JPS5959921A - Manufacture of carbon fiber in vapor phase - Google Patents

Manufacture of carbon fiber in vapor phase

Info

Publication number
JPS5959921A
JPS5959921A JP17020782A JP17020782A JPS5959921A JP S5959921 A JPS5959921 A JP S5959921A JP 17020782 A JP17020782 A JP 17020782A JP 17020782 A JP17020782 A JP 17020782A JP S5959921 A JPS5959921 A JP S5959921A
Authority
JP
Japan
Prior art keywords
reaction tube
temperature
catalyst
ultrafine
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17020782A
Other languages
Japanese (ja)
Other versions
JPS6247968B2 (en
Inventor
Kiyomi Ouchi
清美 大内
Masatoshi Ito
正俊 伊藤
Mamoru Tanifuji
谷藤 守
Masatomo Shigeta
重田 昌友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP17020782A priority Critical patent/JPS5959921A/en
Publication of JPS5959921A publication Critical patent/JPS5959921A/en
Publication of JPS6247968B2 publication Critical patent/JPS6247968B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon fibers by a vapor-phase process having high fiber generation density, in high reproducibility, by grinding ultrafine metallic catalyst together with a dispersing liquid medium, dispersing the catalyst on a heat- resistant substrate, heating and oxidizing in a reaction tube in air, and treating with hydrocarbon vapor and hydrogen in the reaction tube. CONSTITUTION:An ultrafine metallic catalyst is ground together with a dispersing liquid medium, and dispersed on a heat-resistant substrate 5. The substrate is heated and oxidized in the reaction tube 7 in air. As an alternative process, the ultrafine metallic catalyst is directly heated and oxidized in air, ground together with a liquid dispersing medium, and dispersed on the substrate 5. Vapor of a hydrocarbon (e.g. benzene) is supplied from the vessel 2 and introduced into the reaction tube 7 together with hydrogen supplied from the hydrogen inlet 12, and made to react with hydrogen to obtain the objective carbon fibers in vapor-phase with high fiber-generation density. The thermal oxidation of the ultrafine metallic powder is carried out preferably >=150 deg.C, especially 300-600 deg.C for 30min.

Description

【発明の詳細な説明】 本発明は、気相法による炭素繊維の製造法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing carbon fiber by a vapor phase method.

気相法による炭素繊維の製造方法については、いろいろ
な研究者によって研究がなされている。
Various researchers are conducting research on methods for producing carbon fiber using the vapor phase method.

例えばIt間公昭41−12091、l庁開昭52−1
.03528、特公昭53−7538などでは、炭化水
素を微粉末金)rM /I′’p、tt’J、の存在下
に気相で炭素繊維を生成さ−ける方法が例示されてい石
。特に最近、学術振興会第8回年余(昭和56年)、特
開昭57−117622、工条材料、第30巻、第7号
、第109〜115頁などで、平均粒径500A以下の
超微粉粒金屑(鉄、鉄−ニッケル合金など)基板にスプ
レーして繊維化成核の5eed ing(種まき)を行
ない、この基板を1000℃ 付近に保持し炭化水素(
はンゼンなど)と水素の混合ガスを導入することによっ
て基板上に多量の炭素fl維を生成させる超微粒金属S
eedlng法が発表された。
For example, it was published in 1977, 12091;
.. No. 03528, Japanese Patent Publication No. 53-7538, etc., exemplify a method of producing carbon fibers from hydrocarbons in the gas phase in the presence of finely powdered gold (rM/I''p, tt'J). Particularly recently, in the 8th Annual Meeting of the Japan Society for the Promotion of Science (1980), JP-A-57-117622, Tools and Materials, Vol. 30, No. 7, pp. 109-115, Ultrafine gold powder particles (iron, iron-nickel alloy, etc.) are sprayed onto a substrate to perform 5-seeding of fiber formation nuclei, and the substrate is held at around 1000°C to form hydrocarbons (seeding).
Ultrafine metal S that generates a large amount of carbon fl fibers on the substrate by introducing a mixed gas of hydrogen (e.g.) and hydrogen.
The eedlng method was announced.

本発明者等は3eeding及び生成条件に関し鋭意研
究の結果、従来の方法に更に金属超微粒触媒の摩砕分散
および加熱酸化ならびに反応開始時の急速昇温降温の手
段を加えることが再現性良く炭素繊維の生成とその発生
密度を高めるものであることを知り、本発明に到った。
As a result of intensive research into 3eeding and production conditions, the present inventors found that it is possible to improve reproducibility by adding means of grinding and dispersing ultrafine metal catalysts, heating oxidation, and rapid temperature rise and fall at the start of the reaction to the conventional method. The present invention was developed based on the knowledge that fiber production and its density can be increased.

さらに本発明者らは炭素繊維の製造においては、繊維の
太さ、長さおよび発生密度が問題となるが、5eed 
ing法における繊維の成長過程の考fから、一般に繊
維の太さについては炭素種からの炭素核発生とその成長
条件が効率良く選ばれれば、それに引き続き炭化水素の
濃度を増加させるか、また+J、反35 ft、λ度を
−ヒげるか、または滞留時間を延ばすかなどによって容
易に達成できるものでちる以上、炭素核発生とその成長
条件をいかに選ぶかが炭素繊維製造の基本であると考え
、素繊維の発生密度を高めることを目的として本発明に
到ったものである。
Furthermore, in the production of carbon fibers, the thickness, length, and generation density of the fibers are issues, but the present inventors found that 5eed
Considering the fiber growth process in the ing method, it is generally known that the thickness of the fiber can be determined by increasing the concentration of hydrocarbons, or by increasing the concentration of hydrocarbons if the conditions for the generation of carbon nuclei from carbon species and their growth are selected efficiently. , 35 ft, λ degrees, or by extending the residence time, the basis of carbon fiber production is how to select carbon nucleus generation and growth conditions. With this in mind, the present invention was developed with the aim of increasing the density of elementary fibers.

超微粒金属Seedingによる気相法で炭素繊維を生
成させるには、既に知られているように、電気炉などを
用いて所定の温度に加熱された耐熱性反応管に炭化水素
蒸気をキャリアガスで希釈して導き、高純度アルコール
などの分散媒にけん濁してスプし・−などの方法で平均
粒径500八以下の金か1超微粒子を分11(させた耐
熱性基材」二に炭素繊維を生成させている。ここで反応
管は通常アルミナ3′t、石英等、加熱温度は800〜
1300℃、炭化水−、j七トしてけベンピン、トルエ
ン、メタン、エタン、ゾロ、!ン、スレン、エチレン、
フロピレン、シクロへキリンなど飽オ(1あるいは不飽
′811の脂肪族、芳香族あるいはアンスラセン、フェ
ナンスレン、クリセン、フルオランスレン、ピレンなど
の2項以上の縮合多項構造を有する炭化水素が使用可能
であり、これらの混合物や揮発油ちるいは灯油なども使
用可能である。
In order to generate carbon fiber by the vapor phase method using ultrafine metal seeding, as is already known, hydrocarbon vapor is heated with a carrier gas in a heat-resistant reaction tube heated to a predetermined temperature using an electric furnace or the like. Ultrafine gold particles with an average particle size of 5008 or less are mixed with carbon into a heat-resistant base material by diluting, suspending in a dispersion medium such as high-purity alcohol, and spraying. Fibers are generated.The reaction tube is usually made of alumina 3't, quartz, etc., and the heating temperature is 800~800℃.
1300°C, hydrocarbon water, j7, bempine, toluene, methane, ethane, zoro,! Thread, ethylene,
It is possible to use saturated (1 or unsaturated '811) aliphatic, aromatic, or hydrocarbons having a condensed polynomial structure of two or more terms such as anthracene, phenanthrene, chrysene, fluoranthrene, and pyrene, such as fluoropyrene and cyclohekiline. A mixture of these, volatile oil, kerosene, etc. can also be used.

キャリアガスとしては水素、窒素、アルザンなどの炭素
に対して非酸化性の不活性ガス単独、又は水蒸気、炭酸
ガスなどの800℃で炭素に対して酸化性または反応性
を示す活性ガスを少量添加しても用いられ、また反応管
内に置かれる耐熱性基板には黒鉛、石英、またはアルミ
ナ質のものが知られている。炭素核生成用金6としては
Fe 、 Co。
As a carrier gas, add a small amount of an inert gas that is non-oxidizing to carbon, such as hydrogen, nitrogen, or alzan, or an active gas that is oxidizing or reactive to carbon at 800°C, such as water vapor or carbon dioxide. Graphite, quartz, or alumina are known as heat-resistant substrates placed in the reaction tube. Examples of gold 6 for carbon nucleus generation include Fe and Co.

Ni  などの周期律表の第v■族、V 、 Nb等の
第vb族の元素またはその炭化物、酸化物などの化合物
が用いられる。とれらの金属の超微粒子は、たとえば金
属をヘリウムあるいはアルゴンなどの雰囲気下で加熱し
て蒸発させ、これを煤状に凝縮する方法(ガス中蒸発法
)によって得られる。
Elements of Group V of the Periodic Table such as Ni, Group VB such as V and Nb, or compounds thereof such as carbides and oxides are used. Ultrafine particles of these metals can be obtained, for example, by heating the metal in an atmosphere of helium or argon, vaporizing it, and condensing it into soot (evaporation in gas method).

これら1旧()ス金絨ハ微i;) +−j、イモ面が緻
密な酸化皮膜で)°1われCいるのが通常であり、水ま
たはエチルアルコールに入れて振?!IITN、拌して
も11とんどが凝集1iとなって沈降し、極めて凝集し
やすいもの′Cある。
These 1 old () gold carpets are fine i;) +-j, the potato surface is usually covered with a dense oxide film), and it is normal to shake it in water or ethyl alcohol. ! Even when IITN is stirred, most of the 11 particles settle as agglomerates 1i, and there are some that are extremely susceptible to agglomeration.

Sep、dtng法による気相成長炭素繊維の生成機構
tJ1、たとえば鉄超微粒子触媒を用いた場合、酸化鉄
の31゛足元で生成された微小鉄粒子が液滴状で基板表
面に存在(〜、との液滴表面に炭素種(多環芳香族的物
質)が供給され、この炭素種が表面拡散をへなから縮合
過程を進めて炭素固体に変化して行き、基板−液滴状粒
子の界面部で垂直方向に炭素層面が形成され、やがて粒
子は押し上げられて繊維が成長するものとされている。
The generation mechanism of vapor-grown carbon fiber by the Sep, dtng method tJ1, for example, when an iron ultrafine particle catalyst is used, minute iron particles generated at the foot of iron oxide exist in the form of droplets on the substrate surface (~, Carbon species (polycyclic aromatic substances) are supplied to the surface of the droplet, and this carbon species progresses through the condensation process through surface diffusion and transforms into a carbon solid, forming a bond between the substrate and the droplet-like particles. It is believed that a carbon layer surface is formed in the vertical direction at the interface, and eventually the particles are pushed up and fibers grow.

この反応過程は液滴表面のみでなされ、中空チューブが
形成されることが、生成した炭素繊維の透過型電子顕微
鏡による観察で認められている。繊維の形成は、液滴表
面における炭素11iの拡散が上記の炭素種の縮合度や
液滴表面への炭素91i給速度を制限することになるの
で、炭素種の種類(C/H比など)や触媒粒子径は勿論
、雰囲気の温度や炭化水素分圧によって敏感に影響され
る。従って金属触媒粒子の5eed ingを効果的に
行ない生成子件をコントロールすれば、繊維の発生密度
やその太さ、長さあるいはその均質性の制御を極めて簡
+15.なプロセスでかつ1栗的な規418で実施可能
としている。ここで効果的な5eed lngとは、例
えば鉄の場合、粒子径が300A以下で基板上への粒子
の分散についてはアルコールなどの拝見性の分散媒にけ
ん濁させてスプレーなどにより散布、乾燥して基板上に
孤立した状態で分散させ、極めてわずかの町でよい。
This reaction process occurs only on the surface of the droplet, and it has been confirmed by observation of the produced carbon fibers using a transmission electron microscope that a hollow tube is formed. The formation of fibers depends on the type of carbon species (C/H ratio, etc.) because the diffusion of carbon 11i on the droplet surface limits the degree of condensation of the above carbon species and the rate of carbon 91i supply to the droplet surface. It is of course sensitively influenced by the temperature and hydrocarbon partial pressure of the atmosphere as well as the catalyst particle size. Therefore, if the 5eeding of metal catalyst particles is performed effectively and the production conditions are controlled, it is extremely easy to control the density of fiber generation, its thickness, length, and its homogeneity.+15. It is possible to implement the process through a simple process and with a single standard 418. Effective 5eed lng here is, for example, in the case of iron, the particle size is 300A or less, and when dispersing the particles on the substrate, it is suspended in a visible dispersion medium such as alcohol, sprayed, etc., and dried. They can be isolated and dispersed on the substrate, requiring only a very small amount of space.

キャリアガスとして水素を用いる場合は、触媒は還元さ
れて金属元素として作用するものである。
When hydrogen is used as a carrier gas, the catalyst is reduced and acts as a metal element.

Seedingからの核生成後の炭素繊維の形成は、先
づ長さ方向の成長が行われ(素繊維の成長過程)、続い
て太さ方向の成長(太さ成長過程)が別々にノ1qる(
特開昭57−117622  第140頁下段左欄t1
)4節)とされている。
In the formation of carbon fibers after nucleation from seeding, growth in the length direction (elementary fiber growth process) is first performed, followed by growth in the thickness direction (thickness growth process). (
JP-A-57-117622, page 140, bottom left column t1
) Section 4).

累ねt ttl:の成長過程でV」1、太さ成長過程よ
りも炭化水軍蒸気濃度および加熱温度を低くし、反応管
断面平均流速を速くすることができるとし、キャリアガ
ス中の水素濃度あるいは反応時間などについても好1.
.い1・゛を囲についての記載がなされている。
It is assumed that in the growth process of V''1, the hydrocarbon vapor concentration and heating temperature can be made lower than in the thickness growth process, and the average flow velocity in the cross section of the reaction tube can be made faster, and the hydrogen concentration in the carrier gas or Good for reaction time etc. 1.
.. 1. There is a description of the box.

1、か1〜ながら、これら従来の方法に従って行ったが
、繊維の生成とその発生密度は不充分であった。本発す
11者らV、1、再現性のよい繊維の生成とその発生密
度を高めるだめの方法について検討1〜だところ、触媒
でを)る金kjs jlYi微粒子の分散状態およびそ
の表面状態に犬きく影響されることを知り、全身、iS
 Ail微粒子を予め摩砕処理することおよび空気雰囲
気下に加熱処理することが極めて効果的であることを見
出い旨水あるいはエチルアルコールを分11(媒と1.
−C市販の鉄超微粉(3I′−均粒径100A1、C焔
)台金((1)製)0.3重Hlチとなるように混合し
たものについて措潰及び超音波による振動攪拌を別個に
したが、後に述べるようにf、R#Fltの生成婁験に
よれば超音波分散では不十分で、500Aのような超微
粉の凝集を解離させるためには、直接微粒子自体に捕潰
作用を及tτすボールミルのような摩砕粉砕方式が有効
であることが判った。
Although these conventional methods were followed, the production of fibers and their density were insufficient. The 11 parties involved in this project have investigated methods for producing fibers with good reproducibility and increasing the density of the fibers produced.However, we have investigated the dispersion state of gold kjs jlYi fine particles and their surface state when using a catalyst. Knowing that your hearing will be greatly affected, your whole body, iS
We found that it is extremely effective to pre-mill the Ail particles and to heat them in an air atmosphere.
-C commercially available ultrafine iron powder (3I'-average particle size 100A1, C flame) base metal (made by (1)) was mixed to 0.3 weight Hl and crushed and stirred by ultrasonic vibration. However, as described later, ultrasonic dispersion is insufficient for the formation of f, R#Flt, and in order to dissociate the agglomeration of ultrafine powder such as 500A, it is necessary to directly trap it in the fine particles themselves. It has been found that a grinding method such as a ball mill that exerts an effect of tτ is effective.

本発明実施例では摩砕装置とt、−rボールミルな用い
たが、」二記の目的に適する装置としては超微粉体の粉
砕用として一般に用いられるグーユーブミル、振1j+
d!−ルiル、コニカルボールミルの他、措潰機も用い
ることができる。
In the embodiments of the present invention, a trituration device and a t-r ball mill were used, but as a device suitable for the purpose mentioned above, a gouyube mill and a shaker 1j+, which are generally used for grinding ultrafine powder, are used.
d! - In addition to a ball mill and a conical ball mill, a crusher can also be used.

しかし、分散の良いけん濁液の5eed ingによっ
ても繊維の生成密度がまばらになり、長さも短かいもの
しか得られず不十分である。その原因は、鏡検によると
鉄超微粉が焼結を起こしておシ、生成する繊維も成長初
期から太くなっており、3eed ing液の調製時に
触媒粒子の分散を良くしても、炉内での昇温の途中に焼
結を起こすために生成の状態が悪くなるものとみられる
However, even with 5eeding of a well-dispersed suspension, the density of fibers produced becomes sparse and only short fibers can be obtained, which is insufficient. The reason for this is that the ultrafine iron powder undergoes sintering, and the resulting fibers also become thick from the early stage of growth. It is thought that the formation condition deteriorates due to sintering occurring during the temperature rise.

さらに金属超微粉触媒の表面には3〜4原子層の緻密な
酸化皮膜(鉄超微粉の場合1i”e、0.)がその製造
過程で形成されるとしておシ、この表面構造が前記の粒
子の焼結に影響を及はすと考えられる。不発リリ者ら(
」、粒子表面の改質を目的と1−で、i?ξI゛11微
粉を空気雰囲気での低温酸化により粗侃な結晶4:)り
造を示゛JI7″0,0.を粒子表面に形成させた。
Furthermore, it is assumed that a dense oxide film of 3 to 4 atomic layers (1i"e, 0. in the case of ultrafine iron powder) is formed on the surface of the ultrafine metal catalyst during its manufacturing process, and this surface structure is similar to the one described above. It is thought that it affects the sintering of particles.
”, 1- for the purpose of modifying the particle surface, i? The ξI゛11 fine powder was oxidized at a low temperature in an air atmosphere to form a coarse crystalline structure (JI7''0,0.) on the particle surface.

市、子’1lri8::kf3.により、低温酸化直後
および反応温度まで封泥後の状態を観、察1.だところ
、粒子の分散が1く粒子同志の焼結も抑えられているこ
とが判った。更に低温酸化処理を(−た上で炭素繊維の
生成実験を行なったところ、繊維の発生密度は一段と増
加1.生成針も増加した。
city, child'1lri8::kf3. The conditions immediately after low-temperature oxidation and after sealing up to the reaction temperature were observed and observed using 1. However, it was found that particle dispersion was uniform and sintering of particles among themselves was suppressed. Furthermore, when a carbon fiber production experiment was conducted after low-temperature oxidation treatment, the density of the fibers was further increased.1.The number of needles produced also increased.

なお上述の説明は鉄について述べたが、本発明に用いる
ことのできる周知の金属に対して、金属超微粉の低温酸
化の効果は、基板上に散布された金楓超微軽子のバルク
層の表面にある粒子表面が金属に固着しない粗惺な金円
酸化物のスケール、あるいは結晶粒間の酸化による金属
の脆化が起こり、好ましい単−球モデルに近い孤立1〜
だ金属触媒粒子の分散状態を与えるものと考えられる。
Although the above explanation refers to iron, the effect of low-temperature oxidation of ultrafine metal powder on well-known metals that can be used in the present invention can be seen in the bulk layer of ultrafine particles of gold maple dispersed on a substrate. The particle surface on the surface of the metal is a rough gold circle oxide scale that does not stick to the metal, or the metal becomes embrittled due to oxidation between crystal grains, and the isolated 1 ~
This is thought to provide a dispersed state of the metal catalyst particles.

低温酸化温度は150℃近辺から酸化が起こり、400
℃、600℃、8oo℃と温度を上げる程、触媒粒子の
焼結が進み、生成密度も低くなるが、生成密度が低下し
ない最適の酸化条件は300℃〜600℃、30分であ
る。
Oxidation occurs at a low temperature of around 150°C, and 400°C.
As the temperature is increased to 600°C, 800°C, the sintering of the catalyst particles progresses and the density of the product decreases, but the optimum oxidation conditions that do not reduce the density of the catalyst are 300°C to 600°C for 30 minutes.

金属超微粉の摩砕分散と低温酸化処理の操作順序は、後
に示す実施例2と実施例3の結果から、摩砕分散後基板
上で酸化処理゛ノーる方が顕著な効果を示すことが判っ
た。摩砕前に加熱酸化すると、凝集している超微粒子同
志の焼結が起こシやすく、その後の摩砕分散では十分に
分散できないと考えられる。一方摩砕して基板上に分散
1−だ後、加熱酸化した場合は超微粒子同志の焼結が起
こりにくいと考えられる。
As for the order of operations for grinding and dispersing ultrafine metal powder and low-temperature oxidation treatment, from the results of Examples 2 and 3 shown later, it was found that performing oxidation treatment on the substrate after grinding and dispersion showed a more pronounced effect. understood. If heated and oxidized before grinding, the aggregated ultrafine particles tend to sinter, and it is thought that the subsequent grinding and dispersion will not be able to sufficiently disperse them. On the other hand, if the ultrafine particles are ground and dispersed on a substrate and then heated and oxidized, sintering of the ultrafine particles together is considered to be less likely to occur.

低温酸化処理と併tて金門結晶粒界への黒鉛質の析出、
いわゆる炭素核生成を促進する目的で反応管内温度を所
定の反応温度まで上げ、炭化水素蒸気を導入すると同時
に所定の反応温度よりも30〜100℃、100分程の
短時間で上列させ所定の反応温度まで温度が一ヒ昇1.
たところで直ちに元の反応温度まで5分程度でもどす処
理をI−だところ、炭素繊維の生成密度を大きくする効
果のあるところを見出した。急速封泥の温度は多くの実
験の結果、30℃未満では効果がなく、100℃よりも
高く1〜ても効果が飽和!−で不経済であることが判っ
た。
Along with low-temperature oxidation treatment, precipitation of graphite at Kinmen grain boundaries,
For the purpose of promoting so-called carbon nucleation, the temperature inside the reaction tube is raised to a predetermined reaction temperature, and at the same time, hydrocarbon vapor is introduced and the temperature is raised to 30 to 100°C for a short time of about 100 minutes above the predetermined reaction temperature. 1. The temperature rises to the reaction temperature.
However, it has been found that the process of immediately returning the reaction temperature to the original reaction temperature for about 5 minutes is effective in increasing the density of carbon fibers produced. As a result of many experiments, rapid sludging has no effect at temperatures below 30℃, and even at temperatures higher than 100℃, the effect is saturated! − It was found to be uneconomical.

以F、実施例を挙げて本発明の詳細な説明するが、本発
明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

実施例 1 第1図に示す温度調節のできる加熱部長さ400闘のシ
リコンカー・々イト系(商品名シリコニット)加熱体を
有する電気炉6.8.9.10に長さ100(11−外
径5o鰭、内径42iiのアルミナ製反応管7を設置1
〜、その中に反応管より細い長さ300非、外径37闘
、内径3o朋のアルミナ管を縦に半割りにした基板5に
触媒をseeding IA上下に位置するように夫々
の半割り基板を庁ゎせて反応管中央部に挿入した装置を
用いて、本発明実施例 先づ、平均粒径100λの鉄超微粉< ir’、空冶金
((1)製)を0.3重Nチの濃度で高純度エチルアル
コール 200m/中に混合し、磁器製ボールミル粉砕
機(シェル外径98絹、シェル内径84關、長す90闘
、内部充填磁製ボール:径20sn25箇および径15
111125箇、ボール総垂貸587g)を]、 00
 r、p、rn、で回転させ24時I′l11摩砕(〜
で、鉄超微粒子がエチルアルコール中に分散けん濁1〜
だスプレー用触媒分散液をVI4製1〜た。
Example 1 An electric furnace 6.8.9.10 having a silicon carbide-based (trade name: Siliconite) heating body with a heating section length of 400 mm and a temperature controllable heating body as shown in FIG. Install an alumina reaction tube 7 with a diameter of 5o and an inner diameter of 42ii.
~, seeding the catalyst on the substrate 5, which is a vertically halved alumina tube with a length of 30 mm, outer diameter of 37 mm, and inner diameter of 3 mm, which is thinner than the reaction tube. Using a device inserted into the center of the reaction tube with Mix in 200 m/m of high purity ethyl alcohol at a concentration of
111,125 pieces, total ball rental 587g)], 00
Rotate with r, p, rn, and grind at 24 hours I'l11 (~
Then, ultrafine iron particles are dispersed in ethyl alcohol.
A catalyst dispersion liquid for spraying was prepared from VI4.

これを半割シにした上記基板5内壁に0.5 ml均−
にスプレー1−1反応器7内に夫々触媒分散液をスプレ
ーした2筒の半割シ基板を上下に合わせて管状に組立て
て反応管中央部に装入した。続いて空気を3 (10c
c7/ minで反応管の1端から他端に向けて流通さ
せながら反応管内温度が400℃になるまで加熱し、そ
の温度で30分間保持17た(加熱酸化)。引き続いて
、空気を窒素ガスに切り換えて反応管内温度を900°
0まで上昇させた。
Spread 0.5 ml of this on the inner wall of the substrate 5 cut in half.
Spray 1-1 Inside the reactor 7, two half cylinders of substrates, each sprayed with a catalyst dispersion liquid, were assembled vertically into a tubular shape and charged into the center of the reaction tube. Then add 3 (10c) of air
While flowing from one end of the reaction tube to the other at a rate of c7/min, the reaction tube was heated until the temperature inside the reaction tube reached 400° C., and held at that temperature for 30 minutes (heat oxidation). Subsequently, the air was switched to nitrogen gas and the temperature inside the reaction tube was raised to 900°.
Raised it to 0.

とこで窒素ガスを水素ガスに切9換えて70CC/ml
nとし、反応管内温度全1000″Cまで昇温17た。
Then, change the nitrogen gas to hydrogen gas to 70CC/ml.
n, and the temperature was raised 17 to a total temperature of 1000''C inside the reaction tube.

ここでペン、−ン蒸気がx、2’8JH!になるように
、原旧ベンビン容器2内のはンゼン温度を恒温r;13
の温度し1M節により5.5℃にに1(:持しながら、
水素ガスをキーヤリアガスとしC反応管に導入し反応を
開始1〜lLo水素ガスはベンーVン容器2内には1 
!3 cc / +nin  、 −4イノ9スジイン
には51 cc / minイ、流して、反応管に入る
前でベンゼン濃度が1.2容1′1俤になるように1−
だ。
Here's the pen, -n steam x, 2'8JH! The temperature inside the old benbin container 2 is kept at a constant temperature r;13 so that
Temperature: 1M to 5.5℃ (while holding)
Hydrogen gas is used as a key gas and introduced into C reaction tube to start the reaction.
! 3 cc/+nin, -4 Ino9sudiyne was flowed at 51 cc/min, and the benzene concentration was 1.2 volume 1'1 volume before entering the reaction tube.
is.

反応開始後、この1. (l OOoCの温度ど12容
11tチのベンゼン濃度で30分間保持1−た(素繊奢
fFの成長過程)。次に水素のノ々イ、Qスラインへの
流通を止め、4水素は全ロベンゼン容器内を流通するよ
うにし゛C1反応管内+l!度を1100℃まで上げる
とともにベンゼン濃度を7,5簀玲″%(4ンゼン容器
内ベンゼン温度15”C)まで30分をかけて増加さぜ
、続いてこの状態を1時間保持した(繊維の太さ成長過
程)。続いて電気炉の電源を遮断I7、水素ガスとベン
12ン蒸気との混合ガスをW1温の窒素ガスに切シ換え
て基板を冷却1.た。
After starting the reaction, 1. (The temperature of lOOoC was maintained at a benzene concentration of 12 volumes and 11 tons for 30 minutes. The temperature inside the C1 reaction tube was raised to 1,100°C, and the benzene concentration was increased to 7.5% (benzene temperature in the container: 15"C) over 30 minutes. Then, this state was maintained for 1 hour (fiber thickness growth process).Next, the power to the electric furnace was shut off at I7, and the mixed gas of hydrogen gas and Ben-12 vapor was changed to nitrogen gas at W1 temperature. Then, the substrate was cooled 1.

以上の操作により繊維長約50鴎、最大Jそさ約100
闘で繊維径約1011n+の炭Zffl?、維が(1,
46g得られた。この時の供給全ベンゼン量に対する炭
素繊維の収率は、スR量基準C28チであった。
With the above operations, the fiber length is approximately 50, and the maximum J length is approximately 100.
Charcoal Zffl with a fiber diameter of about 1011n+? , wei (1,
46g was obtained. The yield of carbon fibers based on the total amount of benzene supplied at this time was C28 based on the amount of soot.

基板円周5闘長さあたシ基板の長手方向に集束17てい
る炭素繊維の全本数(発生密度)+J、1304本であ
った。
The total number of carbon fibers (occurrence density) + J, which are concentrated in the longitudinal direction of the substrate, was 1304.

(′団(発生′1・;τ度tZ)iIllI定(」本発
明全体を通1.て次の方Yノミによった。
('Group (occurrence'1 .; τ degree tZ) iIllIdetermined (') Throughout the present invention, the following method was used.

反応17内に171かれた干割基板の下側部分の中央内
J′I、Hζ部分に生成1−た炭素繊維層をカッターナ
イフで該基板内塾から剥き′取り、剥ぎ取った炭素繊維
層から基板円管の平径方向の断面に存在する炭素繊維の
本数を数えるが、測定は上記炭素繊維層を鋭利な鋏で適
当な大きさに切り取りこれを型枠の中に固定1,7て、
硬化した後にも透明性を失わないような例えば工+1?
キシ系熱硬化性樹脂を型枠の中に流し込んで固化せしめ
鈴検用試料とするうこの試料をJta微鐘で撮影1−、
メ4終的には125倍に拡大した写真として、その写)
(上で基板管壁円周方向長さ5間の管半径方向断面に存
在する炭、−)) j、ll維の本数を数える。
The carbon fiber layer formed in the center J'I and Hζ parts of the lower part of the dry split substrate that was cut in reaction 17 was peeled off from the inner part of the substrate with a cutter knife, and the carbon fiber layer was peeled off. The number of carbon fibers present in the cross section of the substrate circular tube in the flat diameter direction is counted from 1 to 3. The measurement is carried out by cutting the carbon fiber layer to an appropriate size with sharp scissors and fixing it in the formwork 1, 7. ,
For example, engineering +1 that does not lose its transparency even after curing?
Pour a thermosetting resin into a mold and solidify it. Take a picture of a fish sample using a JTA microbell. 1-,
4.Finally, the photograph was enlarged 125 times.)
(Charcoal present in the tube radial cross section between the circumferential length 5 of the substrate tube wall above, -)) Count the number of j, ll fibers.

比較例 1 実hili例1の操作で61:超微粉を分散媒液中で摩
砕するだけで酸化処理をしない場合、得られた炭素繊維
の繊維長は実施例1と同様であったが、繊維径は太目の
約15μn1 となった。繊維の発生密度は302本で
極めて生成効率の悪い結果1〜か得られなかった。また
収率は7.5係であった。このことから実施例1の酸化
処理が著1.い効果を奏するものであることが判った。
Comparative Example 1 By the operation of Example 1: 61: When ultrafine powder was simply ground in a dispersion medium without oxidation treatment, the fiber length of the obtained carbon fiber was the same as in Example 1, but The fiber diameter was approximately 15 μn1. The generation density of fibers was 302 fibers, which resulted in an extremely low production efficiency, resulting in only 1 or more fibers. Moreover, the yield was 7.5%. This shows that the oxidation treatment in Example 1 was significantly 1. It was found that this method had a good effect.

実施例 2 実施例1の操作の途中に次の急速昇温降温操作を加えた
。すなわち、反応管内温度を反応温度1000℃から1
040″C4f約1o分間テ昇温17、その温度に到達
後直ちに反応温度10oo℃まで降温させた。降温には
約5分を要1.た。
Example 2 During the operation of Example 1, the following rapid temperature increase/decrease operation was added. That is, the temperature inside the reaction tube is reduced by 1 from the reaction temperature of 1000°C.
The temperature was raised to 040''C4f for about 10 minutes, and immediately after reaching that temperature, the temperature was lowered to the reaction temperature of 100°C.It took about 5 minutes to lower the temperature.

木集施例は、実施例1の金Jtlj+触媒の摩砕分子f
t後の加熱酸化処理に加えて反応開始時の急速昇温降温
操作を実施し、引き続き実施例1ど同様の素繊維の成長
とその太さ成長の操作を実施しだものでを)るが、得ら
itだ炭素繊維eよ繊維径および繊維長tJ実施例】と
同(壬であったが、収率は32チ、繊訂(の発生密度は
1482本となり、急速昇温降温処理を併用することが
有効であることが判った。
The wood collection example is the gold Jtlj of Example 1 + the ground molecule f of the catalyst
In addition to the heating and oxidation treatment after t, a rapid temperature increase/decrease operation was performed at the start of the reaction, and then the same operations as in Example 1 for growth of elementary fibers and growth of their thickness were performed. The obtained carbon fibers were the same as those in the example, but the yield was 32 fibers, the fiber density was 1482 fibers, and the rapid heating and cooling process was performed. It was found that their combined use was effective.

比較例 2 基板へのスプレー用触媒分散液の調製に実施例1で述べ
たボールミルによる摩砕分散に替えて超音波洗浄器(ヤ
マト利学曲製、型番B−32)を用いて、発振周波数4
 Fi i(H,y、の超音波を1時間放射して振動攪
↑’l’L、その他の操作は実施例2と同様に処理17
て炭素繊ff&を作った。
Comparative Example 2 To prepare a catalyst dispersion for spraying onto a substrate, instead of the grinding and dispersion using a ball mill as described in Example 1, an ultrasonic cleaner (manufactured by Yamato Rigakukyoku, Model No. B-32) was used to adjust the oscillation frequency. 4
Fi i (H, y) ultrasonic wave was radiated for 1 hour and vibration stirring ↑'l'L, other operations were the same as in Example 2, Process 17
I made carbon fiber ff&.

得られた繊維の長さtよ実施例2と同様であったが、繊
維径は約15μn!と太目のものとなり、繊維の発生1
/i7度ぐ」、Zfil木と極めて少なかった。収率は
9,5チであった。
The length t of the obtained fibers was the same as in Example 2, but the fiber diameter was about 15 μn! It becomes a thick one, and fiber generation 1
/i7 degrees'', Zfil tree and extremely few. The yield was 9.5 cm.

実施例 −1こhil′iM 2の1’+°!作中、全屈超微粉
触媒の酸化処理を高純度エチルアルコール中で摩砕処理
する前に実施した場合の効果を比較するため、先づ実施
例1ど同じ平均粒径100Aの市販鉄超微粉約1gを磁
性灰皿(灰分測定用)に入れで、実施例1記載の装置を
用いて9気を300 cr’! /minで反応管内に
貫流させて4 (10’にで30分間保持1−て該鉄触
媒を酸化1.た。
Example-1 1'+° of hil'iM 2! In this work, in order to compare the effect of performing oxidation treatment on the total bending ultrafine powder catalyst before grinding it in high-purity ethyl alcohol, we first used commercially available ultrafine iron powder with the same average particle size of 100A as in Example 1. Approximately 1 g was placed in a magnetic ashtray (for ash measurement), and 9 qi was heated to 300 cr'! using the apparatus described in Example 1. The iron catalyst was oxidized by flowing the iron catalyst through the reaction tube at a rate of 4 min and holding at 10' for 30 minutes.

酸化終了後、該磁性灰皿を炉外に取出1.冷却1゜て、
核酸化済鉄触媒を用いて実施例1記載と同(ψの摩砕に
よるスプレー用触媒分散液の調製および基板上への触媒
分散液のスプレー分散および窒素ガス雰囲気下ならびに
水素ガス′η囲≦べ下の反応管内温度の上昇を行った。
After the oxidation is completed, take out the magnetic ashtray from the furnace.1. After cooling 1°,
Using a nuclear oxidized iron catalyst, the same method as described in Example 1 (preparation of a catalyst dispersion for spraying by grinding ψ, spray dispersion of the catalyst dispersion onto a substrate, and under nitrogen gas atmosphere and hydrogen gas The temperature inside the reaction tube was increased.

引き続きインゼン蒸気を水素ガスギヤリアによυ反応を
開始し、以降は実施例2記載と同様の急速封泥降温の処
理と素繊維の長さ成長と太さ成長の操作を行った。
Subsequently, the υ reaction of the inzene vapor was started using a hydrogen gas gearia, and thereafter, the same rapid sealing temperature cooling treatment and the length growth and thickness growth of the elementary fibers as described in Example 2 were performed.

これによって得られた炭素繊維は、繊維径および繊維長
は実施例1又は実施例2と同様であったが、収率1.l
 I 6%、看′:q ttaの発生密度は735本と
なり、実施例2の鉄超微f’)の摩砕後の基板上での酸
化処理+’h作に較べて繊維の発生は少ないが、比+:
γfllより犬であった。
The carbon fibers thus obtained had the same fiber diameter and fiber length as in Example 1 or 2, but the yield was 1. l
I 6%, view': The generation density of q tta was 735 fibers, and the generation of fibers was less than that of Example 2, in which the ultrafine iron f') was subjected to oxidation treatment on the substrate after grinding + 'h production. But the ratio +:
It was more dog than γfl.

第1岩に一括して示した以上の実施「りおよび比較例の
結!v:から、本発明の方法がすぐれていることが明ら
かである。
From the above-mentioned implementation examples and results of comparative examples, which are collectively shown in Section 1, it is clear that the method of the present invention is superior.

i 坊i Bo

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の気相成長炭素繊維を製造1、た実験
装置の概略を示す図である。 1・・・各流量計、   2・・・ベンゼン容器、3・
・・恒温槽、  4・・・観察窓、5・・・基 板、 
 6・・・電気炉、7・・・反応管、  8・・・熱電
対。 9・・・各温度調節器、 10・・・温度記録計、II
・・・空気または窒素導入「]、 12・・・水素導入
口、13・・・各ガス排出口。
FIG. 1 is a diagram schematically showing an experimental apparatus for manufacturing the vapor-grown carbon fiber of the present invention. 1... Each flow meter, 2... Benzene container, 3...
・・・Thermostatic chamber, 4... Observation window, 5... Substrate,
6...Electric furnace, 7...Reaction tube, 8...Thermocouple. 9...Each temperature controller, 10...Temperature recorder, II
...Air or nitrogen introduction"], 12...Hydrogen inlet, 13...Each gas outlet.

Claims (6)

【特許請求の範囲】[Claims] (1)気相法による炭素繊維の製造法において、炭化水
素蒸気を水素とともに反応管に導入するに先立ち、金属
超微粉触媒を液体分散媒とともに摩砕して耐熱基板上に
分散させ該基板を反応管内で空気雰囲気下に加熱酸化す
るか、又は該金属超微粉触媒を直接空気雰囲気下に加熱
酸化した後に液体分7H1媒とともに摩砕してiζ基板
」ニに分散させるかの少なくとも金屈超モ1゛(粉触媒
の摩砕分散と加熱酸化処理をすることを特71′Iとす
るg:、’を維発生密度の高い気相法炭素繊維の製造方
法。
(1) In a carbon fiber manufacturing method using a vapor phase method, before introducing hydrocarbon vapor into a reaction tube together with hydrogen, an ultrafine metal catalyst is ground together with a liquid dispersion medium and dispersed on a heat-resistant substrate. Either heating and oxidizing the ultrafine metal catalyst in an air atmosphere in a reaction tube, or directly heating and oxidizing the metal ultrafine powder catalyst in an air atmosphere, and then grinding it together with a liquid component 7H1 medium and dispersing it onto the iζ substrate. A method for producing vapor-grown carbon fibers with a high fiber density.
(2)金属超微粉触媒の摩砕分散と加熱酸化処理に加え
て、炭化水素蒸気を所定の反応温度に保たれた反応管内
に導入すると同時に反応管内温度を所定の反応温度から
30℃以上急速に件温し、外温後直ちに元の反応温度ま
で降下させることを特徴とする特許請求の範囲第1項に
記載の製造方法。
(2) In addition to grinding and dispersing the ultrafine metal catalyst and heating and oxidizing the catalyst, hydrocarbon vapor is introduced into the reaction tube maintained at a predetermined reaction temperature, and at the same time the temperature inside the reaction tube is rapidly increased by 30℃ or more from the predetermined reaction temperature. The manufacturing method according to claim 1, characterized in that the reaction temperature is immediately lowered to the original reaction temperature after being heated outside.
(3)金属超微粉触媒の摩砕分IYkと加熱酸化処理が
、摩砕分散径耐熱基板上で加熱酸化処理することを特徴
とする特許請求の範囲第1項または第2項記載のホ′1
遣方法。
(3) The method according to claim 1 or 2, characterized in that the milled portion IYk of the metal ultrafine powder catalyst and the heat oxidation treatment are carried out on a heat resistant substrate with a milled dispersed diameter. 1
How to send.
(4)耐熱基板上に分散させる平均粒径300A以下の
金属超微粉触媒けん濁液を該金属触媒が1爪Mlチ以下
、好”ましくけ0.1〜0.3重量%になるように高純
度低級アルコールと混合し、ボールミルなどによシ摩砕
して訓製することを特徴とする請求 れかに記載の製造方法。
(4) Disperse the ultrafine metal catalyst suspension with an average particle size of 300A or less on a heat-resistant substrate so that the metal catalyst is 1 ml or less, preferably 0.1 to 0.3% by weight. The manufacturing method according to any one of claims, characterized in that the preparation is carried out by mixing with a high-purity lower alcohol and grinding with a ball mill or the like.
(5)金属超微粉の加熱酸化を150℃以上、好ましく
は300〜600℃で30分間空気雰囲気下で実施する
ことを特徴とする特許請求の範囲第1項乃至第3項のい
ずれかに記載の製造方法。
(5) The heating oxidation of the ultrafine metal powder is carried out at 150°C or higher, preferably 300 to 600°C, for 30 minutes in an air atmosphere, according to any one of claims 1 to 3. manufacturing method.
(6)反応管内温度の急速昇温か所定の反応温度から1
00℃以下であることを特徴とする特許請求の範囲第2
項に記載の製造方法。
(6) 1 from the rapid rise in the temperature inside the reaction tube or from the predetermined reaction temperature.
Claim 2 characterized in that the temperature is 00°C or less.
The manufacturing method described in section.
JP17020782A 1982-09-29 1982-09-29 Manufacture of carbon fiber in vapor phase Granted JPS5959921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17020782A JPS5959921A (en) 1982-09-29 1982-09-29 Manufacture of carbon fiber in vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17020782A JPS5959921A (en) 1982-09-29 1982-09-29 Manufacture of carbon fiber in vapor phase

Publications (2)

Publication Number Publication Date
JPS5959921A true JPS5959921A (en) 1984-04-05
JPS6247968B2 JPS6247968B2 (en) 1987-10-12

Family

ID=15900646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17020782A Granted JPS5959921A (en) 1982-09-29 1982-09-29 Manufacture of carbon fiber in vapor phase

Country Status (1)

Country Link
JP (1) JPS5959921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500943A (en) * 1984-12-06 1987-04-16 ハイピリオン・カタリシス・インタ−ナシヨナル・インコ−ポレイテツド carbon fibril
US4770867A (en) * 1984-05-10 1988-09-13 Le Carbone-Lorraine Process for the production of carbon fibres which are vapor-deposited from methane
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690215B2 (en) * 1989-12-08 1994-11-14 株式会社東芝 Dispensing nozzle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103528A (en) * 1976-02-25 1977-08-30 Showa Denko Kk Manufacture of carbon fibers by gas phase reaction
JPS55162412A (en) * 1979-06-04 1980-12-17 Asahi Chem Ind Co Ltd Manufacture of carbonaceous whisker
JPS57117622A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber through vapor-phase process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103528A (en) * 1976-02-25 1977-08-30 Showa Denko Kk Manufacture of carbon fibers by gas phase reaction
JPS55162412A (en) * 1979-06-04 1980-12-17 Asahi Chem Ind Co Ltd Manufacture of carbonaceous whisker
JPS57117622A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber through vapor-phase process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770867A (en) * 1984-05-10 1988-09-13 Le Carbone-Lorraine Process for the production of carbon fibres which are vapor-deposited from methane
JPS62500943A (en) * 1984-12-06 1987-04-16 ハイピリオン・カタリシス・インタ−ナシヨナル・インコ−ポレイテツド carbon fibril
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments

Also Published As

Publication number Publication date
JPS6247968B2 (en) 1987-10-12

Similar Documents

Publication Publication Date Title
JP2001512087A (en) Single nanotube production using unsupported metal catalyst and single nanotube
WO2005113433A1 (en) Cladophora-form carbon, process for producing the same and production apparatus therefor
JP2007268319A (en) Catalyst for synthesizing carbon nano-tube and its manufacturing method, catalyst dispersion and manufacturing method for carbon nanotube
JPS599220A (en) Production of silicon carbide whisker
KR100746311B1 (en) A preparing method of carbon nanotube from liquid phased-carbon source
US5071708A (en) Composite diamond grain
JPH02289497A (en) Manufacturing process for silicon carbide whisker and nucleating agent
JPS5959921A (en) Manufacture of carbon fiber in vapor phase
JPH02167898A (en) Production of graphite whisker
JPS58120599A (en) Production of beta-silicon carbide whisker
US5268201A (en) Composite diamond grain and method for production thereof
JPS63210009A (en) Hyperfine particle-shaped fluorinated graphite having superior water and oil repellency
Hou et al. Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes
JPS58110493A (en) Production of graphite whisker
JPH062222A (en) Production of carbon fiber by gaseous phase growth
CN1036061C (en) Preparation of diamond from graphite or carbonaceous solid matter
JPH04132687A (en) Method for synthesizing diamond single crystal film
JP4048138B2 (en) Coin-stacked nanographite, method for producing the same, and catalyst for the production thereof
JPS6278217A (en) Vapor-phase production of carbon fiber
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
JP2601315B2 (en) Fine polycrystalline diamond particles and method for producing the same
Pinault et al. STUDY OF THE EARLY STAGES OF NANOTUBE GROWTH BY CVD OF AEROSOLS
Falkovsky et al. Nanocrystalline WC-Co hardmetals produced by plasmochemical method
JP3229428B2 (en) Method for forming diamond generating nuclei
JPH0648891A (en) Production of diamond