JPS61245521A - Method for growth of aluminum film - Google Patents

Method for growth of aluminum film

Info

Publication number
JPS61245521A
JPS61245521A JP8788585A JP8788585A JPS61245521A JP S61245521 A JPS61245521 A JP S61245521A JP 8788585 A JP8788585 A JP 8788585A JP 8788585 A JP8788585 A JP 8788585A JP S61245521 A JPS61245521 A JP S61245521A
Authority
JP
Japan
Prior art keywords
gas
substrate
supply chamber
reaction
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8788585A
Other languages
Japanese (ja)
Other versions
JPH0736395B2 (en
Inventor
Takayuki Oba
隆之 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60087885A priority Critical patent/JPH0736395B2/en
Publication of JPS61245521A publication Critical patent/JPS61245521A/en
Publication of JPH0736395B2 publication Critical patent/JPH0736395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Abstract

PURPOSE:To obtain a uniform Al film while accelerating a growing speed by a method wherein a gas supply chamber having a plurality of gas jetting ports is fitted on the lower side of the ceiling of a reaction chamber and moreover the ends of a number of infrared optical fibers are made to face said lower side in the case when infrared rays are applied onto a substrate to make the Al film grow thereon. CONSTITUTION:A gas supply chamber 5 having a plurality of gas jetting ports 9 is fitted independently on the lower side of the ceiling of a reaction tank 1 having an exhaust unit 4 connected to the base and a supporting table 2 provided inside for mounting a substrate 3. A gas introducing port 6 is provided in one end of the supply chamber 5, and A vapor supplied from an Al(C4H9)3 source 7 is pressed into said port by the bubbling of He gas and is blown from the jetting ports 9 into the substrate 3. At the same time, infrared rays from an infrared light source 10 are applied onto the substrate 3 through an optical fiber 11 and the supply chamber 5. On the occasion, the infrared rays are separated into a plurality of single-core optical fibers 12 and applied onto the substrate 3 with intervals made equal between them. In this way, ununiformity in reaction is eliminated.

Description

【発明の詳細な説明】 〔概要〕 アルミニウムは半導体装置の配線層として、広く用いら
れているが、その積層の方法は、物理的な蒸着法(PV
D法)が専ら用いられている。本発明ではアルミニウム
の気相成長法(CVD法)で、且つ、光励起反応を利用
せる成長法の改善を目的とする。
[Detailed Description of the Invention] [Summary] Aluminum is widely used as the wiring layer of semiconductor devices, but the method of stacking aluminum is physical vapor deposition (PV
D method) is used exclusively. The present invention aims to improve the aluminum vapor phase growth method (CVD method), which utilizes a photoexcitation reaction.

〔産業上の利用分野〕[Industrial application field]

本発明は、アルミニウムの配線層の形成に通常広く使用
されているPVD法に代わり、TIBAを反応ガスとし
て用いた気相成長法によるアルミニウム膜の成長法の改
良に関する。
The present invention relates to an improved method for growing an aluminum film by a vapor phase growth method using TIBA as a reactive gas instead of the PVD method that is usually widely used for forming aluminum wiring layers.

アルミニウムは、通常、気相成長法で成長させるとその
膜質に問題があるので、一般には真空蒸着法によって成
長させる。
Aluminum usually has problems with its film quality when grown by vapor phase growth, so it is generally grown by vacuum evaporation.

アルミニウム薄膜を集積回路で用いるのは殆どが配線層
の形成であり、この時点では半導体の素子部分の形成は
殆ど終わっているので、アルミニウム膜の形成プロセス
においては基板の温度は出来るだけ低くすることが望ま
しい。
Aluminum thin films are mostly used in integrated circuits to form wiring layers, and at this point most of the semiconductor element formation has been completed, so the temperature of the substrate should be kept as low as possible during the aluminum film formation process. is desirable.

従って、常温でも成長可能なる真空蒸着法が専らアルミ
ニウムの成長に用いられている。このため真空蒸着の基
本的な問題点としての、電極窓の段差部におけるカバレ
ージ不良の問題がある。
Therefore, the vacuum evaporation method, which allows growth even at room temperature, is exclusively used for growing aluminum. For this reason, there is a fundamental problem in vacuum evaporation, which is poor coverage at the stepped portion of the electrode window.

また、気相成長でアルミニウムの成長が可能となれば、
成長時にアルミニウム以外の金属との合金膜の成長も可
能であり、その出現が要望されている。
Also, if it becomes possible to grow aluminum by vapor phase growth,
It is also possible to grow an alloy film with metals other than aluminum during growth, and its appearance is desired.

〔従来の技術〕[Conventional technology]

アルミニウムを気相成長させる方法として、トリイソブ
チール・アルミニウム、略称TIBAを用いる方法は既
に知られている。
As a method for vapor phase growth of aluminum, a method using triisobutyl aluminum (abbreviated as TIBA) is already known.

TIBAはA7!(C4HqLなる分子式で表され、2
50〜300℃で熱分解して、下記のごとくAβを析出
する。
TIBA is A7! (Represented by the molecular formula C4HqL, 2
It is thermally decomposed at 50 to 300°C to precipitate Aβ as described below.

Aρ(C4H9)3→Aβ+3/2H2+3CaHeT
IBAは常温では液体であるが、反応を促進するため約
50℃に加熱して、He %あるいはArガスをバブリ
ングさせて、約300°Cに加熱された基板を設置せる
反応槽に導入される。
Aρ(C4H9)3→Aβ+3/2H2+3CaHeT
IBA is a liquid at room temperature, but to accelerate the reaction, it is heated to about 50°C, He% or Ar gas is bubbled through it, and it is introduced into a reaction tank in which a substrate heated to about 300°C is installed. .

上記のTIBAの熱分解は、通常の半導体の製造プロセ
スとしては充分耐えうる温度であるが、更に、低温にお
ける成長を目的とせる、TIBAガスの光反応を利用せ
る気相成長法がある。
The above-mentioned thermal decomposition of TIBA is at a temperature that is sufficiently durable for normal semiconductor manufacturing processes, but there is also a vapor phase growth method that utilizes the photoreaction of TIBA gas, which aims at growth at lower temperatures.

光を利用する方法にば、紫外線を用いる方法と赤外線を
用いる場合があるが、紫外線法の方がより低温であり、
光エネルギーによる分子の励起反応を主としているが、
赤外線法は熱エネルギーによる分解反応が相当含まれる
Methods that use light include methods that use ultraviolet rays and infrared rays, but the ultraviolet method is lower temperature,
Although it mainly involves excitation reactions of molecules by light energy,
The infrared method involves a considerable amount of decomposition reactions using thermal energy.

赤外線の利用の方が光源が遥かに安価であり、装置も構
造が簡単であるので、気相成長ではより多く利用されて
いる。
Infrared rays are used more frequently in vapor phase growth because the light source is much cheaper and the equipment is simpler.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記に述べた、従来の技術による方法では、赤外線照射
法によるTIBA分解法では、半導体基板に対する成長
が必ずしも一様でないという問題を生ずる。
In the conventional method described above, the TIBA decomposition method using infrared irradiation has a problem in that the growth on the semiconductor substrate is not necessarily uniform.

反応槽の構造にもよるが、半導体基板を槽内に水平なる
位置に設置して、TTBAガスを反応槽に導入し、赤外
光は上方より照射される構造をとる。
Although it depends on the structure of the reaction tank, a structure is adopted in which the semiconductor substrate is placed horizontally in the tank, TTBA gas is introduced into the reaction tank, and infrared light is irradiated from above.

然しなからソースガスの流入孔は通常−個所であり゛、
反応槽内部でのガスの流れは一様でなく、ガスの濃度に
もムラを生ずる。
However, the source gas inflow hole is usually located at -
The flow of gas inside the reaction tank is not uniform, resulting in uneven gas concentration.

このような理由で、アルミニウム膜を成長さゼたとき、
基板面に一様に薄膜が成長せず、特に段差部でのカバレ
ージが悪くなるという問題点を生ずる。
For this reason, when growing an aluminum film,
A problem arises in that the thin film does not grow uniformly on the substrate surface, resulting in poor coverage especially at stepped portions.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、反応槽内の基板に対して、ガスの噴出と
、赤外線の照射を出来るだけ均一することよりなる本発
明の方法で解決される。
The above-mentioned problems are solved by the method of the present invention, which comprises ejecting gas and irradiating infrared rays as uniformly as possible to the substrate in the reaction tank.

更に、詳述すれば反応ガスは、反応槽とは分離して設け
られたガス供給室の多数の噴出孔より、基板に向けて噴
出させる。
More specifically, the reaction gas is ejected toward the substrate from a large number of ejection holes in a gas supply chamber provided separately from the reaction tank.

一方、赤外線光を光マルチファイバーを通して前記ガス
供給室に導き、単芯ファイバー、または複数本のファイ
バー群に分割して、該ガス噴出孔の近くで基板に向け照
射する方法により達成される。
On the other hand, this can be achieved by introducing infrared light into the gas supply chamber through an optical multi-fiber, dividing it into a single fiber or a group of multiple fibers, and irradiating the substrate near the gas injection hole.

〔作用〕[Effect]

ガス供給室を反応槽とは分離して設け、多数の噴出孔よ
りガスを導入する構造により、反応ガスの流れはガス供
給室と反応槽との圧力差により行われ、一様化される。
Due to the structure in which the gas supply chamber is provided separately from the reaction tank and gas is introduced through a large number of ejection holes, the flow of the reaction gas is made uniform by the pressure difference between the gas supply chamber and the reaction tank.

赤外線の照射も、この一様化されたガスに対して、ガス
の流れと平行した方向に照射されるので、分解反応は基
板面上で均一化されると共に、成長速度の促進の作用を
行う。
Infrared rays are also irradiated onto this uniform gas in a direction parallel to the gas flow, so that the decomposition reaction is uniformed on the substrate surface and has the effect of accelerating the growth rate. .

〔実施例〕〔Example〕

本発明のアルミニウム膜の成長方法に使用される装置の
構造を第1図により説明する。
The structure of an apparatus used in the method of growing an aluminum film of the present invention will be explained with reference to FIG.

反応槽1の内部には、支持台2に搭載された基板3が設
置される。反応槽の下部には排気孔が設けられ排気装置
4に接続されている。
Inside the reaction tank 1, a substrate 3 mounted on a support stand 2 is installed. An exhaust hole is provided at the bottom of the reaction tank and connected to an exhaust device 4.

反応槽の上部にはガス供給室5が設けられ、ガス導入孔
6より反応ガスが供給される。ガス導入孔はガスソース
7に接続されている。
A gas supply chamber 5 is provided in the upper part of the reaction tank, and a reaction gas is supplied through a gas introduction hole 6. The gas introduction hole is connected to a gas source 7.

ガス供給室には第2図に示すごとく、反応槽に面した隔
離板8には多数のガス噴出孔9が開口されている。
In the gas supply chamber, as shown in FIG. 2, a large number of gas ejection holes 9 are opened in a separator plate 8 facing the reaction tank.

赤外線光源10よりの赤外光は、レンズを通して光マル
チファイバー11に投射され、更に光マルチファイバー
はガス供給室に導かれる。ここで多数の単芯のファイバ
ー、あるいは複数のファイバー群に分割される。
Infrared light from an infrared light source 10 is projected onto an optical multi-fiber 11 through a lens, and the optical multi-fiber is further guided to a gas supply chamber. Here, it is divided into a large number of single-core fibers or multiple fiber groups.

分割されたファイバー12は、前記ガス供給室の隔離板
8にて、ファイバーの端面を反応槽に向けて固定される
The divided fibers 12 are fixed at the separating plate 8 of the gas supply chamber with the end faces of the fibers facing the reaction tank.

アルミニウム膜を成長させるには、基板3を支持台2に
設置した後、排気装置4により反応槽1を減圧する。次
いで、TIBAガスをガス供給室5に導入する。
In order to grow an aluminum film, the substrate 3 is placed on the support stand 2, and then the reaction tank 1 is depressurized by the exhaust device 4. Next, TIBA gas is introduced into the gas supply chamber 5.

反応槽との間には隔離板8があるので、ガス供給室は圧
力差を生じ、ガス噴出孔9より一様なる流れとなってT
IBAガスが噴出される。
Since there is a separator plate 8 between the reaction tank and the gas supply chamber, a pressure difference is created in the gas supply chamber, and a uniform flow is generated from the gas injection hole 9.
IBA gas is ejected.

一方赤外線は、光ファイバーを通ってその端面より反応
槽に照射され、TTBAガスの分解反応を起こす。また
、エネルギーの一部は基板の加熱も行い、一様なるアル
ミニウム膜の成長に寄与する。
On the other hand, infrared rays pass through the optical fiber and are irradiated onto the reaction tank from the end face, causing a decomposition reaction of the TTBA gas. A portion of the energy also heats the substrate, contributing to uniform growth of the aluminum film.

〔発明の効果〕〔Effect of the invention〕

以上に説明せるごとく本発明の方法により反応ガスの導
入が均一化され、赤外線の照射も分割して一様化されて
いるので、反応にムラがなくなり、均一なるアルミニウ
ム膜の成長と、成長速度の促進が図れる。
As explained above, the method of the present invention uniformizes the introduction of the reaction gas and also divides and uniformizes the irradiation of infrared rays, which eliminates unevenness in the reaction and allows uniform aluminum film growth and growth rate. can be promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかわる成長方法に用いる装置の断面
図、 第2図は隔離板の平面図、 を示す。 図面において、 1は反応槽、 2は支持台、 3は基板、 4は排気装置、 5はガス供給室、 6はガス導入孔、 7はガスソース、 8は隔離板、 9はガス噴出孔、 10は赤外線光源、 11は光マルチファイバー、 12は分割された光ファイバー、 をそれぞれ示す。 9 力パスD*出孔 博離拮J平lf1菌 第2図 12 通47yづバー 3隔顛叛
FIG. 1 shows a sectional view of an apparatus used in the growth method according to the present invention, and FIG. 2 shows a plan view of a separator. In the drawings, 1 is a reaction tank, 2 is a support, 3 is a substrate, 4 is an exhaust system, 5 is a gas supply chamber, 6 is a gas introduction hole, 7 is a gas source, 8 is a separator, 9 is a gas blowout hole, 10 is an infrared light source, 11 is an optical multi-fiber, and 12 is a divided optical fiber. 9 Force pass D * Deka Hiroshi J Hei lf1 fungus 2nd figure 12 47yz bar 3 interlock

Claims (1)

【特許請求の範囲】  赤外線を照射して、基板上にアルミニウム膜を成長さ
せるに当たり、 反応槽(1)と分離して設けられたガス供給室(5)の
多数の噴出孔(9)より、基板(3)に向けて反応ガス
を供給すると共に、 赤外線光を光マルチファイバー(11)を通して前記ガ
ス供給室に導き、単芯のファイバー(12)、または複
数本のファイバー群(12)に分割して、前記基板に向
け照射することを特徴とするアルミニウム膜の成長方法
[Claims] When growing an aluminum film on a substrate by irradiating infrared rays, from a large number of ejection holes (9) in a gas supply chamber (5) provided separately from the reaction tank (1), While supplying a reactive gas toward the substrate (3), infrared light is guided into the gas supply chamber through an optical multi-fiber (11) and divided into a single-core fiber (12) or a group of multiple fibers (12). A method for growing an aluminum film, characterized in that irradiation is directed toward the substrate.
JP60087885A 1985-04-23 1985-04-23 Aluminum film growth method Expired - Lifetime JPH0736395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087885A JPH0736395B2 (en) 1985-04-23 1985-04-23 Aluminum film growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087885A JPH0736395B2 (en) 1985-04-23 1985-04-23 Aluminum film growth method

Publications (2)

Publication Number Publication Date
JPS61245521A true JPS61245521A (en) 1986-10-31
JPH0736395B2 JPH0736395B2 (en) 1995-04-19

Family

ID=13927325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087885A Expired - Lifetime JPH0736395B2 (en) 1985-04-23 1985-04-23 Aluminum film growth method

Country Status (1)

Country Link
JP (1) JPH0736395B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161057A (en) * 1981-03-30 1982-10-04 Mitsubishi Electric Corp Chemical vapor phase growth device using plasma
JPS5840608U (en) * 1981-09-14 1983-03-17 武康商事株式会社 Corrugated steel plate assembly vault
JPS595621A (en) * 1982-07-01 1984-01-12 Nec Corp Forming method for thin-film
JPS5961920A (en) * 1982-10-01 1984-04-09 Agency Of Ind Science & Technol Manufacture of thin film and equipment for the same
JPS59208065A (en) * 1983-05-13 1984-11-26 Nec Corp Depositing method of metal by laser
JPS6067665A (en) * 1983-09-22 1985-04-18 Matsushita Electric Ind Co Ltd Laser heating apparatus of vapor deposition source in vacuum vapor deposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161057A (en) * 1981-03-30 1982-10-04 Mitsubishi Electric Corp Chemical vapor phase growth device using plasma
JPS5840608U (en) * 1981-09-14 1983-03-17 武康商事株式会社 Corrugated steel plate assembly vault
JPS595621A (en) * 1982-07-01 1984-01-12 Nec Corp Forming method for thin-film
JPS5961920A (en) * 1982-10-01 1984-04-09 Agency Of Ind Science & Technol Manufacture of thin film and equipment for the same
JPS59208065A (en) * 1983-05-13 1984-11-26 Nec Corp Depositing method of metal by laser
JPS6067665A (en) * 1983-09-22 1985-04-18 Matsushita Electric Ind Co Ltd Laser heating apparatus of vapor deposition source in vacuum vapor deposition

Also Published As

Publication number Publication date
JPH0736395B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
EP0254654B1 (en) Method of chemical vapor deposition
US4468283A (en) Method for etching and controlled chemical vapor deposition
US6630030B1 (en) Method and apparatus for growing thin films
ATE107365T1 (en) SYNTHETIC DIAMOND DEPOSITION APPARATUS CONTAINING SPRING-PRESSURED WIRES.
JPH07201762A (en) Gas feeder for manufacturing semiconductor element
JPH04287312A (en) Device and method for vapor phase epitaxial growth
JPH01107519A (en) Vapor growth apparatus
JPH01223724A (en) Chemical vapor growth device
US5188058A (en) Uniform gas flow CVD apparatus
JPS61245521A (en) Method for growth of aluminum film
JPH11180796A (en) Vapor growth method and vapor growth device for applying the same
JPS6251919B2 (en)
JP3224238B2 (en) Thin film forming equipment
JPS592536B2 (en) gas injection device
JP2983084B2 (en) Thin film forming method and vacuum film forming apparatus using this method
JPH0518452B2 (en)
JPH0341722A (en) Thin-film manufacturing apparatus
JPS63307192A (en) Production of compound crystal and apparatus therefor
JPH04221820A (en) Vapor growth method for organic metal
JP2814998B2 (en) Method and apparatus for forming semiconductor element film
JP2510340B2 (en) Method for producing Si-based crystal thin film
JPS63312978A (en) Thin film forming device
JPH09129553A (en) Vapor epitaxial growth method and device
JPS63153277A (en) Laser cvd device
JPH02145769A (en) Method and device for forming thin film