JPS61199640A - Atom introducing device - Google Patents

Atom introducing device

Info

Publication number
JPS61199640A
JPS61199640A JP60040177A JP4017785A JPS61199640A JP S61199640 A JPS61199640 A JP S61199640A JP 60040177 A JP60040177 A JP 60040177A JP 4017785 A JP4017785 A JP 4017785A JP S61199640 A JPS61199640 A JP S61199640A
Authority
JP
Japan
Prior art keywords
substrate
gas
silicon substrate
excimer laser
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60040177A
Other languages
Japanese (ja)
Other versions
JPH0691073B2 (en
Inventor
Toshiyuki Samejima
俊之 鮫島
Setsuo Usui
碓井 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60040177A priority Critical patent/JPH0691073B2/en
Priority to KR1019860001276A priority patent/KR940000905B1/en
Priority to PCT/JP1986/000103 priority patent/WO1986005320A1/en
Priority to DE8686901517A priority patent/DE3680623D1/en
Priority to EP86901517A priority patent/EP0216933B1/en
Publication of JPS61199640A publication Critical patent/JPS61199640A/en
Publication of JPH0691073B2 publication Critical patent/JPH0691073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer

Abstract

PURPOSE:To enable to uniformly form a desired atom introducing region on the surface layer part of a substrate by a method wherein a device with which an energy beam, to be used for photo-decomposition of gas, is made to irradiate almost in parallel with the surface of the substrate and another device with which an energy beam to be used to accelerate an oxidative reaction are provided. CONSTITUTION:The laser beam (a) of an XeCl excimer laser device 7, which is an energy beam to be made to irradiate almost in parallel with a substrate 2, is made to irradiate on O3/O2 gas which is strong reactive gas. Then, the energy of the laser beam (a) is light-absorbed and light-decomposed, and the oxygen atoms O* of excitation state is formed. As said oxygen atoms of excita tion state has strong oxidizing strength, a rapid oxidative reaction can be accom plished. Accordingly, a uniform oxide film which is fully oxidized can be formed on a substrate at a high speed. On the other hand, the laser beam (b) of an XeF excimer laser device 6 is directly made to irradiate on the silicon substrate 2 which is the base material, the surface layer part only of the silicon substrate is heated up, and the rapid formation of an oxide film by photo-decomposition can be accelerated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 一 本発明は、原子の導入装置に関し、特に半導体の表層部
に酸素を導入して酸化膜を形成する装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an atom introduction device, and more particularly to a device for introducing oxygen into the surface layer of a semiconductor to form an oxide film.

〔従来の技術〕[Conventional technology]

近年の半導体装置の製造工程においては、酸化膜形成が
不可欠な技術になっている。
In recent years, oxide film formation has become an essential technology in the manufacturing process of semiconductor devices.

従来、半導体装置の製造工程の中でもシリコン基板など
の半導体基板上に酸化膜を形成する方法としでは、たと
えば、乾燥酸化、水蒸気酸化などの熱酸化による方法や
、気相成長法などが知られており、これら種々の方法に
応じた装置によって酸化膜が形成されている。
Conventionally, methods for forming oxide films on semiconductor substrates such as silicon substrates in the manufacturing process of semiconductor devices include thermal oxidation methods such as dry oxidation and steam oxidation, and vapor phase growth methods. Oxide films are formed using apparatuses according to these various methods.

しかしながら、技術の進歩に伴う歩留り向上の要求や、
平面的のみならず立体的な微細化の要求があり、これら
の要求に答える技術として低温で迅速かつ高精度に酸化
膜を形成する方法が求められ、これに応する一例として
、第3図に示すようなパルスレーザ−であるXeClエ
キシマレーザ−41を使用し、反応室44に半導体基板
42を配置し、この反応室44に酸素ガスボンベ43が
ら酸素を送ってこの反応室44を酸素雰囲気とし、上記
XeClエキシマレーザ−41を照射して上記半導体基
体42の表層に吸収させ表層部のみを瞬時加熱して、表
層部分に酸化膜を迅速に形成するとともに、この内部側
の歪などの発生を防止するような酸化膜の形成の装置が
知られている。
However, the demand for yield improvement due to technological advances,
There is a demand for not only two-dimensional but also three-dimensional miniaturization, and a method for forming oxide films quickly and with high precision at low temperatures is required as a technology to meet these demands. Using a XeCl excimer laser 41 which is a pulsed laser as shown, a semiconductor substrate 42 is placed in a reaction chamber 44, and oxygen is sent to the reaction chamber 44 from an oxygen gas cylinder 43 to create an oxygen atmosphere in the reaction chamber 44. The XeCl excimer laser 41 is irradiated and absorbed into the surface layer of the semiconductor substrate 42 to instantaneously heat only the surface layer, thereby quickly forming an oxide film on the surface layer and preventing the occurrence of distortion on the inside side. An apparatus for forming an oxide film is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のように、XeCIエキシマレーザ−41などの短
波長パルスレーザ−を使用する装置には、高速に酸化膜
を形成できる他、低温で半導体基板42内部にダメージ
を与えることなく酸化を行うことができるという長所が
ある。しかし、雰囲気を酸素o2にすることでは表面の
酸化反応速度が遅く、十分に短波長レーザーの性能を引
き出せないのみならず、酸化反応が瞬時がっ低温で行わ
れるため、SiOと5i02とが併存するような不均一
な酸化膜が形成されるおそれもあり、また、酸素原子の
導入に限らず、たとえば窒化膜の形成についても同様な
問題点があった。
As mentioned above, an apparatus using a short wavelength pulsed laser such as the XeCI excimer laser 41 can not only form an oxide film at high speed but also perform oxidation at low temperatures without damaging the inside of the semiconductor substrate 42. It has the advantage of being possible. However, if the atmosphere is oxygen O2, the oxidation reaction rate on the surface is slow, and not only is it not possible to bring out the performance of the short wavelength laser sufficiently, but also the oxidation reaction is instantaneous and takes place at a low temperature, so SiO and 5i02 coexist. There is a risk that a non-uniform oxide film may be formed, and similar problems arise not only in the introduction of oxygen atoms but also in the formation of nitride films, for example.

そこで本発明は、このような問題点に鑑み、基体の表層
部分に高速でかつ均一に所望の原子の導入領域たとえば
酸化膜を形成する装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide an apparatus for forming a desired atomic introduction region, such as an oxide film, at high speed and uniformly on the surface layer of a substrate.

c問題点を解決するための手段〕 光分解可能なガス中の構成原子を基体に導入する装置に
おいて、上記ガスを光分解させるためのエネルギービー
ムを上記基体表面と略平行に照射する手段と、上記原子
と上記基体との反応を促進させるためのエネルギービー
ムを上記基体表面に照射するための手段とを有する原子
の導入装置により上述の問題点を解決する。
Means for Solving Problem c] In an apparatus for introducing constituent atoms in a photodegradable gas into a substrate, means for irradiating an energy beam substantially parallel to the surface of the substrate for photodecomposing the gas; The above problem is solved by an atom introduction device having means for irradiating the surface of the substrate with an energy beam for promoting the reaction between the atoms and the substrate.

〔作用〕[Effect]

本発明の導入装置は、光分解可能なガス(以下、強反応
性ガスという。)の雰囲気の反応室内に基体を配置し、
上記基体表面と略平行にエネルギービームを照射する手
段により、上記基体表面近傍の上記強反応性ガスを、基
体表面上で均一かつ効率良く光分解し、この光分解した
強反応性ガスの構成原子が、他のエネルギービームによ
って反応促進された基体の構成原子と容易に結合するこ
とによって容易かつ高速に上記強反応性ガスの構成原子
を基体内に導入する。
The introduction device of the present invention places a substrate in a reaction chamber in an atmosphere of a photodegradable gas (hereinafter referred to as a strongly reactive gas),
By means of irradiating an energy beam approximately parallel to the surface of the substrate, the strongly reactive gas near the surface of the substrate is photolyzed uniformly and efficiently on the surface of the substrate, and the constituent atoms of the photolyzed strongly reactive gas are However, the constituent atoms of the strongly reactive gas are easily and rapidly introduced into the substrate by easily bonding with the constituent atoms of the substrate whose reaction has been promoted by other energy beams.

〔実施例〕〔Example〕

本発明の好適な実施例を図面を参照しながら説明する。 Preferred embodiments of the present invention will be described with reference to the drawings.

本発明の第1の実施例では、基体と略平行に照射される
エネルギービームに短波長のパルスレーザ−であるXe
Clエキシマレーザ−(波長308nm)を使用し、基
体に直接照射されこの基体の加熱に供し反応を促進する
エネルギービームに短波長のパルスレーザ−であるXe
Fエキシマレーザ−(波長350nm)を使用する。ま
た、強反応性ガスとしてオゾンと酸素の混合ガス(分圧
0.5気圧の02ガスおよび分圧0.5気圧の1%の0
3ガスを含むo2ガスの混合ガス。以下、該混合ガスを
03102ガスと称す。)を使用し、この混合ガスの雰
囲気中で基体であるシリコン基板に酸素原子を導入して
酸化膜を形成する導入装置を説明する。
In the first embodiment of the present invention, the energy beam irradiated approximately parallel to the substrate is a short wavelength pulsed laser.
A Cl excimer laser (wavelength 308 nm) is used, and an energy beam that is directly irradiated onto the substrate to heat the substrate and promote the reaction is a short wavelength pulsed laser such as Xe.
F excimer laser (wavelength 350 nm) is used. In addition, a mixed gas of ozone and oxygen (02 gas with a partial pressure of 0.5 atm and 1% 02 gas with a partial pressure of 0.5 atm) is used as a strongly reactive gas.
A mixed gas of O2 gas containing 3 gases. Hereinafter, this mixed gas will be referred to as 03102 gas. ) is used to introduce oxygen atoms into a silicon substrate as a base in an atmosphere of this mixed gas to form an oxide film.

先ず、この導入装置の動作原理を説明すると、基体と略
平行に照射されるエネルギービームであるXeClエキ
シマレーザ−装置7のレーザービームaが、強反応性ガ
スである03102ガスに照射する。すなわち、該レー
ザービームaの03102ガスに対する照射によって、
レーザービームaのエネルギーが光吸収され、 Q3−Lx・02 +Q本 という光分解によって、励起状態の酸素原子0本が生成
される。この生成された励起状態の酸素原子は酸化力が
強いため迅速な酸化反応を実現でき、従って、基板には
、高速にかつ十分に酸化されて均一な酸化膜が形成され
る。
First, to explain the operating principle of this introduction device, the laser beam a of the XeCl excimer laser device 7, which is an energy beam irradiated substantially parallel to the substrate, irradiates the 03102 gas, which is a strongly reactive gas. That is, by irradiating the 03102 gas with the laser beam a,
The energy of the laser beam a is optically absorbed, and 0 oxygen atoms in an excited state are generated by photolysis of Q3-Lx·02 +Q atoms. Since the generated excited oxygen atoms have strong oxidizing power, a rapid oxidation reaction can be realized, and therefore, a uniform oxide film is formed on the substrate by being oxidized quickly and sufficiently.

一方、XeFエキシマレーザ−装置6のレーザー ビー
ムbは、基体であるシリコン基板2に直接照射され、該
シリコン基板の表層部のみを加熱して、上記光分解によ
る迅速な酸化膜形成を助長する。すなわち、上記XeC
Iエキシマレーザ−装置7のレーザービームaと上記X
eFエキシマレーザー装置6のレーザービームbの2つ
のエネルギービームの相乗作用によって酸化膜を高速に
形成するものである。ここでシリコン基板2の表層部分
で起こる反応は、 a)  03 +S i→s i O+02及び、 b)  SiO+03−=SiO2+02という二段階
の反応によって進行していると考えられ、シリコン基板
2の構成原子であるシリコン原子との反応が、上記光分
解の作用と相まって−層高速の酸化膜を形成できる。
On the other hand, the laser beam b of the XeF excimer laser device 6 is directly irradiated onto the silicon substrate 2, which is the base body, and heats only the surface layer of the silicon substrate, thereby promoting the rapid formation of an oxide film by the photodecomposition. That is, the above XeC
Laser beam a of I excimer laser device 7 and the above X
The oxide film is formed at a high speed by the synergistic action of the two energy beams of the laser beam b of the eF excimer laser device 6. Here, the reaction occurring in the surface layer of the silicon substrate 2 is considered to proceed in two steps: a) 03 +S i → s i O+02 and b) SiO+03-=SiO2+02, and the constituent atoms of the silicon substrate 2 The reaction with silicon atoms, combined with the above-mentioned photodecomposition effect, enables the formation of an oxide film at high speed.

第1図に示すように、上記原理に基づく導入装置1の構
造は、シリコン基板2を固定しこのシリコン基板2の表
層部の酸化膜形成が行われる反応室3と、この反応室3
の上部に取り付けられ石英窓4を介して上記シリコン基
板2に照射されるXeFエキシマレーザ−装置6と、上
記反応室3の側方部に取り付けられ石英窓8を介して上
記03102ガス雰囲気に上記シリコン基板2と略平行
に照射されるXeClエキシマレーザ−装置7とを有し
、さらに、上記反応室3に給気口9を介して強反応性ガ
スである上記0310!1ガスが送られる構造になって
いる。
As shown in FIG. 1, the structure of the introduction device 1 based on the above principle includes a reaction chamber 3 in which a silicon substrate 2 is fixed and an oxide film is formed on the surface layer of the silicon substrate 2;
A XeF excimer laser device 6 is attached to the upper part of the reaction chamber 3 and irradiates the silicon substrate 2 through the quartz window 4, and a It has a XeCl excimer laser device 7 that irradiates substantially parallel to the silicon substrate 2, and further has a structure in which the 0310!1 gas, which is a strongly reactive gas, is sent to the reaction chamber 3 through the air supply port 9. It has become.

そして、上記シリコン基板2の表層部に対する酸化膜の
形成にあたっては、上記XeC1エキシマレーザ−装置
7のレーザービームaは、上記03102ガスの光分解
を惹起させ、励起状態の酸素原子を生成し、上記シリコ
ン基板2への酸素原子の導入が容易になるような状態を
形成する。一方、上記XeFエキシマレーザー装置6の
レーザービームbは、その照射によってシリコン基板2
の表層部のみを予備加熱し、これによって、上記シリコ
ン基板2の構成原子であるシリコン原子と上記光分解に
よって容易に導入される酸素原子を結合する。すなわち
、上述したこの2つレーザービームa、bの相乗作用に
よって、容易かつ迅速に導入領域である酸化膜を形成す
ることができる。
In forming an oxide film on the surface layer of the silicon substrate 2, the laser beam a of the XeC1 excimer laser device 7 causes photolysis of the 03102 gas, generates excited oxygen atoms, and generates excited oxygen atoms. A condition is created in which oxygen atoms can be easily introduced into the silicon substrate 2. On the other hand, the laser beam b of the XeF excimer laser device 6 irradiates the silicon substrate 2.
Only the surface layer of the silicon substrate 2 is preheated, thereby bonding silicon atoms, which are constituent atoms of the silicon substrate 2, and oxygen atoms, which are easily introduced by the photolysis. That is, the synergistic effect of the two laser beams a and b described above makes it possible to form the oxide film, which is the introduction region, easily and quickly.

この第1の実施例に示す原子の導入装置lは、2つのレ
ーザービームa、bの上記相乗作用による高速な酸化膜
形成のみならず、他の効果も挙げることができる。すな
わち、光分解を起こさせる上記XeClエキシマレーザ
−装置7のレーザービームaは、上記シリコン基板2と
略平行に照射されるため、シリコン基板2表面の極近傍
で光分解を起こさせることができ、シリコン基板2の表
面に対して一様に励起状態の酸素原子を導入することが
できる。また、光分解を起こさせる上記XeClエキシ
マレーザ−装置7のレーザービームaは、局部的にシリ
コン基板2を照射することもなく、従って、照射した部
分に歪を与えることもない、さらに、光分解を起こさせ
る領域をシリコン基板2の表面上に広くとることができ
、さらにまた、レーザービームaのスキャニング方向も
シリコン基板2の表面が水平に配置された場合には、水
平方向の走査のみで足り、膜厚が均一で均質な酸化膜の
形成を行うことができる。また、この原子の導入装置1
は、単一のレーザービームでなく2つの目的のことなる
レーザービームa、bの複合作用によるため、各レーザ
ービームの操作によって膜厚の制御が容易である。
The atom introduction device 1 shown in the first embodiment not only forms an oxide film at high speed due to the synergistic action of the two laser beams a and b, but also has other effects. That is, since the laser beam a of the XeCl excimer laser device 7 that causes photodecomposition is irradiated substantially parallel to the silicon substrate 2, it is possible to cause photodecomposition very close to the surface of the silicon substrate 2. Excited oxygen atoms can be uniformly introduced onto the surface of the silicon substrate 2. Further, the laser beam a of the XeCl excimer laser device 7 that causes photolysis does not locally irradiate the silicon substrate 2, and therefore does not cause distortion to the irradiated area. It is possible to secure a wide area on the surface of the silicon substrate 2 in which the laser beam a occurs, and furthermore, when the surface of the silicon substrate 2 is arranged horizontally, the scanning direction of the laser beam a is only required to be scanned in the horizontal direction. , it is possible to form a homogeneous oxide film with uniform thickness. In addition, this atom introduction device 1
Since this is based on the combined effect of two laser beams a and b having different purposes rather than a single laser beam, the film thickness can be easily controlled by manipulating each laser beam.

次に、第2の実施例として、基体に略平行に照射するエ
ネルギービームとして短波長のパルスレーザ−であるX
eClエキシマレーザ−を使用し、基体を予備加熱する
だけでなく基体の構成原子の間のボンディングを切断す
るエネルギービームとして同じく短波長のパルスレーザ
−であるKrFエキシマレーザ−(波長249nm)を
使用した例を説明する。
Next, as a second embodiment, an X
An eCl excimer laser was used, and a KrF excimer laser (wavelength 249 nm), which is also a short-wavelength pulsed laser, was used as an energy beam to not only preheat the substrate but also to cut the bonds between constituent atoms of the substrate. Explain an example.

基体を、上記第1の実施例と同様にシリコン基板12を
選択した場合には、第4図に示すように、Si原子の間
のボンディング切断は波長に依存し、およそ260nm
以下の波長で生ずることが知られている。従って、上記
KrFエキシマレーザ−を上記シリコン基板12に照射
したときは、照射されたシリコン基板12の表層部のシ
リコン原子のボンディング切断が生ずる。この第2の実
施例は、この原理を応用したものである。
When the silicon substrate 12 is selected as the substrate in the same manner as in the first embodiment, as shown in FIG.
It is known to occur at the following wavelengths. Therefore, when the silicon substrate 12 is irradiated with the KrF excimer laser, bonding and cutting of silicon atoms in the surface layer of the irradiated silicon substrate 12 occurs. This second embodiment is an application of this principle.

この第2の実施例の導入装置11は、第2図に示すよう
に、シリコン基板12を固定しこのシリコン基板12の
表層部の酸化膜形成が行われる反応室13と、この反応
室13の上部に取り付けられ石英窓14を介して上記シ
リコン基板12に照射されるKrFエキシマレーザ−装
置16と、上記反応室13の側方部に取り付けられ石英
窓18を介して上記03102ガス雰囲気に上記シリコ
ン基板12と略平行に照射されるXeCIエキシマレー
ザ−装置17とを有し、さらに、上記反応室13に給気
口19を介して強反応性ガスである上記03102ガス
が送られる構造になっている。
As shown in FIG. 2, the introduction device 11 of this second embodiment includes a reaction chamber 13 in which a silicon substrate 12 is fixed and an oxide film is formed on the surface layer of the silicon substrate 12, and A KrF excimer laser device 16 is attached to the upper part and irradiates the silicon substrate 12 through the quartz window 14. A KrF excimer laser device 16 is attached to the side of the reaction chamber 13 and irradiates the silicon substrate 12 through the quartz window 18. It has a XeCI excimer laser device 17 that irradiates substantially parallel to the substrate 12, and has a structure in which the 03102 gas, which is a strongly reactive gas, is sent to the reaction chamber 13 through the air supply port 19. There is.

そして、この第2の実施例に基づく導入装置1lは、上
記第1の実施例に準じ、シリコン基板12と略平行に照
射される上記XeClエキシマレーザ−装置17のレー
ザービームCは、03102ガスの光分解を起こさせる
が、一方上記KrFエキシマレーザー装置16のレーザ
ービームdは、上記シリコン基板12の表層部の予備加
熱のみならず、短波長であるため上記シリコン基板12
の構成原子であるシリコン原子のボンディング切断を引
き起こすことができる。そして、このボンディング切断
されたシリコン原子は、上記XeClエキシマレーザ−
装置17のレーザービームCによって光分解され、励起
状態となった酸素原子0本と容易に結合することができ
るため、一層迅速に酸化膜を形成することができる。ま
た、この場合も、上記第1−の実施例と同様に、光分解
を起こさせる上記XeC1エキシマレーザ−装置17の
レーザービームCは、上記シリコン基板12と略平行に
照射されるため、シリコン基板12表面の極近傍で光分
解を起こさせることができ、シリコン基板12の表面に
対して一様に励起状態の酸素原子を導入することができ
る。また、光分解を起こさせる領域をシリコン基板12
の表面上に広くとることができ、さらにまた、レーザー
ビームCのスキャニング方向もシリコン基板12の表面
が水平に配置された場合には、水平方向の走査のみで足
り、膜厚が均一で均質な酸化膜の形成を行うことができ
る。また、この原子の導入装置11は、単一のレーザー
ビームでなく2つの目的のことなるレーザービームc、
dの複合作用によるため、各レーザービームの操作によ
って膜厚の制御が容易である。
The introduction device 1l based on the second embodiment is similar to the first embodiment, and the laser beam C of the XeCl excimer laser device 17, which is irradiated approximately parallel to the silicon substrate 12, is of 03102 gas. On the other hand, the laser beam d of the KrF excimer laser device 16 not only preheats the surface layer of the silicon substrate 12 but also heats the silicon substrate 12 due to its short wavelength.
This can cause bonding and disconnection of silicon atoms, which are the constituent atoms of . The silicon atoms cut off by bonding are then exposed to the XeCl excimer laser.
Since it can be easily combined with zero oxygen atoms that have been photolyzed and brought into an excited state by the laser beam C of the device 17, an oxide film can be formed more quickly. Also in this case, as in the first embodiment, the laser beam C of the XeC1 excimer laser device 17 that causes photolysis is irradiated approximately parallel to the silicon substrate 12, so that the silicon substrate Photodecomposition can be caused very close to the surface of the silicon substrate 12, and oxygen atoms in an excited state can be uniformly introduced onto the surface of the silicon substrate 12. In addition, the area where photodecomposition is to occur is set on the silicon substrate 12.
Further, when the surface of the silicon substrate 12 is placed horizontally, the scanning direction of the laser beam C can be scanned only in the horizontal direction, and the film thickness can be uniform and homogeneous. An oxide film can be formed. In addition, this atom introduction device 11 does not use a single laser beam, but a laser beam c with two different purposes.
Due to the combined effect of d, the film thickness can be easily controlled by operating each laser beam.

本発明の導入装置1.11に使用される強反応性ガスは
、上記第1ないし第2の実施例については、オゾンの混
合ガスについて説明したが、強反応性ガスはこれに限定
されず、たとえばNOガス、N20ガス、No2ガスや
ハロゲンであるCI。
Although the strongly reactive gas used in the introduction device 1.11 of the present invention is a mixed gas of ozone in the first and second embodiments, the strongly reactive gas is not limited to this. For example, CI which is NO gas, N20 gas, No2 gas and halogen.

等のガスや、ハロゲン化合物であるCC14やSF6な
どのガスあるいはこれらの組み合わせでもよく、さらに
窒化膜形成のためにアンモニアガスも使用することがで
き、また、ハロゲン等の種々の原子を導入するの通用す
ることができ、エネルギービームが照射された場合に、
光分解を生じて容易に基板の構成原子と結合するもので
あればいかなるものでもよい。
Gases such as halogen compounds such as CC14 and SF6, or a combination thereof may be used. Furthermore, ammonia gas may be used to form a nitride film, and various atoms such as halogen may be introduced. When the energy beam is irradiated,
Any material may be used as long as it undergoes photodecomposition and easily bonds to constituent atoms of the substrate.

また、基体に略平行に照射しこの基体の雰囲気ガスであ
る強反応性ガスを光分解するエネルギービームは、強反
応性ガスに応じて選択できるものであり、これらの関係
は波長によりすなわち加熱、光分解およびボンディング
切断という機能面から選択もしくは組み合わせることが
できる。−例として、第4図に示すようにNo2ガス、
N20ガスおよび02ガスを使用する場合は、No2は
244nm以下、N20は230 nm以下、o2は1
75nm以下の波長でそれぞれ光分解するため、例えば
、o2では、Xeレゾナンスランプ、F2エキシマレー
ザ−1ArFエキシマレーザ−などを使用することがで
き、またN20では、ArFエキシマレーザ−2重水素
ランプ、低圧水銀灯などを使用することができ、上述し
た03については、上記KrFエキシマレーザー1上記
低圧水銀灯、重水素ランプ、XeClエキシマレーザ−
などを使用することができ、これらのエネルギービーム
によって光分解を行い、容易に基板の構成原子と結合さ
せる。またさらに、エネルギービームは、各種レーザー
ビームの高次の高調波を使用することもでき、エレクト
ロンビーム、イオンビームでもよい。
In addition, the energy beam that is irradiated approximately parallel to the substrate and photolyzes the strongly reactive gas that is the atmospheric gas of the substrate can be selected depending on the strongly reactive gas, and the relationship between these depends on the wavelength, that is, heating, They can be selected or combined from the functional aspects of photolysis and bonding/cutting. - For example, as shown in Figure 4, No2 gas,
When using N20 gas and 02 gas, No2 should be 244 nm or less, N20 should be 230 nm or less, and O2 should be 1
For example, for O2, a Xe resonance lamp, F2 excimer laser-1ArF excimer laser, etc. can be used, and for N20, an ArF excimer laser-2 deuterium lamp, a low-pressure A mercury lamp, etc. can be used, and for 03 mentioned above, the above KrF excimer laser 1 the above low pressure mercury lamp, deuterium lamp, XeCl excimer laser
These energy beams perform photolysis and easily combine with constituent atoms of the substrate. Furthermore, the energy beam may be a high-order harmonic of various laser beams, or may be an electron beam or an ion beam.

また、基体としては、上述したシリコン基板に限定され
ずGaAs、Ta、Mo5Alなどの基板でもよく、G
aAs基板の場合は、基板内部の砒素の発生を防止し迅
速に酸化膜を形成することもできる。
Furthermore, the substrate is not limited to the silicon substrate mentioned above, but may also be a substrate of GaAs, Ta, Mo5Al, etc.
In the case of an aAs substrate, generation of arsenic inside the substrate can be prevented and an oxide film can be formed quickly.

また、上記強反応性ガスの圧力については、上記第1お
よび第2の実施例の03ガス分圧に限定されず、たとえ
ば03ガスの分圧を高くすることにより、あるいは圧力
を常圧から高圧へと制御することにより、より反応速度
を向上させることができる。
Furthermore, the pressure of the strongly reactive gas is not limited to the partial pressure of the 03 gas in the first and second embodiments, for example, by increasing the partial pressure of the 03 gas, or by changing the pressure from normal pressure to a high pressure. By controlling the reaction rate, the reaction rate can be further improved.

また、上記第1の実施例及び上記第2の実施例について
、基体を予備加熱するエネルギービームとしては、上述
の例に限定されずに、たとえばArレーザー、XeC1
エキシマレーザ−1ArFエキシマレーザ−1さらには
、ルビーレーザー、YAGレーザー等の高次の高調波な
どを使用することができる。またさらに、低圧水銀ラン
プ、エレクトロンビーム、イオンビーム等の光源を使用
することもできる。
Further, in the first embodiment and the second embodiment, the energy beam for preheating the substrate is not limited to the above example, but may be, for example, an Ar laser, a XeC1
Excimer laser 1 ArF excimer laser 1 Furthermore, high-order harmonics such as ruby laser and YAG laser can be used. Furthermore, light sources such as low-pressure mercury lamps, electron beams, ion beams, etc. can also be used.

〔発明の効果〕〔Effect of the invention〕

本発明に係る導入装置を使用することによって、たとえ
ばシリコン基板などの半導体等の基体にたとえば酸素原
子などの光分解可能なガスの構成原子を容易にかつ迅速
に導入することができる。また、導入により形成された
反応層は、均一かつ均質であり、さらにその膜厚の制御
も容易である等の優れた利点を有している。
By using the introduction device according to the present invention, constituent atoms of a photodegradable gas such as oxygen atoms can be easily and quickly introduced into a substrate such as a semiconductor such as a silicon substrate. Further, the reaction layer formed by the introduction is uniform and homogeneous, and has excellent advantages such as easy control of the film thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1vlJは第1の実施例を説明する導入装置の概略構
造図であり、第2図は第2の実施例に例示した導入装置
の概略構造図であり、第3図は従来の導入装置の一例と
しての酸化膜形成装置を示す構造図であり、第4図はエ
ネルギービームの波長による特性を説明する特性図であ
る。 2.12・・・基体(シリコン基板) 6・・・・・・XeFエキシマレーザ−装置7・・・・
・・XeClエキシマレーザ−装置16・・・・・Kr
Fエキシマレーザ−装置17・・・・・XeC1エキシ
マレーザ−装置時 許 出 願 人  ソニー株式会社
代理人   弁理士     小池 見間      
   田村榮− ぺδ ″     へ 第3− 第4vs 手続補正書(自船 1、事件の表示 昭和60年 特許願 第40177号 2、発明の名称 原子の導入装置 3、補正をする者 事件との関係  特許出願人 住所 東京部品用区北品用6丁目7番35号名称 (2
1B)  ソ ニ − 株 式 会 社代表者大賀典雄 4、代理人 住所 〒105東京都港区虎ノ門二丁目6番4号第11
森ビル11階 Tn (50B) 8266 f@自 
 発 7、補正の内容 明細書、第14頁第8行目〜第11行目に記載される「
上述したシリコン基板に限定されずGaAs、Tas 
Mo、A Iなどの基板でもよく、GaAs基板の場合
は、基板内部の砒素を発生を防止し」を 「上述したシリコン基板に限定されずゲルマニウム基板
やGaAs、InP、GaP等の化合物半導体の基板、
Ta、Mo、A1などの金属の基板でもよく、GaAs
5 I nPSGaP等の基板の場合は、基板内部の砒
素や燐等の発生を防止し」と補正する。 以上
1vlJ is a schematic structural diagram of the introducing device for explaining the first embodiment, FIG. 2 is a schematic structural diagram of the introducing device illustrated in the second embodiment, and FIG. 3 is a schematic structural diagram of the introducing device illustrated in the second embodiment. FIG. 4 is a structural diagram showing an oxide film forming apparatus as an example, and FIG. 4 is a characteristic diagram illustrating characteristics depending on the wavelength of an energy beam. 2.12...Base (silicon substrate) 6...XeF excimer laser device 7...
...XeCl excimer laser device 16...Kr
F excimer laser device 17...XeC1 excimer laser device Applicant: Sony Corporation Representative Patent attorney Koike Mima
Ei Tamura - Pe δ '' to 3rd - 4th vs Written amendment of procedure (own ship 1, indication of the case 1985 Patent Application No. 40177 2, name of invention Atom introduction device 3, person making the amendment Relationship with the case) Patent Applicant Address: 6-7-35, Kitashina-yo, Tokyo Parts-Yo-ku Name (2)
1B) Sony Corporation Representative: Norio Oga 4, Agent address: 11, 2-6-4 Toranomon, Minato-ku, Tokyo 105
Mori Building 11th floor Tn (50B) 8266 f@self
Issue 7, Statement of Contents of Amendment, page 14, lines 8 to 11, “
Not limited to the silicon substrate mentioned above, GaAs, Tas
A substrate made of Mo, AI, etc. may be used, and in the case of a GaAs substrate, it is possible to prevent the generation of arsenic inside the substrate. ,
The substrate may be made of metal such as Ta, Mo, or A1, or may be made of GaAs.
In the case of a substrate such as 5 I nPSGaP, it is corrected to prevent the generation of arsenic, phosphorus, etc. inside the substrate. that's all

Claims (1)

【特許請求の範囲】[Claims] 光分解可能なガス中の構成原子を基体に導入する装置に
おいて、上記ガスを光分解させるためのエネルギービー
ムを上記基体表面と略平行に照射する手段と、上記原子
と上記基体との反応を促進させるためのエネルギービー
ムを上記基体表面に照射するための手段とを有する原子
の導入装置。
In an apparatus for introducing constituent atoms in a photodegradable gas into a substrate, means for irradiating an energy beam substantially parallel to the surface of the substrate for photodecomposing the gas, and promoting a reaction between the atoms and the substrate. and means for irradiating the surface of the substrate with an energy beam for causing the atom to be introduced into the substrate.
JP60040177A 1985-02-28 1985-02-28 Atom introduction device Expired - Fee Related JPH0691073B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60040177A JPH0691073B2 (en) 1985-02-28 1985-02-28 Atom introduction device
KR1019860001276A KR940000905B1 (en) 1985-02-28 1986-02-24 Forming method of oxide film
PCT/JP1986/000103 WO1986005320A1 (en) 1985-02-28 1986-02-28 Method and system for fabricating insulating layer on semiconductor substrate surface
DE8686901517A DE3680623D1 (en) 1985-02-28 1986-02-28 METHOD FOR PRODUCING INSULATING OXIDE LAYERS ON A SEMICONDUCTOR BODY.
EP86901517A EP0216933B1 (en) 1985-02-28 1986-02-28 Method for fabricating an insulating oxide layer on semiconductor substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040177A JPH0691073B2 (en) 1985-02-28 1985-02-28 Atom introduction device

Publications (2)

Publication Number Publication Date
JPS61199640A true JPS61199640A (en) 1986-09-04
JPH0691073B2 JPH0691073B2 (en) 1994-11-14

Family

ID=12573490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040177A Expired - Fee Related JPH0691073B2 (en) 1985-02-28 1985-02-28 Atom introduction device

Country Status (2)

Country Link
JP (1) JPH0691073B2 (en)
KR (1) KR940000905B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104196A (en) * 1991-10-04 1994-04-15 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
US6660575B1 (en) 1991-10-04 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
JP2009188282A (en) * 2008-02-08 2009-08-20 National Institute Of Advanced Industrial & Technology Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595621A (en) * 1982-07-01 1984-01-12 Nec Corp Forming method for thin-film
JPS5932122A (en) * 1982-08-16 1984-02-21 Hitachi Ltd Surface character modifying apparatus
JPS5940525A (en) * 1982-08-30 1984-03-06 Mitsubishi Electric Corp Growth of film
JPS5961919A (en) * 1982-10-01 1984-04-09 Hitachi Ltd Manufacture of thin film
JPS59182530A (en) * 1983-04-01 1984-10-17 Hitachi Ltd Formation of semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595621A (en) * 1982-07-01 1984-01-12 Nec Corp Forming method for thin-film
JPS5932122A (en) * 1982-08-16 1984-02-21 Hitachi Ltd Surface character modifying apparatus
JPS5940525A (en) * 1982-08-30 1984-03-06 Mitsubishi Electric Corp Growth of film
JPS5961919A (en) * 1982-10-01 1984-04-09 Hitachi Ltd Manufacture of thin film
JPS59182530A (en) * 1983-04-01 1984-10-17 Hitachi Ltd Formation of semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104196A (en) * 1991-10-04 1994-04-15 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
US6660575B1 (en) 1991-10-04 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
US6919239B2 (en) 1991-10-04 2005-07-19 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
JP2009188282A (en) * 2008-02-08 2009-08-20 National Institute Of Advanced Industrial & Technology Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same

Also Published As

Publication number Publication date
KR860006833A (en) 1986-09-15
JPH0691073B2 (en) 1994-11-14
KR940000905B1 (en) 1994-02-04

Similar Documents

Publication Publication Date Title
JP3190653B2 (en) Annealing method and annealing device
JPS61174639A (en) Method of photo etching
JPS61199640A (en) Atom introducing device
JPH04167985A (en) Method for cutting off wafer
JPS63224233A (en) Surface treatment
JPS61199639A (en) Method for oxidation of semiconductor
JPH01164781A (en) Local heat treatment with beam
JPS5940525A (en) Growth of film
JPH0982803A (en) Method and device for formation of via hole
JPS61199638A (en) Method for formation of insulating film
JPS6132429A (en) Device for manufacturing semiconductor device
JPH0729839A (en) Heat treatment furnace and heat treatment method employing it
WO1986005320A1 (en) Method and system for fabricating insulating layer on semiconductor substrate surface
JPH01175231A (en) Ashing
JPS6380989A (en) Cutting method for silicon nitride sintered material
JPH0974067A (en) Doping method and doping device
JPS60216561A (en) Heat-treating method
JPH04176126A (en) Method and apparatus for treating substrate
JPH05102130A (en) Forming method for oxide film
JPH04141589A (en) Photo treatment and photo treating device
JPS61121432A (en) Manufacturing device of reduced pressure cvd film
JPS62163333A (en) Plasma oxidation method and device thereof
JPS60162776A (en) Plasma treating device
JPS60216556A (en) Manufacture of semiconductor of semiconductor device
JPS6197912A (en) Cvd equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees