JPS595621A - Forming method for thin-film - Google Patents

Forming method for thin-film

Info

Publication number
JPS595621A
JPS595621A JP11418182A JP11418182A JPS595621A JP S595621 A JPS595621 A JP S595621A JP 11418182 A JP11418182 A JP 11418182A JP 11418182 A JP11418182 A JP 11418182A JP S595621 A JPS595621 A JP S595621A
Authority
JP
Japan
Prior art keywords
photodissociation
laser beams
wave length
short
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11418182A
Other languages
Japanese (ja)
Inventor
Kunihiko Washio
鷲尾 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11418182A priority Critical patent/JPS595621A/en
Publication of JPS595621A publication Critical patent/JPS595621A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers

Abstract

PURPOSE:To form a thin-film pattern in a fine region with high accuracy and high reliability without requiring a mask by crossing a plurality of light beams of different wavelengths in the vicinity of the surface of a sample and photodissociating a compound gas through n-stage optical excitation. CONSTITUTION:A wavelength of irradiating short-wave length laser beams 14 is set in a slightly longer-wave region in which photodissociation at one stage is not generated directly, the compound gas is excited previously at an excitation level through the radiation of long-wave length laser beams 26, the short-wave length laser beams 14 are radiated successively in a short time, the compound gas is excited instantaneously at an upper excitation level having repulsive potential extending over photodissociation from the excitation level, and photodissociation is generated through such excitation at two stages. Photodissociation is generated only in a limited region in which the short-wave length laser beams 14 and the long-wave length laser beams 26 cross. The direct irradiation of a window material 183 by the long-wave length laser beams 26 is prevented preciously.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、プ゛Cを用いることにより、マスクを使用
せずに直接バターニングが可能な薄膜形成方向上、ある
いはフォトマスク上のビレホールなどの欠陥修正などの
ためlこ、E料l;而の希望する位置に所望の物質を堆
積させることが大いに必要とされるようになって去だ。 例えば、パターン化された半導体集積回路での選択的な
軍極付りゃジャンバー線の形成、あるいは’if7!縁
物にょるノ1−ドリンクの形成などが、半導体集積回路
の高密度化、高性能化の実現のためjこまずます重要お
4ってきている。 物質堆偕にょるゲー来q月力膜形成カ法としCは、1)
試料表面上にレジスト1Mあるいはフォトマスクをかぶ
せ、試料から離れた位置におかれた固体蒸宥物質をレー
ザ等を用いて加熱気化し、これを試料表面上に蒸着する
方法や、2)試、11表面上にパターン材料層を近接し
て設け、レーザ光を用いてパターン羽料層を照射し、パ
ターン材料層の一部を蒸発飛散させ、試料表面上にパタ
ーンを転写する方法などが知られている。しかし、いず
れの場合においても、パターン用マスク、あるいはパタ
ーン材料層とのアラインメントがやっかいであること、
試料表面の直接の観察か困難で高い位置精度のα′J細
なit71i訂パターンの形成が困難であることなどの
欠点があり、あ才り奥州的でない。 これに対し、才国の技術雑誌「アプライド・フィジクス
費しターズ(Applied Pl+ysics Le
tt −ers) Jの35巻第2+y(1979年7
 Jj 15日号)第175〜177頁 に記載された
ティー・エフ・ドイッチ= (T、 、1’、T)et
+tch)T)et+tch)氏1の論文[金屑薄膜の
ブ細6゛s域−1のレーザ光による堆積−1(La5e
r Photodeposition of fxle
tal l’ilrnswith Microscop
ic Features)によれば、アルキル金pAf
iとを紫外レーザ光で照射しでrルキル金属を直接光解
離し、試り表面上に金属膜を形成する方法が示されてい
る。この方法(す、マスクを必要とせづ゛に行なえる新
しい薄膜形成方法として注目される。 しかしながら、この方法には次の様な欠点がある。すな
わち、紫外レーザ光を用いて化合物気体を直接光jW[
!させているために、紫外レー→ノー光を通す窓材にも
光解離した物質が付着してしまいへ窓材が不透明になっ
てしまうため、装置の長時間の連続運転が困難となるこ
と、および物質によっては20 onrflより短波長
の遠路外レーザ光が必要さなり、このような煙波長域で
は高信頼Ifでかつ強力なレーザ光源が得にくいこと、
大気中の酸素によるメゾンうら生を避けるためにレーリ
カ、の光路を排気する必要があるなと、装置の構成上や
っかいとなることである。ところで、物質を付着させる
試料としCの基板を窓材として用い、この基板の裏面か
ら弊外し−サ光を直接入射させ(1ように’f 11.
 l:t 、上述の問題点Cま)鉾決でき口よフになる
が紫外光に対して透明な基板のi類には限りがあるのC
,Cの方法の適用領域は非常に限られてしまう。 他方、化合物のi!接的な光解離によらないで、高出力
なレーザ光を用いて基板をスポット状に加熱し、この加
熱された基板表面上の化合物気体を熱分解作用により解
離せしめ、生成物を児根上に堆積させるという熱分解法
が知られている。しかし、この熱分解法は、照射ビーム
のスポット径よりも形成される薄膜のスポット径がかな
り大きくなってしまい、パターンがぼけやすいという欠
点があり、線幅数十μm以下の微細なパターンの形成に
は不適当である。 この発明の目的は、上述したような従りの薄膜形成方法
の有する欠点を除去し、マスクを必要とせず、かつ微細
な領域に高精度でかつ高信頼度に薄膜パターンを、任意
の試料の表面上に形成できるようにした薄膜形成方法を
擾供することζこある。 本発明の原理は、波長の異なる複数の光ビームを試料の
表面近臼で交叉させて、n段階(n = 2 +3、・
・・・・・)光励起により化合物気体を光解離させるよ
うにし、それぞれの光ビート単独では化合物気体の光解
離が生じないよう化することによってこの光ビームの交
叉点の近傍のみに所望の物質を堆積せしめて薄膜を形成
させるようにしたことにある。 この発明による第11点は、試料邦板として任意の材質
を用いることかできること、窓材の汚れが著しく少なく
なるのでそのメンテナンスが容l・トなること、使用す
る光源の入手が容易となり信頼性が向上するとLなどで
ある。 また、この発明による他の利点C5
This invention uses a photomask to correct defects such as hole in the thin film formation direction or on a photomask, which allows direct patterning without using a mask. Depositing the desired substance at the desired location has become much needed. For example, selective polarization in patterned semiconductor integrated circuits, formation of jumper wires, or 'if7! The formation of fringe links is becoming increasingly important in order to achieve higher density and higher performance in semiconductor integrated circuits. As for the material deposition method, C is 1)
A method of covering the sample surface with a 1M resist or a photomask, heating and vaporizing a solid evaporation material placed at a position away from the sample using a laser, etc., and depositing it on the sample surface; 11 A method is known in which a pattern material layer is provided close to the sample surface, the pattern material layer is irradiated with a laser beam, a part of the pattern material layer is evaporated and scattered, and the pattern is transferred onto the sample surface. ing. However, in either case, alignment with the pattern mask or pattern material layer is troublesome;
There are drawbacks such as the difficulty of directly observing the sample surface and the difficulty of forming an α'J fine it71i pattern with high positional accuracy, so it is not a genius Oshu technique. In contrast, Saikoku's technical magazine ``Applied Physics Le
tt-ers) J, Vol. 35, No. 2+y (July 1979)
T.F. Deutsch = (T, , 1', T) et described in Jj 15th issue) pages 175-177
+tch)T)et+tch) Paper by Mr. 1 [Deposition of gold scrap thin film by laser light in 6゛s region-1-1 (La5e
r Photodeposition of fxle
tal l'ilrnswith Microscope
ic Features), alkyl gold pAf
A method is shown in which a metal film is formed on a test surface by directly photo-dissociating the r-ruyl metal by irradiating it with ultraviolet laser light. This method is attracting attention as a new thin film formation method that can be performed without the need for a mask.However, this method has the following drawbacks. jW[
! As a result, photo-dissociated substances adhere to the window material, which allows UV light to pass through, and the window material becomes opaque, making it difficult to operate the device continuously for long periods of time. Also, depending on the material, a long-path laser beam with a wavelength shorter than 20 onrfl is required, and it is difficult to obtain a highly reliable If and powerful laser light source in such a smoke wavelength range.
The optical path of the Reerica must be evacuated in order to avoid turbulence caused by oxygen in the atmosphere, which is a problem due to the configuration of the device. By the way, as a sample to which a substance is to be attached, a substrate of C is used as a window material, and direct sunlight is incident on the back side of this substrate (as in 1).
l:t, the above-mentioned problem C) It is easy to make a halberd, but there is a limit to the type I of substrates that are transparent to ultraviolet light.C
, C's method has a very limited application area. On the other hand, the compound i! Instead of direct photodissociation, the substrate is heated in a spot using a high-power laser beam, and the compound gas on the heated substrate surface is dissociated by thermal decomposition, and the product is deposited onto the root. A pyrolysis method called deposition is known. However, this thermal decomposition method has the disadvantage that the spot diameter of the thin film formed is considerably larger than the spot diameter of the irradiation beam, and the pattern tends to become blurred. It is inappropriate for The purpose of the present invention is to eliminate the drawbacks of the conventional thin film forming methods as described above, and to form a thin film pattern in a fine area with high accuracy and reliability without requiring a mask, on any sample. It is an object of the present invention to provide a method for forming a thin film on a surface. The principle of the present invention is to intersect a plurality of light beams with different wavelengths near the surface of the sample, and perform n steps (n = 2 + 3, .
...) By photoexciting the compound gas to photodissociate it and making sure that each light beat does not cause photodissociation of the compound gas alone, the desired substance can be produced only in the vicinity of the intersection point of this light beam. The reason is that the material is deposited to form a thin film. The 11th point of this invention is that any material can be used as the sample board, that the window material becomes significantly less dirty and requires less maintenance, and that the light source used is easy to obtain, increasing reliability. If it improves, it will be L, etc. In addition, other advantages of this invention C5

【、に科基板上に直
接光を照射しないようにもできるので、光の吸収による
試料の温度上列を避けることができ、従来の1段階光y
J¥離法に比べて一層低温での堆積が可能となり、この
ため温度上昇によって、素子が劣化することをほは完全
に阻止できるようになることである。 次に、この発明のW!膜形成方法について図面を参照し
て詳細に説明する。 図は、この発明を具現するための装置の一例を示すブロ
ック図である。 図において、11および12は発振波長の相異なるレー
ザ装置であり、レーザ装置11には紫外ないしは可視の
短波長レーザ装置を、またレーザ装ft12には可視な
いしは亦外の長波長レーザ装置を用いている。 13は該短波長レーザ装置11から出射する灼波長レー
ザ光14を試料16に導く光学系、15は試料の表面を
観察する観察光学系である。該光学系13には〜表面俵
ざX用の照明用光源131、照射範囲を副部するための
什り132、お、Lび集光対物レンズ133などが備え
られている。 16は試料であり、この試料は試料駆動用載物台17の
上に載せられ、XY方向に自由に駆動できるようになっ
ている。18は誠、第41X fl’!容乞にで”あり
、これにキャリアガスとしてヘリウム!Jいし番、(ア
ルゴンなどの不活性ガスを含んだポンベ19と、薄膜形
成用の元累を化合物さして含んだ化合物気体を収容した
ボンベ21+が、流ぷコントロール用ノクルプ21゜2
2を介して接続されておr)、さらに試料収納容器18
には拮気管nが接続さね、この排気管23を通して、混
合気体24を排気ポンプなどを用いて排気できるように
なっているo2−5はストップバルブである。排気とバ
ルブの調節とによって、該試料収納容器18内に所望の
濃度の化合物気体(例えは(’d(CHa)s・・・・
・・・・・4’l’nrr)とキャリヤカス(例えはヘ
リウム740Torr)とを泗たずことができる0本発
明の目的に使用可能な化合物気体としては、餉」えば電
極材料として用いられるAlや、ドーパントとして用い
られるCd、Zn  などの金属の堆積用には、Al(
CH,)s 、Cd(CH,)雪あるいはZn (CH
s )露などのアルキル金属気体がある。また、マスク
材として用いられるNLCr  なとの金属の堆積用に
は、例えばカルボニル化合物気体などが使用可能である
。また、SIやOe+ (]a*Asなどの半導体拐料
の堆積にはS iH4+ G e Haなどの水素化合
物気体や、GaC1,A、5C1−などの塩素化合物気
体りどが使用可能である。 核に料収納容器18には、窓材181,182.183
が取り付けられている。この例では、長波長レーザ装置
12から出射した長波長レーザ光26の光軸は試料16
の表面近傍を通り、かつ該試料表面とほぼ平行になるよ
うにし、かつ短波長レーザ装allから出射した短波長
レーザ光14の光軸は該E料16の表面近傍で該長波長
レーザ光26の光軸と交叉するようζこ、それぞれのレ
ーザ光14.26の光軸を調整しである。 184.185は比較的長焦点のレンズであり、長波長
レーザ光26を集光したときの広がり角があまり大きく
r、1らないようにして、試料表面ζこ長波長レーザ光
26が直接照射することをできるだけ避けるようにして
いる。 一般に分子化合物は、紫外光ないし、遠紫外光の照射に
より一段階で九Mlltl?させることが可能である。 例えばCd (CHs )*やAl(CHs )−は2
60nmより短波長の光では一段階で直接光解離が可能
である。しかし、このような一段階の光M離では、短波
長レーザ光14が透過する窓材183の該試料収納容器
18の内面lこも化合物気体の光解離jこより生成した
物質が付着して光の透過を遮ぎるようになるため、窓材
】83の洗浄をひんばA、に行なわなければならず、装
置の連続的運転が著しく困難になる。 そこで、この発明では、照射する短波長し〜ザ光14の
波長は、直接一段階の光解離が生じないような、やや長
波長領域に設定し、あらかじめ長波長レーザ光26の照
射により化合物気体をある励起準位に励起しておき、短
時間のうちに引き続いて該短波長レーザ光14を照射し
、該励起庫体から光解離にいたる反発ポテンシャルをも
ったさらに上の励起準位に直ちに励起するようにし一〇
、この種の二段階の励起によって光解離を生せしめるよ
うにしている。 この結果、光解離は、該短波長レーザ光14と該長波長
レーザ光26の父又する限られた領域でしか生じないよ
うに1するので、該長波長レーザ光26が直接窓材18
3を照射することのないようにして転が容易に行なえる
ようになる0 長波長レーザ光26の照射により励起する化合物気体の
励起準位としては、電子準位ないしは振動回転準位が用
いられる。一般に、振動回転準位間のエネルギー差は小
さいので、後者の場合には赤外多光子吸収によってかな
り高い振動回転準位まで励起しておかないと、光解離に
いたらしめるのに必碩となる短波長レーザ光14の波長
をかなり短かくしなくてはならず、このため−膜層の光
解離を生じないようにすることか困難になるので注意が
必要である。 具体的に(」、短波長レーデ装置R11としては、Kr
F  レーザ(波長249nm)やXeF  レーザ(
3sznm)などの高出力なエキシマ−レーザーや周波
級逓倍器と高出力パルス固体レーザとを組合せたものな
どを用いることができる0 長波長レーザ装置PH2としては、化付物気体を選択的
に励起できるように、化合物気体の吸収波長にマツチし
た波長でレーザ発振させ得るような周波数町回調レーザ
を用いることが望ましい0これには、周波数可変範囲が
広くて品出力な、パルス色素レーザ(波長350〜1.
000nm)や、アレキサンドライトし/−ザ(波長7
00〜s2onm)などを用いることができるほか、赤
外領域で数多くの発振線をもち、かつ高出力なパルスT
FJACO雪レーザ(波長9.1〜110μm)などを
用いることができる。 長波長レーサ装f& 12 i;を高出力であることが
望ましく、出力としては、1パルスあたり100mJ以
上あることが好ましい0 長波長1ノ−ザ装f12LJ:短波長レーザ装置611
の発振は同期させ、100ns程度以内の短時間のうち
に引続いて動作させるようにすることが必要である。こ
れは励起準位に励起された分子が、分子間衝突などによ
り緩和してしまわないうらに、短波長レーザ光14を照
射し“CS該励起された分子を迅速に光解離Iこいたら
しめる必要があるからである0レーザ光のパルス幅はい
ずれもf9百ns以内であることが望ましい。 試料表面上への薄膜パターン形成は、試料駆動用載物台
17および制御装置27を用いて自由に行なうことがで
きる0光解離により生成した物質は、該短波長レーザ光
14と該長波長レーザ光26の交叉する領域の近傍で局
所的iこ試料表面上ζこ堆積するので、適当な厚みの堆
積層が得られるようにレーザ光を繰り返し照射しつつ試
料をXY−2軸方向に駆動することによって、任意の薄
膜パターンを形成することができる。 この発明による薄膜形成方法は、低温で薄膜を形成する
こきができるきいう特徴を有する。しかし必要に応じて
、試料を加熱用ヒーターを用いて加熱することもできる
ことは勿論である。 この装置では、簡単のために短波長レーザ光14は試料
表面にほぼ垂直に入射するような構成にしたが、レーザ
光の吸収による試料表面の温度上昇が問題きなるような
場合には、該短波長レーザ光14も該試料の表面に平行
になるようにして入射させることも可能である。 このように、この発明の目的を逸脱することなく、この
装置の各部の構成要素につき種々の置換を行ないうるこ
とはいうまてもtい。 以上の説明では光源としてレーザを用いているが、他の
光源、例えは水銀ランプ等でも本発明の目的は達せられ
る。また、光化学反応させたい物質としてガス状のもの
について説明したが、これは液体でも本発明の目的は達
せられる。液体を使うと密度が高いため堆積速度が速く
なることに加えて反応種の平均自由行程が短いから空間
分解能が^くする利点がある。
[Since it is possible to avoid directly irradiating the light onto the substrate, it is possible to avoid raising the temperature of the sample due to light absorption, which is different from the conventional one-stage light beam.
Compared to the J\ separation method, deposition can be performed at a lower temperature, and as a result, deterioration of the device due to temperature rise can be almost completely prevented. Next, the W of this invention! The film forming method will be described in detail with reference to the drawings. The figure is a block diagram showing an example of a device for implementing the present invention. In the figure, 11 and 12 are laser devices with different oscillation wavelengths, the laser device 11 is an ultraviolet or visible short wavelength laser device, and the laser device ft12 is a visible or other long wavelength laser device. There is. Reference numeral 13 denotes an optical system that guides the burning wavelength laser beam 14 emitted from the short wavelength laser device 11 to the sample 16, and 15 an observation optical system that observes the surface of the sample. The optical system 13 is equipped with a light source 131 for illuminating the surface area X, a beam 132 for subdividing the irradiation range, and a condensing objective lens 133. Reference numeral 16 denotes a sample, and this sample is placed on a sample drive stage 17 so that it can be freely driven in the X and Y directions. 18 is Makoto, 41st X fl'! In addition to this, a cylinder 19 containing an inert gas such as helium and argon as a carrier gas, and a cylinder 21+ containing a compound gas containing a compound gas for forming a thin film. However, Nokurupu 21゜2 for flow control
2 r), and further a sample storage container 18
A tracheal pipe n is connected to the exhaust pipe 23, through which the mixed gas 24 can be exhausted using an exhaust pump or the like.O2-5 is a stop valve. By evacuation and valve adjustment, a desired concentration of compound gas (for example, ('d(CHa)s...) is created in the sample storage container 18.
...4'l'nrr) and a carrier gas (for example, helium 740 Torr). Examples of compound gases that can be used for the purpose of the present invention include Al, which is used as an electrode material. Al(
CH,)s, Cd (CH,) snow or Zn (CH
s) There are alkyl metal gases such as dew. Furthermore, for example, a carbonyl compound gas can be used for depositing a metal such as NLCr used as a mask material. Furthermore, for the deposition of semiconductor particles such as SI and Oe+ (]a*As, hydrogen compound gases such as SiH4+GeHa and chlorine compound gases such as GaCl, A, and 5C1- can be used. In the core material storage container 18, window materials 181, 182, 183
is installed. In this example, the optical axis of the long wavelength laser beam 26 emitted from the long wavelength laser device 12 is the sample 16.
The optical axis of the short-wavelength laser beam 14 emitted from the short-wavelength laser device all passes near the surface of the E material 16 and is approximately parallel to the sample surface. The optical axes of the respective laser beams 14 and 26 are adjusted so that they intersect with the optical axes of the laser beams 14 and 26. Reference numerals 184 and 185 are lenses with relatively long focal lengths, and the angle of spread when condensing the long wavelength laser beam 26 is not too large, so that the long wavelength laser beam 26 directly irradiates the sample surface ζ. I try to avoid doing that as much as possible. In general, molecular compounds can be synthesized in one step by irradiation with ultraviolet light or deep ultraviolet light. It is possible to do so. For example, Cd(CHs)* and Al(CHs)- are 2
Direct photodissociation is possible in one step with light having a wavelength shorter than 60 nm. However, in such one-step light separation, substances generated from the photodissociation of the compound gas adhere to the inner surface of the sample storage container 18 of the window material 183 through which the short wavelength laser beam 14 passes, and the light is emitted. Since the permeation is obstructed, the window material [83] must be washed frequently, making continuous operation of the apparatus extremely difficult. Therefore, in this invention, the wavelength of the short-wavelength laser light 14 to be irradiated is set to a slightly long wavelength region that does not directly cause one-step photodissociation, and the compound gas is preliminarily irradiated with the long-wavelength laser light 26. is excited to a certain excited level, and then irradiated with the short wavelength laser beam 14 in a short period of time, immediately reaching an even higher excited level with a repulsive potential leading to photodissociation from the excitation storage body. This kind of two-step excitation causes photodissociation. As a result, photodissociation occurs only in a limited region between the short wavelength laser beam 14 and the long wavelength laser beam 26, so that the long wavelength laser beam 26 is directly transmitted to the window material 18.
The rotation can be easily carried out by avoiding irradiation with 3.0 As the excitation level of the compound gas excited by irradiation with the long wavelength laser beam 26, an electronic level or a vibrational rotational level is used. . Generally, the energy difference between vibrational and rotational levels is small, so in the latter case, it is necessary to excite the vibrational and rotational levels to a considerably higher level by infrared multiphoton absorption in order to cause photodissociation. The wavelength of the short-wavelength laser beam 14 must be made considerably short, and care must be taken, since this makes it difficult to prevent photodissociation of the film layer. Specifically ('', as the short wavelength radar device R11, Kr
F laser (wavelength 249 nm) and XeF laser (
A high-output excimer laser such as 3 sznm) or a combination of a frequency class multiplier and a high-output pulsed solid-state laser can be used.The long wavelength laser device PH2 can selectively excite compound gases. It is desirable to use a frequency tuning laser that can oscillate at a wavelength that matches the absorption wavelength of the compound gas. ~1.
000nm) and alexandrite/-the (wavelength 7
In addition, pulse T that has many oscillation lines in the infrared region and high output can be used.
FJACO snow laser (wavelength: 9.1 to 110 μm) or the like can be used. It is desirable that the long wavelength laser device f & 12 i; has a high output, and the output is preferably 100 mJ or more per pulse.0 Long wavelength 1 laser device f12LJ: Short wavelength laser device 611
It is necessary to synchronize the oscillations so that they can be operated continuously within a short period of about 100 ns. This is because it is necessary to irradiate the short-wavelength laser beam 14 to rapidly photodissociate the molecules excited to the CS state, while preventing the molecules excited to the excited level from relaxing due to intermolecular collisions. Therefore, it is desirable that the pulse width of each laser beam is within f900 ns. Thin film pattern formation on the sample surface can be freely performed using the sample driving stage 17 and the control device 27. The substance generated by the zero-photodissociation that can be performed is locally deposited on the sample surface near the area where the short wavelength laser beam 14 and the long wavelength laser beam 26 intersect. Any desired thin film pattern can be formed by repeatedly irradiating the laser beam and driving the sample in the XY-2 axis directions so as to obtain a deposited layer. However, if necessary, it is of course possible to heat the sample using a heating heater.In this apparatus, for simplicity, the short wavelength laser beam 14 is used to heat the sample. Although the configuration is such that the laser beam is incident almost perpendicularly to the surface, if the temperature increase on the sample surface due to absorption of the laser beam becomes a problem, the short wavelength laser beam 14 may also be set parallel to the surface of the sample. It goes without saying that the components of each part of this device can be replaced in various ways without departing from the purpose of the present invention. Although a laser is used as a light source, the purpose of the present invention can also be achieved with other light sources, such as a mercury lamp.In addition, although gaseous substances have been described as substances to be photochemically reacted, liquids can also be used in the present invention. The purpose of using a liquid is that the deposition rate is faster due to its high density, and the spatial resolution is increased because the mean free path of the reactive species is short.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による薄膜形成方法を一5現するための装置
の一例を示すプロ・yり図である。 図1こおいて、lIは短波長レーザ装置、12は長波長
レーザ装置、13は短波長レーザブ(414を試別に導
く光学系、15は観察光学系である。 また、16は試料、17は試料駆動用載物台、18は試
料収納容器、19はキャリヤガス用ボン−(,20は化
合物気体用ホンベ、21.22は流量コントロールバル
ブ、23は排気管、24は混合気体、25はストップバ
ルフ、  181,182.183  は窓材、184
.185はレンズ、 26は長波長レーザ光、27は制
御装置である。
The figure is a schematic diagram showing an example of an apparatus for carrying out the thin film forming method according to the present invention. In FIG. 1, 1I is a short wavelength laser device, 12 is a long wavelength laser device, 13 is an optical system that guides the short wavelength laser beam (414) to the sample, and 15 is an observation optical system. A stage for driving the sample, 18 a sample storage container, 19 a carrier gas cylinder, 20 a compound gas cylinder, 21, 22 a flow rate control valve, 23 an exhaust pipe, 24 a mixed gas, 25 a stop Balkh, 181, 182. 183 is window material, 184
.. 185 is a lens, 26 is a long wavelength laser beam, and 27 is a control device.

Claims (1)

【特許請求の範囲】[Claims] 試料表面に堆積すべき物質の元素を含んだ化合物を分解
するには小充分なエネルギー波長の複数種の光ビームを
、前記元素または化合物を含む気体中または液体中lこ
おかれた試料表面の近傍で交叉させ、該交叉領域で該化
合物をn段階光解離(n≧2)により解離せしめ、Cれ
により中成する物質を、該試料表面上に堆積させること
を特徴とする薄膜形成方法。
A plurality of types of light beams with energy wavelengths small enough to decompose compounds containing the elements of the substance to be deposited on the sample surface are applied to the sample surface in a gas or liquid containing the elements or compounds. A method for forming a thin film, characterized in that the compound is crossed in the vicinity, the compound is dissociated in the crossing region by n-step photodissociation (n≧2), and a substance that is intermediated by C cross is deposited on the surface of the sample.
JP11418182A 1982-07-01 1982-07-01 Forming method for thin-film Pending JPS595621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11418182A JPS595621A (en) 1982-07-01 1982-07-01 Forming method for thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11418182A JPS595621A (en) 1982-07-01 1982-07-01 Forming method for thin-film

Publications (1)

Publication Number Publication Date
JPS595621A true JPS595621A (en) 1984-01-12

Family

ID=14631216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11418182A Pending JPS595621A (en) 1982-07-01 1982-07-01 Forming method for thin-film

Country Status (1)

Country Link
JP (1) JPS595621A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216555A (en) * 1984-04-12 1985-10-30 Fuji Electric Corp Res & Dev Ltd Manufacture of semiconductor device
JPS61199640A (en) * 1985-02-28 1986-09-04 Sony Corp Atom introducing device
JPS61245522A (en) * 1985-04-23 1986-10-31 Fujitsu Ltd Method for growth of aluminum film
JPS61245521A (en) * 1985-04-23 1986-10-31 Fujitsu Ltd Method for growth of aluminum film
JPS6240718A (en) * 1985-08-16 1987-02-21 Fuji Photo Film Co Ltd Photovoltaic cvd method
JPH0258824A (en) * 1988-08-24 1990-02-28 Mitsubishi Metal Corp Cvd apparatus
WO1995014115A1 (en) * 1993-11-19 1995-05-26 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Process and device for producing three-dimensional structures by the optically stimulated separation of material from a fluid compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216555A (en) * 1984-04-12 1985-10-30 Fuji Electric Corp Res & Dev Ltd Manufacture of semiconductor device
JPS61199640A (en) * 1985-02-28 1986-09-04 Sony Corp Atom introducing device
JPS61245522A (en) * 1985-04-23 1986-10-31 Fujitsu Ltd Method for growth of aluminum film
JPS61245521A (en) * 1985-04-23 1986-10-31 Fujitsu Ltd Method for growth of aluminum film
JPS6240718A (en) * 1985-08-16 1987-02-21 Fuji Photo Film Co Ltd Photovoltaic cvd method
JPH0258824A (en) * 1988-08-24 1990-02-28 Mitsubishi Metal Corp Cvd apparatus
WO1995014115A1 (en) * 1993-11-19 1995-05-26 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Process and device for producing three-dimensional structures by the optically stimulated separation of material from a fluid compound
US5705235A (en) * 1993-11-19 1998-01-06 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Process and device for production of three-dimensional structures through optically stimulated precipitation of a material from a fluidic compound

Similar Documents

Publication Publication Date Title
US6493423B1 (en) Method of generating extremely short-wave radiation, method of manufacturing a device by means of said radiation, extremely short-wave radiation source unit and lithographic projection apparatus provided with such a radiation source unit
US4608117A (en) Maskless growth of patterned films
US4615904A (en) Maskless growth of patterned films
JP2634245B2 (en) Method and apparatus for removing surface contaminants by irradiation from a high energy source
US6304630B1 (en) Method of generating EUV radiation, method of manufacturing a device by means of said radiation, EUV radiation source unit, and lithographic projection apparatus provided with such a radiation source unit
US5099557A (en) Removal of surface contaminants by irradiation from a high-energy source
RU2242291C2 (en) Method and device for creating dense fog of micrometer and submicrometer droplets
US4340617A (en) Method and apparatus for depositing a material on a surface
US4606932A (en) Method for depositing a micron-size metallic film on a transparent substrate utilizing a laser
US4868005A (en) Method and apparatus for photodeposition of films on surfaces
JPH08509652A (en) Method and device for removing surface contaminants by irradiation
US6385290B1 (en) X-ray apparatus
US7211300B2 (en) Method and apparatus for performing laser CVD
US4748045A (en) Method and apparatus for photodeposition of films on surfaces
JPS6021224B2 (en) Laser thin film forming equipment
US4668528A (en) Method and apparatus for photodeposition of films on surfaces
JPS595621A (en) Forming method for thin-film
JP2001219290A (en) Method and apparatus for laser beam etching
JPH04295851A (en) Photomask correcting device
JPS59208065A (en) Depositing method of metal by laser
RU2017191C1 (en) Method of forming of mask masking layer
JP2840419B2 (en) Light treatment method and light treatment device
JPS60241219A (en) Method for forming thin film by utilizing laser
JPS642935B2 (en)
JPH07307314A (en) Method of eliminating thin film on substrate surface by using pulse laser