JPS5950564A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS5950564A
JPS5950564A JP16171682A JP16171682A JPS5950564A JP S5950564 A JPS5950564 A JP S5950564A JP 16171682 A JP16171682 A JP 16171682A JP 16171682 A JP16171682 A JP 16171682A JP S5950564 A JPS5950564 A JP S5950564A
Authority
JP
Japan
Prior art keywords
layer
insulator layer
insulator
thin film
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16171682A
Other languages
Japanese (ja)
Other versions
JPH0351095B2 (en
Inventor
Mamoru Takeda
守 竹田
Isao Oota
勲夫 太田
Seiji Kiyokawa
清川 勢司
Isako Kikuchi
菊池 伊佐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16171682A priority Critical patent/JPS5950564A/en
Publication of JPS5950564A publication Critical patent/JPS5950564A/en
Publication of JPH0351095B2 publication Critical patent/JPH0351095B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To stabilize characteristics by a method wherein a thin film transistor is manufactured by covering an amorphous Si layer with an insulation layer. CONSTITUTION:An insulator layer 6 is patterned after an insulator layer 3, the amorphous Si layer 4, and the insulator layer 6 are formed, by plasma chemical vapor growing method, on a glass insulation substrate 1 wherein at least a gate electrode 2 is formed. Next, after removing a resist 7, the Si layer 4 is etched with the insulator layer 6 as the mask. Further, a part on the Si layer and a part of the insulator layer 3 are removed. A clean surface of the Si layer 4 is exposed by etching, and accordingly source-drain electrodes are formed. In this manner, the surface of the amorphous Si layer 4 is not exposed during the manufacture but protected from a chemical at the time of patterning; therefore the stable thin film transistor can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プラズマ化学気相成長法により作製した非晶
質シリコン膜を半導体層として用いる薄膜トランジスタ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a thin film transistor using an amorphous silicon film produced by plasma chemical vapor deposition as a semiconductor layer.

従来例の構成とその問題点 従来、薄膜トランジスタ(以下TPTと云う)は、非晶
質シリコン膜(以下a−8i膜と云う)を半導体層とし
て用いる場合、第1図に示す如く絶縁基板1上に、ゲー
ト電極2.絶縁体層3.a−8i半導体層4をこの順序
に形成し、最後にソース。
Conventional structure and its problems Conventionally, when a thin film transistor (hereinafter referred to as TPT) uses an amorphous silicon film (hereinafter referred to as A-8I film) as a semiconductor layer, it is formed on an insulating substrate 1 as shown in FIG. , gate electrode 2. Insulator layer 3. The a-8i semiconductor layer 4 is formed in this order, and finally the source.

ドレイン電極5を設けた構成を有している。a−8i層
4としては、ソース、ドレイン電極5とオーミックコン
タクトを取るために、不純物をa−Si層層中中拡散す
る場合もある。
It has a structure in which a drain electrode 5 is provided. For the a-8i layer 4, impurities may be diffused into the a-Si layer in order to establish ohmic contact with the source and drain electrodes 5.

上記構成の大きl欠点は、a−3i層4の表面が、TP
Tを形成する間外気にさらさfるという点である。一般
に、プラズマ化学気相成長法(以下プラズマCvD法と
云う)で製膜さ扛たa−8i層は、単結晶Siに比較し
て多孔性であるため表面積が大きくなり、雰囲気の影響
を受けやすい。したがって、電極とのコンタクトのオー
ミック性、またa−3iそのものの物性の経時変化等に
より、TPT素子への悪影響がみらnる。このため、写
囲気の影響を出来る限り小さくしたTPT特性を得るに
は、なんらかの形でTFT形成中、a−3i表面を保護
する必要がある。
The major drawback of the above structure is that the surface of the a-3i layer 4 is
The point is that it is exposed to outside air while forming the T. In general, the A-8I layer formed by plasma chemical vapor deposition (hereinafter referred to as plasma CVD) is more porous than single-crystal Si, so its surface area is larger and it is less affected by the atmosphere. Cheap. Therefore, the TPT element is adversely affected by the ohmic nature of the contact with the electrode and by changes in the physical properties of a-3i itself over time. Therefore, in order to obtain TPT characteristics in which the influence of photoreflection is minimized, it is necessary to protect the a-3i surface in some way during TFT formation.

発明の目的 本発明はこのような点に鑑みて成さ几たもので、a−3
i層表面への悪影響を除去したTPTの製造方法を提供
するものである。
Purpose of the Invention The present invention has been made in view of the above points, and a-3
The present invention provides a method for manufacturing TPT that eliminates adverse effects on the surface of the i-layer.

発明の構成 不発明のTFTの製造方法は、少なくともゲート電極が
形成さnたガラス絶縁基板上に、プラズマCVD法で第
1の絶縁体層、a−8i層、第2の絶縁体層を連続して
形成する第1の工程と、第2の絶縁体層をフォトリソグ
ラフィにより所望の形状にバターニングする第2の工程
と、バターニングした第2の絶縁体層をマスクにしてa
−8i層をそnと同一形状にエツチングする第3の工程
と、第2の絶縁体層に2個の開孔部を設け、この開孔部
を介してa−3i層にソース、ドレイン電極を形成する
第4の工程の各工程を含むものである。
Structure of the Invention The method for manufacturing a TFT according to the invention includes sequentially forming a first insulating layer, an a-8i layer, and a second insulating layer by a plasma CVD method on a glass insulating substrate on which at least a gate electrode is formed. a second step of patterning the second insulator layer into a desired shape by photolithography; and a second step of patterning the second insulator layer into a desired shape by photolithography.
A third step of etching the -8i layer into the same shape as that of the second insulator layer, and forming two openings in the second insulating layer and connecting the source and drain electrodes to the a-3i layer through these openings. This includes each step of the fourth step of forming.

徴は、少なくともゲート電極2を設けたガラス基板1上
に、プラズマCVD法により絶縁体層3、a−3i層4
、さらに絶縁体層6を真空を破らず連続して形成するこ
とにある。さらに、本発明の第2の特徴は、TFTを形
成する上で、a−3i層4を所定の形状にバターニング
する際、a−3i層4上の絶縁体層6をあらかじめバタ
ーニングし、そ′i′Lをマスクにして、a−8i層4
を絶縁体層6と同一形状にエツチングすることにある。
The characteristic is that an insulator layer 3 and an a-3i layer 4 are formed by plasma CVD on a glass substrate 1 provided with at least a gate electrode 2.
Furthermore, the purpose is to form the insulating layer 6 continuously without breaking the vacuum. Furthermore, the second feature of the present invention is that when patterning the a-3i layer 4 into a predetermined shape in forming a TFT, the insulating layer 6 on the a-3i layer 4 is buttered in advance, Using that'i'L as a mask, a-8i layer 4
The purpose is to etch it into the same shape as the insulating layer 6.

実施例の説明 以下、本発明の実施例について図面を参照して詳細に説
明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第3図(A)に示す如く少くともゲート電極2を設けた
ガラス基板1上に、絶縁体層3.a−3i層4゜絶縁体
層6の3層を真空を破らず連続してプラズマCVD法で
製膜し、第3図(B)に示す如く最終製膜した絶縁体層
6を通常のフォ) l)ソグラフィを用いてバターニン
グする。絶縁体層3,6としては、二酸化シリコンある
いはチン化シリコンを用いる。a−3i層4上の絶縁体
層6のフォトリソグラフィにおいて、絶縁体層6が二酸
化シリコンの場合は、フォトレジストでマスクし、フッ
酸とフン化アンモニウムの混液(以下BHFと略丁)で
エツチングすることか可能である。寸だ、絶縁体層6と
してチン化シリコンを使用する場合、CVD法で形成し
たチン化シリコンは、BHFでエツチング出来ないが、
プラズマCVDで形成したチン化シリコンは、BHFに
よってエツチング可能であるため、通常のフォトリング
ラフィを使用できる。次に、絶縁体6上のレジスト7を
除去した後、この絶縁体層6をマスクにしてa−8i層
4をエツチングする。エツチング液としては、KoHあ
るいはNaOHの水溶液、またはA P W (Awi
nePyrocatechol Water )  f
用いる。NaOH20ダに対しH2O100ccのNa
OH水溶液を使用する場合、水溶液が65℃〜75℃で
a−3i層のエツチングレートは50〜10Q八/se
cテあった。a−8i層のエツチングの際、マスクとし
て用いる絶縁体層は、上述のエツチング液に侵さn:Z
いため、a−8i層だけの選択エツチングが可能である
。第3図(C)に絶縁体層6をマスクにして、エツチン
グしたa−8i層4の断面図を示す。さらに、第3図(
D)に示す如くソース、ドレイン電極を形成するため、
a−3i層4上の絶縁体層6の一部と、ゲート電極引き
出しのために絶縁体層3の一部をフォトリングラフィで
取り除く。このとき、はじめてTFTに関与する部分の
a−3i層4の表面8が露出する。
As shown in FIG. 3(A), an insulating layer 3. Three layers of the a-3i layer 4° insulator layer 6 are successively formed by plasma CVD without breaking the vacuum, and the final formed insulator layer 6 is deposited using a normal photoform as shown in FIG. 3(B). ) l) Buttering using lithography. As the insulator layers 3 and 6, silicon dioxide or silicon chloride is used. In the photolithography of the insulator layer 6 on the a-3i layer 4, if the insulator layer 6 is made of silicon dioxide, it is masked with a photoresist and etched with a mixed solution of hydrofluoric acid and ammonium fluoride (hereinafter abbreviated as BHF). It is possible to do so. When using silicon nitride as the insulator layer 6, silicon nitride formed by CVD cannot be etched with BHF.
Since silicon nitride formed by plasma CVD can be etched with BHF, ordinary photolithography can be used. Next, after removing the resist 7 on the insulator 6, the a-8i layer 4 is etched using the insulator layer 6 as a mask. As an etching solution, an aqueous solution of KoH or NaOH, or an aqueous solution of A P W (Awi
nePyrocatechol Water) f
use 100cc of H2O for 20 da of NaOH
When using an OH aqueous solution, the etching rate of the a-3i layer is 50 to 10Q8/se when the aqueous solution is 65°C to 75°C.
There was cte. During etching of the a-8i layer, the insulator layer used as a mask is eroded by the above-mentioned etching solution, and the n:Z
Therefore, selective etching of only the a-8i layer is possible. FIG. 3C shows a cross-sectional view of the a-8i layer 4 etched using the insulator layer 6 as a mask. Furthermore, Figure 3 (
To form source and drain electrodes as shown in D),
A part of the insulator layer 6 on the a-3i layer 4 and a part of the insulator layer 3 for drawing out the gate electrode are removed by photolithography. At this time, the surface 8 of the a-3i layer 4 that is involved in the TFT is exposed for the first time.

葦だa−8i層4上の絶縁体層6を、BHFでエツチン
グしているため、a−8i層4上に出来た酸化物もこの
エツチング液で同時に除去できるという効果をもつ。ソ
ース、ドレイン電極を設ける前にa−8iのエツチング
液で、a−8i層4の表面8に出来た酸化物を取り除く
ためのエツチングを行い、a−8i層4の清浄な面を露
出させ、この上にAβ膜を蒸着あるいはスパッターで設
け、所定の形状にエツチングして、第2図の工うなa−
3i層を半導体層として用いたTFTi形成する。
Since the insulator layer 6 on the A-8i layer 4 is etched with BHF, the oxide formed on the A-8i layer 4 can also be removed at the same time with this etching solution. Before providing the source and drain electrodes, etching is performed using an A-8I etching solution to remove the oxide formed on the surface 8 of the A-8I layer 4, exposing the clean surface of the A-8I layer 4. An Aβ film is deposited on top of this by vapor deposition or sputtering, and etched into a predetermined shape.
A TFTi using the 3i layer as a semiconductor layer is formed.

以上のように、本発明の方法によると、TPTの形成中
にa−3i層の表面が露出さnることがないため、フォ
トリングラフィでパターニングする際に薬品に対して保
護さ几、雰囲気に対して安定したTFTを形成すること
が可能である。さらに、a−3i層4上の絶縁体層6を
マスクにして、a−8i層4をパターニング出来、フi
トレジストを使用する場合に比較し、密着したマスクに
なり過多のエツチングのないパターニングが可能である
。そして、第2図に示すようにAdのソース、ドレイン
電極5の形成を、a−8i層4の表面が全く露出しない
、r、うにパターニングすると、最終のa−3i層の保
護膜f:も兼用することが可能となる。丑だ、ソース、
ドレイン電極のエツチングの際に発生する発生期の水素
によるa−8i層4への影響も、絶縁体層6で保護さて
しているため問題とならない。
As described above, according to the method of the present invention, the surface of the a-3i layer is not exposed during the formation of TPT, so it is protected from chemicals during patterning by photolithography. It is possible to form a TFT that is stable against. Furthermore, using the insulator layer 6 on the a-3i layer 4 as a mask, the a-8i layer 4 can be patterned, and the film can be patterned.
Compared to the case where a resist is used, the mask is in close contact and patterning without excessive etching is possible. Then, as shown in FIG. 2, when the Ad source and drain electrodes 5 are patterned in such a way that the surface of the a-8i layer 4 is not exposed at all, the final protective film f of the a-3i layer is also formed. It becomes possible to use it for both purposes. It's ox, sauce.
The influence of nascent hydrogen generated during etching of the drain electrode on the a-8i layer 4 does not pose a problem since it is protected by the insulator layer 6.

この工すにして形成したTPTの特性と、a−8i層4
の表面を露出して形成したTPTの特性の一例を、第4
図(A)と第4図(B)に示す。チャンネル長20 μ
m 、 f ヤ7ネル幅150 μm 、 a−8i層
4゜上部絶縁体層6と下部絶縁体層3の膜厚がそnぞ 
 4n3ooO〜4000人、3000〜4000人。
The characteristics of TPT formed using this process and the a-8i layer 4
An example of the characteristics of TPT formed by exposing the surface of
This is shown in Figure (A) and Figure 4 (B). Channel length 20μ
m, f layer 7 channel width 150 μm, a-8i layer 4°, film thickness of upper insulator layer 6 and lower insulator layer 3 are similar.
4n3ooO~4000 people, 3000~4000 people.

7o○0〜8000人の場合の特性である。図はソース
、ドレイン間の電圧VSI)を一定にして、ゲート電圧
Vg を−10V〜40V捷で変化させた時のソース、
ドレイン間を流nる電流1sn k測定したものである
が、不発明の方法によって形成したTPTの特性は、従
来のTPTの特性に較べて、VSDが従来の30Vに対
して1Q■であるにもがかわらず、ISDのゲート電圧
vgに対する変化は太すク、特性の向上がみらnる。
This is the characteristic for the case of 7o○0 to 8000 people. The figure shows the source when the voltage (VSI) between the source and drain is kept constant and the gate voltage Vg is varied from -10V to 40V.
The current flowing between the drains was measured at 1snk, and the characteristics of the TPT formed by the uninvented method were as follows: compared to the characteristics of the conventional TPT, the VSD was 1Q■ compared to the conventional 30V. However, the change in the ISD gate voltage vg becomes thicker and the characteristics are improved.

発明の詳細 な説明したように、不発明の製造方法にょnば、TPT
素子の形成中、a−3i層の表面が絶縁体層で保護さn
ているため取り扱いが容易であり、しかも従来のTPT
の形成中にa−8i層の表面が露出するものに較べ、よ
り向上した特性が得らnる。また雰囲気に対しても、絶
縁体層によって保護さ几ているため、安定した特性のT
FTを製造することが可能となる。
As described in detail of the invention, the inventive method of manufacturing TPT
During device formation, the surface of the a-3i layer is protected by an insulating layer.
It is easy to handle because it is
Compared to the case in which the surface of the a-8i layer is exposed during the formation of the layer, more improved characteristics can be obtained. Also, since it is protected from the atmosphere by an insulating layer, it has stable characteristics.
It becomes possible to manufacture FT.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法により製作したTPTの断面図、第
2図は本発明の方法によって製作したTPTの一例を示
す断面図、第3図(A)〜第3図(D)は不発明の各製
造工程を説明するだめの断面図、第4図(A)、 (B
)はそnぞn本発明の方法と従来の方法によって製作し
たTPTのゲート電圧とソース。 ドレイン電流との関係を示す特性図である。 1・・・・・・ガラス絶縁基板、2・・・・・・ゲート
電極、3・・・・・・絶縁体層、4・・・・・・a−8
i層、5・・・・・・ソース・ドレイン電極、6・・・
・・・絶縁体層、7・・・・・・レジスト。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 、:5.5 ? 第2図 第3図 第3図 (Cλ と (p〕
Fig. 1 is a sectional view of a TPT manufactured by a conventional method, Fig. 2 is a sectional view showing an example of a TPT manufactured by the method of the present invention, and Figs. 3(A) to 3(D) are a non-inventive one. 4 (A), (B
) are the gate voltage and source of TPTs manufactured by the method of the present invention and the conventional method. FIG. 3 is a characteristic diagram showing the relationship with drain current. DESCRIPTION OF SYMBOLS 1...Glass insulating substrate, 2...Gate electrode, 3...Insulator layer, 4...A-8
i layer, 5...source/drain electrode, 6...
...Insulator layer, 7...Resist. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure: 5.5? Figure 2 Figure 3 Figure 3 (Cλ and (p)

Claims (1)

【特許請求の範囲】[Claims] 少なくともゲート電極が形成さnたガラス絶縁基板上に
、プラズマ化学気相成長法で第1の絶縁体層、非晶質シ
リコン層、第2の絶縁体層を連続して形成する第1の工
程と、前記第2の絶縁体層をフォトリングラフィにより
所望の形状にパターニングする第2の工程と、パターニ
ングした前記第2の絶縁体層をマスクにして前記非晶質
シリコン層をそnと同一形状にエツチングする第3の工
程と、前記第2の絶縁体層に2個の開孔部を設け、この
開孔部を介して前記非晶質シリコン層上にソース、ドレ
イン電極を形成する第4の工程の各工程を含む薄膜トラ
ンジスタの製造方法。
A first step of successively forming a first insulator layer, an amorphous silicon layer, and a second insulator layer by plasma chemical vapor deposition on a glass insulating substrate on which at least a gate electrode is formed. and a second step of patterning the second insulator layer into a desired shape by photolithography, and patterning the amorphous silicon layer in the same manner as the patterned second insulator layer. a third step of etching into a shape; and a third step of forming two openings in the second insulating layer and forming source and drain electrodes on the amorphous silicon layer through the openings. A method for manufacturing a thin film transistor including each step of step 4.
JP16171682A 1982-09-16 1982-09-16 Manufacture of thin film transistor Granted JPS5950564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16171682A JPS5950564A (en) 1982-09-16 1982-09-16 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16171682A JPS5950564A (en) 1982-09-16 1982-09-16 Manufacture of thin film transistor

Publications (2)

Publication Number Publication Date
JPS5950564A true JPS5950564A (en) 1984-03-23
JPH0351095B2 JPH0351095B2 (en) 1991-08-05

Family

ID=15740516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16171682A Granted JPS5950564A (en) 1982-09-16 1982-09-16 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS5950564A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183687A (en) * 1985-02-08 1986-08-16 松下電器産業株式会社 Manufacture of thin film transistor array
JPS61183972A (en) * 1985-02-08 1986-08-16 Matsushita Electric Ind Co Ltd Manufacture of thin film semiconductor device
JPS61187272A (en) * 1985-02-14 1986-08-20 Matsushita Electric Ind Co Ltd Thin-film field-effect transistor and manufacture thereof
US5173753A (en) * 1989-08-10 1992-12-22 Industrial Technology Research Institute Inverted coplanar amorphous silicon thin film transistor which provides small contact capacitance and resistance
US5493129A (en) * 1988-06-29 1996-02-20 Hitachi, Ltd. Thin film transistor structure having increased on-current
US5627088A (en) * 1986-01-24 1997-05-06 Canon Kabushiki Kaisha Method of making a device having a TFT and a capacitor
JP2006100760A (en) * 2004-09-02 2006-04-13 Casio Comput Co Ltd Thin-film transistor and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183687A (en) * 1985-02-08 1986-08-16 松下電器産業株式会社 Manufacture of thin film transistor array
JPS61183972A (en) * 1985-02-08 1986-08-16 Matsushita Electric Ind Co Ltd Manufacture of thin film semiconductor device
JPS61187272A (en) * 1985-02-14 1986-08-20 Matsushita Electric Ind Co Ltd Thin-film field-effect transistor and manufacture thereof
US5627088A (en) * 1986-01-24 1997-05-06 Canon Kabushiki Kaisha Method of making a device having a TFT and a capacitor
US5493129A (en) * 1988-06-29 1996-02-20 Hitachi, Ltd. Thin film transistor structure having increased on-current
US5821565A (en) * 1988-06-29 1998-10-13 Hitachi, Ltd. Thin film transistor structure having increased on-current
US5173753A (en) * 1989-08-10 1992-12-22 Industrial Technology Research Institute Inverted coplanar amorphous silicon thin film transistor which provides small contact capacitance and resistance
JP2006100760A (en) * 2004-09-02 2006-04-13 Casio Comput Co Ltd Thin-film transistor and its manufacturing method

Also Published As

Publication number Publication date
JPH0351095B2 (en) 1991-08-05

Similar Documents

Publication Publication Date Title
JP3347203B2 (en) Method for forming microcavities and microdevice having microcavities
JPS5950564A (en) Manufacture of thin film transistor
JPS58112365A (en) Manufacture of thin film transistor
JPS59113666A (en) Manufacture of thin film transistor
JP2864658B2 (en) Method for manufacturing thin film transistor
JPS639156A (en) Manufacture of thin film transistor
JPS6342173A (en) Manufacture of insulating gate type semiconductor device
JPH0353787B2 (en)
JP3344051B2 (en) Method for manufacturing thin film transistor
JPH02232925A (en) Selective etching of amorphous silicon
JPH01200672A (en) Coplanar transistor and manufacture thereof
JP2592287B2 (en) Manufacturing method of bipolar semiconductor device
JPH01120026A (en) Manufacture of semiconductor device
JPH02181918A (en) Manufacture of semiconductor device
KR970006253B1 (en) Fabrication method of tft
JPS63119579A (en) Thin film transistor
KR970006256B1 (en) Fabrication of tft
JPH05343687A (en) Thin film transistor
JPH0217931B2 (en)
JPH08236475A (en) Formation of contact window
JPS6260238A (en) Semiconductor device and manufacture thereof
JPS61295660A (en) Manufacture of semiconductor device
JPS61216459A (en) Manufacture of semiconductor device
JPS6316635A (en) Manufacture of semiconductor device
JPS61150338A (en) Manufacture of semiconductor device