameter of 1.5 to 4 nm are connected three-dimensionally and a sheet in which crystals are connected, and having a width of 0.3 to 2 nm. A method for producing a platinum-carbon composite comprising producing a platinum-carbon composite in which platinum nanosheets having a spongy shape having slit-like pores and having a mesh-like gap are supported on carbon, and collecting the composite. It is.
The third invention is an aspect invention of the second invention. That is,
(3) The method for producing a platinum-carbon composite according to (2), wherein the reducing agent is sodium borohydride.

また、以下、第4ないし第10の発明は、第1の発明のスポンジ状白金ナノシート担持カーボンの用途発明を提示しているものである。
すなわち、第4の発明は、
(4) 前記(1)に記載した、スポンジ状白金を担持した白金−カーボン複合体を、その性質に見合った各種用途に使用することを特徴とした白金−カーボン複合体からなる機能性材料を提示するものである。
第5の発明は、
(5) 前記(1)に記載した、スポンジ状白金を担持した白金−カーボン複合体を、 触媒材料として使用することを特徴とした、白金−カーボン複合体からなる触媒を提示するものである。
第6の発明は、
(6) 前記触媒が、特に燃料電池触媒である、(5)記載の白金−カーボン複合体からなる触媒を提示する。
第7の発明は、
(7) 前記(1)に記載した、スポンジ状白金を担持した白金−カーボン複合体を、ガス拡散電極材料として使用することを特徴とした、白金−カーボン複合体からなる電極材料を提示する。
第8の発明は、
(8) 前記ガス拡散電極材料が、特に燃料電池用ガス拡散電極である、(7)記載の白金−カーボン複合体からなる電極材料を提示する。
第9の発明は、
(9) 前記(1)に記載した、スポンジ状白金を担持した白金−カーボン複合体を、マイクロリアクター構成部材として使用することを特徴とした、白金−カーボン複合体からなるマイクロリアクター構成部材を提示する。
第10の発明は、
(10) 前記(1)に記載した、スポンジ状白金を担持した白金−カーボン複合体を、物質貯蔵材料として使用することを特徴とした、白金−カーボン複合体からなる物質貯蔵材料を提示する。
In addition, hereinafter, the fourth to tenth inventions present application inventions of the sponge-like platinum nanosheet-supported carbon of the first invention.
That is, the fourth invention is
(4) A functional material comprising a platinum-carbon composite, characterized in that the platinum-carbon composite supporting sponge-like platinum described in (1) above is used for various purposes in accordance with its properties. It is to be presented.
The fifth invention is:
(5) A catalyst comprising a platinum-carbon composite, characterized in that the platinum-carbon composite supporting sponge-like platinum described in (1) above is used as a catalyst material.
The sixth invention is:
(6) The catalyst which consists of a platinum-carbon composite_body | complex as described in (5) whose said catalyst is a fuel cell catalyst especially is shown.
The seventh invention
(7) An electrode material composed of a platinum-carbon composite, characterized in that the platinum-carbon composite supporting sponge-like platinum described in (1) above is used as a gas diffusion electrode material.
The eighth invention
(8) The electrode material which consists of a platinum-carbon composite_body | complex as described in (7) in which the said gas diffusion electrode material is a gas diffusion electrode for fuel cells especially.
The ninth invention
(9) Presenting a microreactor constituent member comprising a platinum-carbon composite, characterized in that the platinum-carbon composite supporting sponge-like platinum described in (1) is used as a microreactor constituent member. To do.
The tenth invention is
(10) A substance storage material composed of a platinum-carbon composite, characterized in that the platinum-carbon composite carrying sponge-like platinum described in (1) above is used as the material storage material.

本発明は、カーボン上に担持した白金ナノ粒子が前述のような構造になっているため、次のような効果が期待され、奏せられる。
(a) 前記(1)の材料を、燃料電池用のカソードおよびアノード電極材料として用いた場合、スポンジ状白金とカーボンとの接触面積およびスポンジ状白金とガスとの接触面積がともに増大することから、従来に比べて過電圧が大幅に低減でき、特に、酸素還元活性が重要となるカソード電極材料としては、その活性が飛躍的に向上することが期待される。また、従来の技術に比べて、その活性の高さや過電圧の低減の効果などにより、使用白金量の低減が期待される。
(b) 前記(1)の材料を、金属―空気電池の酸素還元電極として用いた場合、スポンジ状白金とカーボンとの接触面積およびスポンジ状白金とガスとの接触面積がともに増大することから、従来に比べて過電圧が大幅に低減される事が期待される。
(c) 前記(1)の材料を、電気分解用の電極材料として用いた場合、従来の材料に比べて電極表面積の大幅な増大により反応効率の上昇をもたらすことが期待される。
In the present invention, since the platinum nanoparticles supported on carbon have the above-described structure, the following effects are expected and achieved.
(A) When the material of (1) is used as a cathode and anode electrode material for a fuel cell, both the contact area between sponge platinum and carbon and the contact area between sponge platinum and gas increase. The overvoltage can be greatly reduced as compared with the conventional case. Particularly, as a cathode electrode material in which the oxygen reduction activity is important, it is expected that the activity is drastically improved. Further, compared to the conventional technique, the amount of platinum used is expected to be reduced due to its high activity and the effect of reducing overvoltage.
(B) When the material of (1) is used as an oxygen reduction electrode of a metal-air battery, both the contact area between sponge platinum and carbon and the contact area between sponge platinum and gas increase. It is expected that the overvoltage will be greatly reduced compared to the conventional case.
(C) When the material of (1) is used as an electrode material for electrolysis, it is expected that the reaction efficiency is increased due to a significant increase in the electrode surface area compared to the conventional material.

この出願の発明は、以上の特徴を持つものであるが、以下、本発明を実施例及び添付した図面に基づき、具体的に説明する。ただし、これらの実施例は、あくまでも本発明の一つの態様を開示するものであり、決して本発明を限定する趣旨ではない。   The invention of this application has the above-described features. Hereinafter, the present invention will be described in detail based on examples and attached drawings. However, these examples merely disclose one aspect of the present invention, and are not intended to limit the present invention.

また、製造方法の骨子は、少なくとも2種類の界面活性剤、金属塩の水溶液およびカーボンとを適切な条件で混合することによって特定構造の鋳型が得られ、この鋳型内で金属塩を還元することによって特定寸法のナノ粒子をカーボン上に誘導するというものであり、鋳型を構築するための最適温度や混合条件も対象とする金属種、用いる界面活性剤の特性、用いるカーボンの特性、および還元剤の種類によって多様に変化する。実施例は、本発明に対して、あくまでもその一態様例を示すものにすぎず、本発明を構成する金属種や製造方法もこの実施例によって限定されるべきではない。   The outline of the manufacturing method is that a template having a specific structure is obtained by mixing at least two kinds of surfactants, an aqueous solution of a metal salt and carbon under appropriate conditions, and the metal salt is reduced in the template. In order to induce nanoparticles of a specific size on the carbon by means of the metal species for which the optimum temperature and mixing conditions for constructing the template are also targeted, the characteristics of the surfactant used, the characteristics of the carbon used, and the reducing agent Varies depending on the type of An Example shows only the example of the aspect with respect to this invention, The metal seed | species and manufacturing method which comprise this invention should not be limited by this Example.

図1〜図4は、以下に記載する本発明の実施例1ないし2で得られた各スポンジ状白金ナノシート担持カーボンの透過形電子顕微鏡による観察写真であり、これによると、本発明の白金組織は、先行文献(特許文献2)と同様の単結晶でスリット状細孔から成る網状間隙を持つスポンジ状構造を呈し、かつ、カーボン上に担持されていることが観察される。すなわち、図1は、実施例1で得られたスポンジ状白金ナノシートを担持してなる白金−カーボン複合体の透過型電子顕微鏡による観察図であり、図2はその拡大図である。中央の灰色を呈したカーボン粒子に対して、白金は黒色を呈して観察され、カーボン粒子状に担持している状態が観察される。図3は、実施例2で得られたスポンジ状白金ナノシートを担持してなる白金−カーボン複合体の透過型電子顕微鏡による観察図であり、図4は、その拡大図である。その白金とカーボンの担持状態は、前記説明と同様の状態を呈していることが確認される。また、図5は、本発明の、実施例1ないし実施例2で得られたスポンジ状白金ナノシート担持カーボンのX線回折図形である。図6は、実施例1ないし実施例2で得られたスポンジ状白金ナノシート担持カーボンの酸素還元特性を示している図(界面活性剤を用いずに調製した、形態を制御していない白金を担持したカーボンの酸素還元活性と比較している)。図6において、実験は、電解質:0.5molHSO、1mv/s、Oバブリング(60ml/min)の条件で行った。 1 to 4 are photographs taken by transmission electron microscope of each sponge-like platinum nanosheet-supported carbon obtained in Examples 1 and 2 of the present invention described below. According to this, according to the platinum structure of the present invention, FIG. Is observed to have a sponge-like structure with a net-like gap composed of slit-like pores, which is the same single crystal as in the prior document (Patent Document 2), and is supported on carbon. That is, FIG. 1 is an observation view of a platinum-carbon composite obtained by carrying the sponge-like platinum nanosheet obtained in Example 1 with a transmission electron microscope, and FIG. 2 is an enlarged view thereof. Platinum is observed as a black color with respect to the carbon particles exhibiting a gray color at the center, and the state of being supported in the form of carbon particles is observed. FIG. 3 is an observation view of a platinum-carbon composite obtained by carrying the sponge-like platinum nanosheet obtained in Example 2 with a transmission electron microscope, and FIG. 4 is an enlarged view thereof. It is confirmed that the platinum and carbon are supported in the same state as described above. FIG. 5 is an X-ray diffraction pattern of the sponge-like platinum nanosheet-supported carbon obtained in Examples 1 and 2 of the present invention. FIG. 6 is a diagram showing the oxygen reduction characteristics of the sponge-like platinum nanosheet-supported carbon obtained in Examples 1 and 2 (supporting platinum that was prepared without using a surfactant and whose form was not controlled) Compared to the oxygen reduction activity of carbon. In FIG. 6, the experiment was performed under the conditions of electrolyte: 0.5 mol H 2 SO 4 , 1 mv / s, O 2 bubbling (60 ml / min).

実施例1:
試験管に秤りとった塩化白金酸(HPtCl)およびその2倍モル量の水酸化ナトリウムを含む水溶液を60℃に昇温し、あらかじめ60℃に昇温したノナエチレングリコールモノデシルエーテル(C12EO)を滴下した。次いで、ポリオキシエチレン(20)ソルビタンモノステアレート(Tween 60;米国 Atlas Powder社 商品名)を加えて60℃の湯浴で15分間振とうした。このときの仕込みモル比は、NaPtCl:C12EO:Tween60:HO=1:1:1:600とした。
ここに、ファーネスブラック(バルカン;XC−72)を、Ptの全体重量比が30wt%となるように加え、さらに60℃の湯浴で15分間振とうし、NaPtCl:C12EO:Tween60:HO = 1:1:1:60のモル比になるまで、水分を蒸発させることにより除去した。
その後、15℃で20分間保持し、カーボン含有液晶前駆体を得た。このようにして得られた前駆体に、白金源の5倍モル量の水素化ホウ素ナトリウムおよび水からなる溶液を加え、そのまま24時間反応させた。その後、60℃で乾燥させ、エタノール洗浄、水洗を経て乾燥させ、黒色粉末を得た。得られた生成物のX線回折パターンは、白金の結晶構造を反映したピークを示しており、得られた生成物が白金を担持したカーボンであることが確認された(図5)。
透過型電子顕微鏡による観察により、カーボン上に担持された白金生成物が、直径1.5〜4nmの彎曲したロッド状骨格が3次元的に連結した外径20〜100nmの単結晶および微結晶が連結したシート状であり、かつ幅0.3〜2nmのスリット状細孔から成る網状間隙を持つスポンジ状形態を有することを確認した(図1、図2参照)。これにより、本発明にかかる多孔性の単結晶構造あるいは微結晶が連結したスポンジ状白金ナノシートが担持されたカーボンが得られたことを確認した。
Example 1:
An aqueous solution containing chloroplatinic acid (H 2 PtCl 6 ) weighed in a test tube and twice its molar amount of sodium hydroxide was heated to 60 ° C., and nonaethylene glycol monodecyl ether heated to 60 ° C. in advance. (C 12 EO 9 ) was added dropwise. Subsequently, polyoxyethylene (20) sorbitan monostearate (Tween 60; trade name of Atlas Powder, USA) was added, and the mixture was shaken in a 60 ° C. water bath for 15 minutes. The charged molar ratio at this time was Na 2 PtCl 6 : C 12 EO 9 : Tween 60: H 2 O = 1: 1: 1: 600.
Furnace black (Vulcan; XC-72) was added thereto so that the total weight ratio of Pt was 30 wt%, and the mixture was further shaken in a 60 ° C. hot water bath for 15 minutes to obtain Na 2 PtCl 6 : C 12 EO 9. The water was removed by evaporation until a molar ratio of: Tween 60: H 2 O = 1: 1: 1: 60.
Then, it hold | maintained at 15 degreeC for 20 minute (s), and obtained the carbon containing liquid crystal precursor. To the precursor thus obtained, a solution consisting of sodium borohydride and water in a 5-fold molar amount of the platinum source was added and allowed to react for 24 hours. Then, it was made to dry at 60 degreeC, it was made to dry through ethanol washing and water washing, and black powder was obtained. The X-ray diffraction pattern of the obtained product showed a peak reflecting the crystal structure of platinum, and it was confirmed that the obtained product was carbon carrying platinum (FIG. 5).
By observation with a transmission electron microscope, the platinum product supported on the carbon has a single crystal and a microcrystal with an outer diameter of 20 to 100 nm in which curved rod-like skeletons with a diameter of 1.5 to 4 nm are three-dimensionally connected. It was confirmed to have a sponge-like form having a net-like gap composed of slit-like pores having a width of 0.3 to 2 nm in a connected sheet form (see FIGS. 1 and 2). As a result, it was confirmed that a carbon carrying a sponge-like platinum nanosheet having a porous single crystal structure or a microcrystal linked according to the present invention was obtained.

実施例2:
実施例1と同様な操作、同一条件で、カーボン含有液晶前駆体を調製した。ついで、15℃に保持したこの前駆体に白金源の10倍モル量の水素化ホウ素ナトリウムおよび水からなる溶液を加え、そのまま24時間反応させた。その後、60℃で乾燥させ、エタノール洗浄、水洗を経て乾燥させ、黒色粉末を得た。
得られた粉末試料は、透過型電子顕微鏡による観察により、実施例1の場合と同様に、直径1.5〜4nmの彎曲したロッド状骨格が3次元的に連結した外径20〜60nmの単結晶および微結晶が連結したシート状であり、かつ幅0.3〜2nmのスリット状細孔から成る網状間隙を持つスポンジ状白金ナノシート担持カーボンであることを確認した(図3、図4参照)。
また、実施例1および2で得られた試料と、界面活性剤を用いずに調製した試料の0.5M硫酸水溶液中での溶存酸素還元特性を調べた結果は、図6に示すように、飛躍的に向上することを確認した。
Example 2:
A carbon-containing liquid crystal precursor was prepared under the same operation and the same conditions as in Example 1. Next, a solution composed of sodium borohydride in an amount 10 times the amount of the platinum source and water was added to this precursor maintained at 15 ° C. and allowed to react for 24 hours. Then, it was made to dry at 60 degreeC, it was made to dry through ethanol washing and water washing, and black powder was obtained.
The obtained powder sample was observed with a transmission electron microscope, and in the same manner as in Example 1, a single rod having an outer diameter of 20 to 60 nm in which bent rod-like skeletons having a diameter of 1.5 to 4 nm were three-dimensionally connected. It was confirmed that the carbon was a sponge-like platinum nanosheet-supported carbon having a net-like gap composed of slit-like pores having a width of 0.3 to 2 nm in a sheet form in which crystals and microcrystals were connected (see FIGS. 3 and 4). .
In addition, as shown in FIG. 6, the results of examining the dissolved oxygen reduction characteristics in the 0.5M sulfuric acid aqueous solution of the sample obtained in Examples 1 and 2 and the sample prepared without using the surfactant are as follows. It was confirmed that it improved dramatically.

本発明は、上述記載で述べたように、燃料電池用電極触媒、燃料電池用ガス拡散電極、金属―空気電池用ガス拡散電極、食塩電解用のガス拡散電極、電気分解用等のガス拡散電極等においてきわめて有意な活性を有し、これによって極めて高価な白金ないし貴金属材料を使用するデバイスにおいて、材料節減効果を有することはもちろん、高レベルの性質、機能を発現するものと期待される。燃料電池、金属―空気電池、食塩電解、等に利用されるガス拡散電極及びその構成材料は、近未来の重要技術に位置づけられており、エネルギーおよび環境の観点からも最重要の技術課題の一つである。本発明の特異な形態、特異な間隙を有しなる白金を担持したカーボン材料の意義は、極めて大である。   As described above, the present invention includes an electrode catalyst for fuel cells, a gas diffusion electrode for fuel cells, a gas diffusion electrode for metal-air cells, a gas diffusion electrode for salt electrolysis, a gas diffusion electrode for electrolysis, etc. Therefore, it is expected that a device using extremely expensive platinum or noble metal material exhibits a high level of properties and functions as well as a material saving effect. Gas diffusion electrodes and their constituent materials used in fuel cells, metal-air batteries, salt electrolysis, etc. are positioned as important technologies in the near future, and are one of the most important technical issues from the viewpoint of energy and environment. One. The significance of the carbon material carrying platinum having a peculiar form of the present invention and a peculiar gap is extremely great.

実施例1で得られたスポンジ状白金ナノシート担持カーボンの透過型電子顕微鏡による観察図。The observation figure by the transmission electron microscope of sponge-like platinum nanosheet carrying | support carbon obtained in Example 1. FIG. 実施例1で得られたスポンジ状白金ナノシート担持カーボンの透過型電子顕微鏡による観察図(図1の拡大図)。The observation figure by the transmission electron microscope of the sponge-like platinum nanosheet carrying | support carbon obtained in Example 1 (enlarged view of FIG. 1). 実施例2で得られたスポンジ状白金ナノシート担持カーボンの透過型電子顕微鏡による観察図。The observation figure by the transmission electron microscope of sponge-like platinum nanosheet carrying | support carbon obtained in Example 2. FIG. 実施例2で得られたスポンジ状白金ナノシート担持カーボンの透過型電子顕微鏡による観察図(図3の拡大図)。The observation figure by the transmission electron microscope of sponge-like platinum nanosheet carrying | support carbon obtained in Example 2 (enlarged view of FIG. 3). 本発明の、実施例1ないし実施例2で得られたスポンジ状白金ナノシート担持カーボンのX線回折図形。The X-ray-diffraction figure of sponge-like platinum nanosheet carrying | support carbon obtained in Example 1 thru | or Example 2 of this invention. 実施例1ないし実施例2で得られたスポンジ状白金ナノシート担持カーボンの酸素還元特性を示す図(界面活性剤を用いずに調製した、形態を制御していない白金を担持したカーボンの酸素還元活性との比較を示す図)。The figure which shows the oxygen reduction characteristic of the sponge-like platinum nanosheet carrying | support carbon obtained in Example 1 thru | or Example 2 (The oxygen reduction activity of the carbon which carried the platinum which was prepared without using surfactant and which did not control the form Figure showing the comparison with).

Claims (10)

貴金属元素である白金(Pt)によってその骨格が形成され、かつ直径1.5〜4nmの彎曲したロッド状骨格が3次元的に連結した外径20〜100nmの単結晶および微結晶が連結したシート状であり、かつ幅0.3〜2nmのスリット状細孔から成る網状間隙を持つスポンジ状形態を有する白金ナノシートをカーボンに担持してなることを特徴とする、白金−カーボン複合体。   A sheet in which a single crystal and a microcrystal having an outer diameter of 20 to 100 nm are connected, in which a skeleton is formed by platinum (Pt) which is a noble metal element and curved rod-like skeletons having a diameter of 1.5 to 4 nm are three-dimensionally connected A platinum-carbon composite comprising a platinum nanosheet having a spongy shape having a mesh-like gap composed of slit-like pores having a width of 0.3 to 2 nm and supported on carbon. ヘキサクロロ白金酸塩等の白金錯化合物よりなる群から選択された一種類の白金錯化合物、ノナエチレングリコールモノヘキサデシルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレン脂肪酸エステル類、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等の有機硫黄酸塩、ヘキサデシルトリメチルアンモニウムブロミド等のアルキルアンモニウム塩、ポリオキシエチレンソルビタンモノステアレート等のポリオキシエチレンソルビタンエステル、ポリオキシエチレンアルキルフェニールエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマーよりなる群から選択された二種類の非イオン性界面活性剤または非イオン性界面活性剤一種とイオン性界面活性剤一種の合わせて二種類の界面活性剤、水、および各種カーボンからなる反応混合物を調製し、次いでこの反応混合物に還元剤水溶液を添加して反応させることにより、貴金属元素である白金(Pt)によってその骨格が形成され、かつ直径1.5〜4nmの彎曲したロッド状骨格が3次元的に連結した外径20〜100nmの単結晶および結晶が連結したシート状であり、かつ幅0.3〜2nmのスリット状細孔から成る網状間隙を持つスポンジ状形態を有する白金ナノシートをカーボンに担持した、白金−カーボン複合体を生成し、これを回収することを特徴とする、白金−カーボン複合体の製造方法。   One kind of platinum complex compound selected from the group consisting of platinum complex compounds such as hexachloroplatinate, polyoxyethylene alkyl ethers such as nonaethylene glycol monohexadecyl ether, polyoxyethylene fatty acid esters, sodium dodecyl sulfate, Organic sulfur salts such as sodium dodecylbenzenesulfonate, alkylammonium salts such as hexadecyltrimethylammonium bromide, polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan monostearate, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxy Two types of nonionic surfactants selected from the group consisting of propylene block polymers or two types of nonionic surfactants combined with one type of ionic surfactants A reaction mixture composed of an activator, water, and various carbons is prepared, and then a reaction is performed by adding an aqueous reducing agent solution to the reaction mixture to form a skeleton with platinum (Pt), which is a noble metal element, and a diameter. A single crystal having an outer diameter of 20 to 100 nm and a crystal connected to each other are formed from slit-like pores having a width of 0.3 to 2 nm. A method for producing a platinum-carbon composite comprising producing a platinum-carbon composite in which platinum nanosheets having a spongy shape having a net-like gap are supported on carbon and collecting the composite. 前記還元剤が水素化ホウ素ナトリウムである、請求項2記載の白金−カーボン複合体の製造方法。   The method for producing a platinum-carbon composite according to claim 2, wherein the reducing agent is sodium borohydride. 請求項1記載のスポンジ状白金をカーボンに担持してなる白金−カーボン複合体を、その性質に見合った各種用途に使用することを特徴とした、白金−カーボン複合体からなる機能性材料。   A functional material comprising a platinum-carbon composite, wherein the platinum-carbon composite obtained by supporting the sponge-like platinum according to claim 1 on carbon is used for various purposes in accordance with the properties thereof. 請求項1記載のスポンジ状白金をカーボンに担持してなる白金−カーボン複合体を、触媒材料として使用することを特徴とした、白金−カーボン複合体からなる触媒。   A catalyst comprising a platinum-carbon composite, wherein the platinum-carbon composite comprising the sponge-like platinum according to claim 1 supported on carbon is used as a catalyst material. 前記触媒が、特に燃料電池用触媒である、請求項5記載の白金−カーボン複合体からなる触媒。   The catalyst comprising a platinum-carbon composite according to claim 5, wherein the catalyst is a fuel cell catalyst. 請求項1記載のスポンジ状白金をカーボンに担持してなる白金−カーボン複合体を、ガス拡散電極材料として使用することを特徴とした、白金−カーボン複合体からなるガス拡散電極材料。   A gas diffusion electrode material comprising a platinum-carbon composite, wherein the platinum-carbon composite comprising the sponge-like platinum according to claim 1 supported on carbon is used as a gas diffusion electrode material. 前記ガス拡散電極材料が、特に燃料電池用ガス拡散電極である、請求項7記載の白金−カーボン複合体からなるガス拡散電極材料。   The gas diffusion electrode material comprising a platinum-carbon composite according to claim 7, wherein the gas diffusion electrode material is a gas diffusion electrode for a fuel cell. 請求項1記載のスポンジ状白金をカーボンに担持してなる白金−カーボン複合体を、マイクロリアクター構成部材として使用することを特徴とした、白金−カーボン複合体からなるマイクロリアクター構成部材。   A microreactor constituent member comprising a platinum-carbon composite, wherein the platinum-carbon composite comprising the sponge-like platinum according to claim 1 supported on carbon is used as the microreactor constituent member. 請求項1記載のスポンジ状白金をカーボンに担持してなる白金−カーボン複合体を、物質貯蔵材料として使用することを特徴とした、白金−カーボン複合体からなる物質貯蔵材料。   A substance storage material comprising a platinum-carbon composite, wherein the platinum-carbon composite formed by supporting sponge-like platinum according to claim 1 on carbon is used as the substance storage material.
JP2005037405A 2005-02-15 2005-02-15 Platinum-carbon composite comprising sponge-like platinum nanosheet supported on carbon and method for producing the same Active JP4934799B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005037405A JP4934799B2 (en) 2005-02-15 2005-02-15 Platinum-carbon composite comprising sponge-like platinum nanosheet supported on carbon and method for producing the same
PCT/JP2006/301924 WO2006087928A1 (en) 2005-02-15 2006-01-31 Platinum-carbon composite having spongy platinum nanosheet carried on carbon and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037405A JP4934799B2 (en) 2005-02-15 2005-02-15 Platinum-carbon composite comprising sponge-like platinum nanosheet supported on carbon and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006228450A true JP2006228450A (en) 2006-08-31
JP4934799B2 JP4934799B2 (en) 2012-05-16

Family

ID=36916337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037405A Active JP4934799B2 (en) 2005-02-15 2005-02-15 Platinum-carbon composite comprising sponge-like platinum nanosheet supported on carbon and method for producing the same

Country Status (2)

Country Link
JP (1) JP4934799B2 (en)
WO (1) WO2006087928A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201602A (en) * 2007-02-16 2008-09-04 Univ Of Miyazaki Carbon carrying platinum-bridged nanowire particles and its manufacturing method
WO2008153113A1 (en) * 2007-06-12 2008-12-18 Canon Kabushiki Kaisha Method of manufacturing membrane electrode assembly, method of manufacturing fuel cell, membrane electrode assembly, and fuel cell
EP2179791A1 (en) * 2007-07-06 2010-04-28 M Technique Co., Ltd. Method for production of metal-supporting carbon, method for production of crystal composed of fullerene molecule and fullerene nanowhisker/nanofiber nanotube, and apparatus for production of fullerene molecule and fullerene nanowhisker/nanofiber nanotube
JP2016525264A (en) * 2013-11-01 2016-08-22 エルジー・ケム・リミテッド Fuel cell and manufacturing method thereof
US9666861B2 (en) 2014-04-25 2017-05-30 South Dakota Board Of Regents High capacity electrodes
US9689080B2 (en) 2014-03-11 2017-06-27 Shinshu University Layered alkali iridate, layered iridic acid, and iridium oxide nanosheet
JP2022513117A (en) * 2018-12-26 2022-02-07 コーロン インダストリーズ インク The catalyst, its manufacturing method, the electrodes containing it, the membrane-electrode assembly containing it, and the fuel cell containing it.
US11824189B2 (en) 2018-01-09 2023-11-21 South Dakota Board Of Regents Layered high capacity electrodes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696277B2 (en) * 2008-09-25 2011-06-08 アイシン精機株式会社 Method for producing platinum nanoparticles
WO2015076375A1 (en) * 2013-11-25 2015-05-28 独立行政法人物質・材料研究機構 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode
CN105880629B (en) * 2016-05-24 2018-08-21 江苏大学 A kind of preparation method of the metal nanoparticles loaded hybrid material of boron carbon nitrogen nanometer sheet
CN114039061B (en) * 2021-10-07 2023-03-14 上饶市广丰时代科技有限公司 Hydrogen fuel power supply vehicle and vehicle-mounted hydrogen fuel cell thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell
JP2003178770A (en) * 2002-12-26 2003-06-27 Sekisui Chem Co Ltd Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same
JP2004034228A (en) * 2002-07-03 2004-02-05 Japan Science & Technology Corp Precious metal nanotube, and method for manufacturing the same
JP2006045582A (en) * 2004-07-30 2006-02-16 Univ Of Miyazaki Spongy nanoparticle composed of platinum or precious metal containing platinum and producing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell
JP2004034228A (en) * 2002-07-03 2004-02-05 Japan Science & Technology Corp Precious metal nanotube, and method for manufacturing the same
JP2003178770A (en) * 2002-12-26 2003-06-27 Sekisui Chem Co Ltd Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same
JP2006045582A (en) * 2004-07-30 2006-02-16 Univ Of Miyazaki Spongy nanoparticle composed of platinum or precious metal containing platinum and producing method therefor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201602A (en) * 2007-02-16 2008-09-04 Univ Of Miyazaki Carbon carrying platinum-bridged nanowire particles and its manufacturing method
WO2008153113A1 (en) * 2007-06-12 2008-12-18 Canon Kabushiki Kaisha Method of manufacturing membrane electrode assembly, method of manufacturing fuel cell, membrane electrode assembly, and fuel cell
US8765323B2 (en) 2007-06-12 2014-07-01 Canon Kabushiki Kaisha Membrane electrode assembly and fuel cell with dendritic shape catalyst layer
EP3284540A1 (en) 2007-07-06 2018-02-21 M. Technique Co., Ltd. Method for producing crystals consisting of fullerene molecules and fullerene nanowhisker/nanofiber nanotubes, and apparatus for producing the same
EP2179791A1 (en) * 2007-07-06 2010-04-28 M Technique Co., Ltd. Method for production of metal-supporting carbon, method for production of crystal composed of fullerene molecule and fullerene nanowhisker/nanofiber nanotube, and apparatus for production of fullerene molecule and fullerene nanowhisker/nanofiber nanotube
EP2179791A4 (en) * 2007-07-06 2013-01-16 M Tech Co Ltd Method for production of metal-supporting carbon, method for production of crystal composed of fullerene molecule and fullerene nanowhisker/nanofiber nanotube, and apparatus for production of fullerene molecule and fullerene nanowhisker/nanofiber nanotube
US8974986B2 (en) 2007-07-06 2015-03-10 M. Technique Co., Ltd. Method for producing metal-supported carbon, method for producing crystals consisting of fullerene molecules and fullerene nanowhisker/nanofiber nanotubes, and apparatus for producing the same
US9917308B2 (en) 2007-07-06 2018-03-13 M. Technique Co., Ltd. Method for producing crystals comprising fullerene molecules and fullerene nanowhisker/nanofiber nanotubes
JP2016525264A (en) * 2013-11-01 2016-08-22 エルジー・ケム・リミテッド Fuel cell and manufacturing method thereof
US9698429B2 (en) 2013-11-01 2017-07-04 Lg Chem, Ltd. Fuel cell and method of manufacturing same
US9689080B2 (en) 2014-03-11 2017-06-27 Shinshu University Layered alkali iridate, layered iridic acid, and iridium oxide nanosheet
US9666861B2 (en) 2014-04-25 2017-05-30 South Dakota Board Of Regents High capacity electrodes
US10950847B2 (en) 2014-04-25 2021-03-16 South Dakota Board Of Regents High capacity electrodes
US11626584B2 (en) 2014-04-25 2023-04-11 South Dakota Board Of Regents High capacity electrodes
US11824189B2 (en) 2018-01-09 2023-11-21 South Dakota Board Of Regents Layered high capacity electrodes
JP2022513117A (en) * 2018-12-26 2022-02-07 コーロン インダストリーズ インク The catalyst, its manufacturing method, the electrodes containing it, the membrane-electrode assembly containing it, and the fuel cell containing it.
US11837735B2 (en) 2018-12-26 2023-12-05 Kolon Industries, Inc. Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
JP7402231B2 (en) 2018-12-26 2023-12-20 コーロン インダストリーズ インク Catalyst, method for producing the same, electrode including the same, membrane-electrode assembly including the same, and fuel cell including the same

Also Published As

Publication number Publication date
JP4934799B2 (en) 2012-05-16
WO2006087928A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4934799B2 (en) Platinum-carbon composite comprising sponge-like platinum nanosheet supported on carbon and method for producing the same
Zhong et al. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction
Hong et al. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity
CN105431230B (en) Method for forming noble metal nanoparticles on a support
Long et al. The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells
KR101349068B1 (en) Method for manufacturing core-shell type surpported catalysts for fuel cell
Douk et al. One-pot synthesis of ultrasmall PtAg nanoparticles decorated on graphene as a high-performance catalyst toward methanol oxidation
Peng et al. PdAg alloy nanotubes with porous walls for enhanced electrocatalytic activity towards ethanol electrooxidation in alkaline media
Li et al. Promotional effects of trace Bi on its highly catalytic activity for methanol oxidation of hollow Pt/graphene catalyst
Jukk et al. PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media
CN108550871B (en) Manganese dioxide/carbon black composite material and preparation method and application thereof
JP6116000B2 (en) Method for producing platinum core-shell catalyst and fuel cell using the same
JP5087277B2 (en) Catalyst for fuel cell oxygen electrode
JP2007123195A (en) Method of manufacturing catalyst
Yang et al. TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction
Hanifah et al. Advanced ternary RGO/bimetallic Pt-Pd alloy/CeO2 nanocomposite electrocatalyst by one-step hydrothermal-assisted formic acid reduction reaction for methanol electrooxidation
JP5569396B2 (en) Catalyst production method
Neto et al. Preparation and characterization of active and cost-effective nickel/platinum electrocatalysts for hydrogen evolution electrocatalysis
Yang et al. Au@ PdAg core–shell nanotubes as advanced electrocatalysts for methanol electrooxidation in alkaline media
Hong et al. Ultrasound assisted synthesis of carbon supported Pd nanoparticles toward ethanol electrooxidation
Gong et al. Platinum–copper alloy nanocrystals supported on reduced graphene oxide: One-pot synthesis and electrocatalytic applications
Luo et al. Shape-controlled synthesis of Pd nanotetrahedrons with Pt-doped surfaces for highly efficient electrocatalytic oxygen reduction and formic acid oxidation
He et al. PdAg Bimetallic Nanoparticles Encapsulated in Porous Carbon Derived from UIO-66 as Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions
CN112705193B (en) Porous carbon self-reduction preparation method of porous carbon loaded small-size noble metal nanoparticle composite material
Tai et al. Galvanic replacement-mediated synthesis of Pd–Cu alloy nanospheres as electrocatalysts for formic acid oxidation

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150