JPS594770B2 - magnetic recording medium - Google Patents

magnetic recording medium

Info

Publication number
JPS594770B2
JPS594770B2 JP49048959A JP4895974A JPS594770B2 JP S594770 B2 JPS594770 B2 JP S594770B2 JP 49048959 A JP49048959 A JP 49048959A JP 4895974 A JP4895974 A JP 4895974A JP S594770 B2 JPS594770 B2 JP S594770B2
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
rare earth
magnetic
heavy rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49048959A
Other languages
Japanese (ja)
Other versions
JPS50142002A (en
Inventor
俊治 鈴木
稔 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP49048959A priority Critical patent/JPS594770B2/en
Publication of JPS50142002A publication Critical patent/JPS50142002A/ja
Publication of JPS594770B2 publication Critical patent/JPS594770B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は主にバブルメモリー材料として使用されるR
−M(RはGd、Tb、Dに、Ho、Eに、Tm;Mは
Fe、Co、Ni)合金を湿式メッキ法によつて作成す
る磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to R
-M (R is Gd, Tb, D, Ho, E, Tm; M is Fe, Co, Ni) alloy by wet plating.

一般に磁気メモリの分野は、半導体メモリに比ベアク
セスタイムは長いが大容量化でき、且つ不揮発性である
という長所を有している。
In general, the field of magnetic memory has the advantage that it has a longer access time than semiconductor memory, but can have a large capacity and is nonvolatile.

従つて磁気メモリは、コンピューター周辺装置や音響用
テープ、或いはクレジットカードなどに使用されている
。しかし近時、磁気ドラムや磁気ディスクのようにある
程度の容量を備え、且つ高速性をもつたメモリが次第に
多用されつゝある現状である。このようにメモリにおけ
る研究の動向は大容量化と高速性の2点に絞られており
、その追求の結果、いわゆるバブルドメインメモリなる
ものが出現した。バブルメモ゛りは1967年にBTL
において発見され、当初オルソフェライト(RFeO3
)の研究がなされ、最近はガーネット(R3Fe5O1
2)にその主流が移行してきている。 し力化、これら
バブル用材料は製造上の数々の問題、たとえばLPE法
、或いはCVD法による完全な単結晶の作成、LPE法
によるガーネット作成のための基板の選定、数ミクロン
の膜厚の完全な制御等を含んでいた。
Therefore, magnetic memories are used in computer peripherals, audio tapes, credit cards, and the like. However, in recent years, memories with a certain capacity and high speed, such as magnetic drums and magnetic disks, have been increasingly used. As described above, research trends in memory have focused on two points: large capacity and high speed, and as a result of these pursuits, so-called bubble domain memory has emerged. Bubble Memory was created by BTL in 1967.
It was first discovered in orthoferrite (RFeO3
), and recently garnet (R3Fe5O1
The mainstream is shifting to 2). However, these materials for bubbles face many manufacturing problems, such as the creation of a perfect single crystal using the LPE method or CVD method, the selection of a substrate for making garnet using the LPE method, and the production of a perfect film with a thickness of several microns. It included various controls, etc.

しかしこれもIBMによつてGd−FeやGd−Coを
用いた非晶質バブルが発見されて、その製造上の困難の
いくつかは取り除かれた。 このGd−FeやGd−C
o非晶質合金はそのスピン相互作用が反平行結合をする
ため、その組成比によつて飽和磁化を自由に調整でき、
且つ従来のガーネットのバブル径(十数ミクロン)より
更に小径な1ミクロン以下のものまで得られており、そ
の結果106〜107bit/(−771の記憶密度が
可能となつてきた。
However, with the discovery of amorphous bubbles using Gd-Fe and Gd-Co by IBM, some of the difficulties in manufacturing them were removed. This Gd-Fe and Gd-C
o Since the spin interactions of amorphous alloys form antiparallel coupling, the saturation magnetization can be freely adjusted by changing the composition ratio.
In addition, bubble diameters of 1 micron or less, which are even smaller than the conventional garnet bubble diameter (10-odd microns), have been obtained, and as a result, a storage density of 106 to 107 bits/(-771) has become possible.

本発明では、Fe、Co、Ni等の強磁性元素とGd
やTh等の重希土類ランタニド元素との非晶質合金を作
成する方法として湿式メッキ法をとり上げた。
In the present invention, ferromagnetic elements such as Fe, Co, and Ni and Gd
A wet plating method was introduced as a method for creating an amorphous alloy with heavy rare earth lanthanide elements such as and Th.

通例これらバブル材料の作成にはスパッタリング法が用
いられているが、この方法では成分組成の調節がむつか
しく、つまりR(希土類元素)とCoやFeとの蒸発速
度の違いとか雰囲気やガス圧の制御等を厳格にコントロ
ールする必要があり、また膜厚についてもスパッタリン
グ法によつて、数ミクロンの析出を行なわせるにはかな
りの時間を要する。そこで本発明で取り上げた湿式メツ
キ法は、過去に全く試られたことのない方法であり(そ
の理由は一般に希土類元素のイオン化傾向が大きいため
に、Rの析出が非常に困難であつたことであるが)、し
かもこの方法を用いれば一般のメツキと同様の操作で、
ごく単時間(数+秒〜数分)に高品質の磁性膜を得るこ
とができるものである。CO,Ni,Feの析出の各標
準電極電位は0.277,−0.250,−0,440
であるのに対し、重希土類の標準電極電位は−2.40
から2.28である。
Sputtering methods are usually used to create these bubble materials, but with this method it is difficult to control the component composition, such as the difference in evaporation rate between R (rare earth element) and Co or Fe, and the control of the atmosphere and gas pressure. It is necessary to strictly control the film thickness, and it takes a considerable amount of time to deposit several microns by sputtering. Therefore, the wet plating method adopted in this invention is a method that has never been tried in the past (the reason for this is that it is extremely difficult to precipitate R due to the large tendency of rare earth elements to ionize). However, if you use this method, you can do it in the same way as regular
A high-quality magnetic film can be obtained in a very short time (several seconds to several minutes). The standard electrode potentials for CO, Ni, and Fe deposition are 0.277, -0.250, and -0,440.
On the other hand, the standard electrode potential of heavy rare earths is -2.40
2.28.

これに対し、Cl2+2e−=2C1−の反応の標準電
極電位は1.36である。この反応を介在させることに
より重希土類の実質標準電極電位は−0.36から−0
.24となりCO,Ni,Feの標準電極電位とほぼ等
しくなる。以下実施例に従つて詳しく述べる。実施例
1 リサーチケミカルス社製高純度ガドリニウム(99.9
9%Gd)を塩酸に溶解したA液と以下のメツキ薬品と
でGd−COメツキを行なつた基板には銀を蒸着したパ
イレツクスガラスを使用し、A液 25
0cc(11中に金属Gdを50グラム溶解)塩化コバ
ルト 8g/l 塩化アンモニウム 15〃 ロツシユル塩 6 〃 クエン酸ナトリウム 4 〃 ホルマリン 0.1〃 液構成薬品のうち、塩化アンモニウムはPH緩衝剤、ロ
ツシユル塩、クエン酸ナトリウムは液中のGd,COの
析出電位を調整するための錯化剤である。
In contrast, the standard electrode potential for the reaction Cl2+2e-=2C1- is 1.36. By intervening this reaction, the effective standard electrode potential of heavy rare earths can be changed from -0.36 to -0.
.. 24, which is almost equal to the standard electrode potential of CO, Ni, and Fe. The following will be described in detail according to examples. Example
1 High purity gadolinium manufactured by Research Chemicals (99.9
Gd-CO plating was performed using Solution A, in which 9% Gd) was dissolved in hydrochloric acid, and the following plating chemicals. Pyrex glass on which silver was vapor-deposited was used for the substrate, and Solution A 25
0 cc (50 grams of metal Gd dissolved in 11) Cobalt chloride 8 g/l Ammonium chloride 15〃 Rotsuyul salt 6〃 Sodium citrate 4〃 Formalin 0.1〃 Among the liquid constituent chemicals, ammonium chloride is a PH buffer, Rotsuyul salt , sodium citrate is a complexing agent for adjusting the deposition potential of Gd and CO in the liquid.

理論ではGd−CO系における飽和磁化の最小値(ほと
んど零)は、45重量%Gd付近にあり、本実施例では
PHと電流密度を変えて、各種飽和磁化の値を求めた。
更に保持力についても補償回路付属の直流法自動B−H
トレーサーによつて測定し、磁区観察はKerr効果に
より、またGd.l5CO組成の測定は原子吸光分析に
依つた。更に得られた磁性膜の非晶質性については、電
子線回析や電子顕微鏡によつて観察した結果、約40A
以下のグレインの非晶状態であつた。第1表に得られた
磁性膜の特性を示す。上表よりこれら値は、バブルのモ
ビリテイ、駆動回路等を考慮すれば充分、実用に供しえ
るものであることがわかる。
According to theory, the minimum value (almost zero) of saturation magnetization in the Gd-CO system is around 45% by weight of Gd, and in this example, various values of saturation magnetization were determined by changing the PH and current density.
Furthermore, regarding the holding force, the DC method automatic B-H with a compensation circuit is used.
Measurement was performed using a tracer, and magnetic domain observation was performed using the Kerr effect and Gd. Measurement of l5CO composition relied on atomic absorption spectrometry. Furthermore, the amorphous nature of the obtained magnetic film was found to be approximately 40A as a result of observation using electron beam diffraction and electron microscopy.
It was in an amorphous state with the following grains. Table 1 shows the characteristics of the obtained magnetic film. From the table above, it can be seen that these values are sufficient for practical use if bubble mobility, drive circuit, etc. are taken into consideration.

実施例 2 基板として15?×2m/MO)ABS樹脂を切り出し
、その表面にR.f.スパツタリングによつて膜厚約2
000Aの銀を析出させた。
Example 2 15 as a board? ×2m/MO) ABS resin is cut out and R. f. The film thickness is about 2 by sputtering.
000A of silver was deposited.

次に実施例1と同様にしてGd−Feメツキを行なつた
Next, Gd-Fe plating was performed in the same manner as in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 重希土類ランタニド元素の1種もしくは複数種の塩
化物と、Fe、Co、Niの元素の塩化物の1種もしく
は複数種と、PH緩衝剤、錯化剤等を溶解した浴を用い
て基板上に、湿式メッキ法により重希土類ランタニド元
素の1種もしくは複数種と、Fe、Co、Niの1種も
しくは複数種とから成る合金を磁性層として形成するこ
とを特徴とする磁気記録媒体の製造方法。
1 A substrate is prepared using a bath in which one or more chlorides of heavy rare earth lanthanide elements, one or more chlorides of Fe, Co, and Ni elements, a PH buffer, a complexing agent, etc. are dissolved. Manufacturing a magnetic recording medium characterized in that an alloy consisting of one or more heavy rare earth lanthanide elements and one or more of Fe, Co, and Ni is formed as a magnetic layer by wet plating. Method.
JP49048959A 1974-05-01 1974-05-01 magnetic recording medium Expired JPS594770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49048959A JPS594770B2 (en) 1974-05-01 1974-05-01 magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49048959A JPS594770B2 (en) 1974-05-01 1974-05-01 magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS50142002A JPS50142002A (en) 1975-11-15
JPS594770B2 true JPS594770B2 (en) 1984-01-31

Family

ID=12817805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49048959A Expired JPS594770B2 (en) 1974-05-01 1974-05-01 magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS594770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223324A (en) * 1983-05-18 1984-12-15 マシーネンファブリーク・リーテル・アクチエンゲゼルシャフト Method and apparatus for spinning fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028698A (en) * 1973-07-20 1975-03-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028698A (en) * 1973-07-20 1975-03-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223324A (en) * 1983-05-18 1984-12-15 マシーネンファブリーク・リーテル・アクチエンゲゼルシャフト Method and apparatus for spinning fiber

Also Published As

Publication number Publication date
JPS50142002A (en) 1975-11-15

Similar Documents

Publication Publication Date Title
EP0243627B1 (en) Electro-deposited conife alloy for thin film heads
US4935314A (en) Ferromagnetic film and magnetic head using the same
JPH04129009A (en) Thin-film magnetic reading-writing head
KR960004065B1 (en) Magnetic head using magnetic film
US20050123805A1 (en) Perpendicular magnetic recording medium
JPS5837608B2 (en) magnetic recording medium
JPS594770B2 (en) magnetic recording medium
US3238061A (en) Process for producing magnetic films
US3549417A (en) Method of making isocoercive magnetic alloy coatings
US3492158A (en) Thin films with inherent ndro properties and their production
JPS6238543A (en) Photomagnetic recording medium
JPS6056414B2 (en) Co-based alloy for magnetic recording media
JPH04221418A (en) Magnetic recording medium
JPH07192244A (en) Perpendicular magnetic recording medium and its production
JPS6365604A (en) Iron magnetic film
Gavrila et al. Magnetic materials for advanced magnetic recording media
JP2834359B2 (en) Soft magnetic alloy film
JPH02216609A (en) Magnetic recording medium and its production
JPH0470705B2 (en)
Treves et al. Temperature‐Sensitive Magnetic Film for a Magneto‐optic Memory
JPS6021507A (en) Magnetic recording medium
JPH0322647B2 (en)
JPS6367326B2 (en)
KR20120100108A (en) Manufacturing method of cop alloy thin film and perpendicular magnetic recording medium
JPH0476905A (en) Electroless plated film