JPH0476905A - Electroless plated film - Google Patents

Electroless plated film

Info

Publication number
JPH0476905A
JPH0476905A JP18944390A JP18944390A JPH0476905A JP H0476905 A JPH0476905 A JP H0476905A JP 18944390 A JP18944390 A JP 18944390A JP 18944390 A JP18944390 A JP 18944390A JP H0476905 A JPH0476905 A JP H0476905A
Authority
JP
Japan
Prior art keywords
film
ions
electroless
magnetic
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18944390A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamamoto
哲也 山元
Eiji Tanaka
栄次 田中
Masatoshi Hayakawa
正俊 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP18944390A priority Critical patent/JPH0476905A/en
Publication of JPH0476905A publication Critical patent/JPH0476905A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)
  • Chemically Coating (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain high coercive force and an excellent squareness ratio by forming a CoMnWP magnetic film having a specified composition ratio by an electroless plating method. CONSTITUTION:Mn ions and W ions are added into Co-P electroless bath, and a CoMnWP magnetic film is formed as the eutectoid. The electroless plated film obtained as a result is expressed as CoxMnaWbPy (where (x), (y), (a) and (b) indicate the rates of the elements in atomic K). The ranges of the compositions are 85<=x<=95, 0.1<=a<=1.5, 0.1<=b<=5 and x+a+b+y=100. Cobalt ions and phosphorus ions are introduced into the electroless plated bath, and pH buffer, pH modifier and the like are added as required. Mn ions and W ions are added as additives. Tungsten ions are also introduced. Thus, high coercive force is obtained, the excellent squareness ratio is ensured even if the film is thick and the practical film forming speed can be maintained at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マグヱスケール等に用いて好適な無電解メッ
キ膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electroless plating film suitable for use in MAG scale and the like.

[発明の概要〕 本発明は、所定の組成比を有するC o M n W 
P磁性膜を無電解メッキ法により成膜することにより、
高保磁力を有するとともに、良好な角形比を有する$、
電解メッキ膜を捷供しようとするものである。
[Summary of the Invention] The present invention provides C o M n W having a predetermined composition ratio.
By forming the P magnetic film by electroless plating,
$ with high coercive force and good squareness ratio,
The purpose is to provide an electroplated film.

〔従来の技術〕[Conventional technology]

磁気記録媒体の分野において、従来より、無電解メッキ
法によってCo−P系等の無電解メッキ膜を成膜する技
術が研究されている。この無電解メッキ膜は、膜厚の均
一性に優れ、高保磁力を有するとともに大量生産性に優
れていることから、既に、汎用コンピュータの外部記憶
用磁気記録媒体等に実用化されている。
2. Description of the Related Art In the field of magnetic recording media, research has been carried out on techniques for forming electroless plating films such as Co--P based films by electroless plating methods. This electroless plating film has excellent film thickness uniformity, high coercive force, and excellent mass productivity, and has already been put into practical use as external storage magnetic recording media for general-purpose computers.

ところで、磁気記録媒体の記録密度の向上を図るために
は、磁性膜の高保磁力化が不可欠であり、このような状
況から、前述のようなCo−P磁性膜にNi、Mn、Z
n、W等を共析させたCo系磁性膜が開発されている。
By the way, in order to improve the recording density of magnetic recording media, it is essential to increase the coercive force of the magnetic film, and under these circumstances, Ni, Mn, and Z are added to the Co-P magnetic film as described above.
Co-based magnetic films in which n, W, etc. are eutectoid have been developed.

中でも、MnやZnを共析させた磁性膜では、Ill!
厚に依存しない高保磁力材料が得られることが知られて
おり、特にCOMnPl性膜では、約15000el)
高保磁力が達成されることが報告されている。そして、
このCoMnP磁性膜は、大きな垂直磁気異方性を有し
ていることから、垂直磁気記録媒体としての利用が検討
されている。
Among them, Ill!
It is known that a material with high coercive force that does not depend on the thickness can be obtained, especially for a COMnPl film (approximately 15,000 el).
It has been reported that high coercivity is achieved. and,
Since this CoMnP magnetic film has large perpendicular magnetic anisotropy, its use as a perpendicular magnetic recording medium is being considered.

〔発明が解決しようとするRH〕[RH that the invention attempts to solve]

ところで、上記Co M n P磁性膜の有する高保磁
力を利用して、面内記録用1例えばマグネスケールに用
いようとした場合には、角形比(残留磁束密度Br/飽
和磁束密度Bs)の点で不満があり、特に膜厚がある程
度厚い場合にも良好な角形比が維持されることが望まれ
ている。
By the way, when trying to use the high coercive force of the Co M n P magnetic film for in-plane recording 1, for example, Magnescale, the squareness ratio (residual magnetic flux density Br/saturation magnetic flux density Bs) Therefore, it is desired that a good squareness ratio be maintained even when the film thickness is relatively thick.

そこで、本発明は、かかる従来の実情に鑑みて提案され
たものであって、優れた高保磁力を存しつつ、良好な角
形比を示す無電解メッキ膜を提供することを目的とする
Therefore, the present invention was proposed in view of the conventional situation, and an object of the present invention is to provide an electroless plated film that exhibits a good squareness ratio while having an excellent high coercive force.

C課題を解決するための手段〕 本発明者等は、1li77述の目的を達成せんものと鋭
意研究を重ねた結果、Co−P無;解メッキ浴中にMn
イオン及びWイオンを添加して、Co M nWP磁性
膜として共析させることにより、高保磁力、及び良好な
角形比を有する無電解メッキ膜が得られることを見出す
に至った。
Means for Solving Problem C] As a result of intensive research to achieve the objective stated in 1li77, the present inventors found that no Co-P;
It has been discovered that an electroless plating film having high coercive force and a good squareness ratio can be obtained by adding ions and W ions and eutectoiding them as a CoM nWP magnetic film.

本発明はかかる知見に基づいて完成されたものである。The present invention was completed based on this knowledge.

即ち、本発明にかかる無電解メッキ膜は、Co、 Mn
a Wb P y  (但し、前記x、 y、 a及び
bはそれぞれ各元素の割合を原子%で表す。)で表され
、その組成範囲が 85≦x≦95 0、1≦a≦1.5 0、1≦b≦5 x+a’−、b+3’=100 であることを特徴とするものである。
That is, the electroless plating film according to the present invention contains Co, Mn
a Wb P y (However, x, y, a and b each represent the proportion of each element in atomic %), and the composition range is 85≦x≦950, 1≦a≦1.5 0, 1≦b≦5 x+a'-, b+3'=100.

本発明の無電解メッキ膜においては、その組成範囲を上
述のように規定することにより、高保磁力とともに、良
好な角形比を実現することができ本発明の無電解メッキ
膜は、所定の濃度に調製された無電解メッキ浴を用いて
成膜される。
By defining the composition range as described above, the electroless plated film of the present invention can achieve a high coercive force and a good squareness ratio. A film is formed using a prepared electroless plating bath.

上記無電解メッキ浴には、コバルトイオン及びリンイオ
ンが導入され、必要に応してpH11衝剤、pHff1
節剤等が加えられ、更に添加剤としてMnイオン及びW
イオンが加えられる。
Cobalt ions and phosphorus ions are introduced into the electroless plating bath, and if necessary, a pH11 buffer, a pHff1
A moderating agent etc. are added, and Mn ions and W are added as additives.
ions are added.

コバルトイオンは、硫酸塩、塩化物、酢酸塩算の可溶性
塩を無電解メッキ浴中に熔解させることにより供給され
る。
Cobalt ions are provided by dissolving soluble salts such as sulfate, chloride, and acetate in an electroless plating bath.

また、還元剤として次亜リン酸ナトリウム、次亜リン酸
カリウム等を使用することにより、リンを導入すること
ができる。
Further, phosphorus can be introduced by using sodium hypophosphite, potassium hypophosphite, etc. as a reducing agent.

マンガンイオンは、硫酸塩等の可溶性塩を無電解メンキ
浴中に溶解させることにより供給される。
Manganese ions are supplied by dissolving a soluble salt such as sulfate in an electroless Menki bath.

マンガンイオンの濃度は、0.001〜0.1mol、
N!であることが好ましく、より好ましくは0.01〜
0.03■of/j2である。上述の範囲から外れると
、即ちO,OO111ot/42を下回る場合、又は0
. I mol/lを越える場合には、成膜速度が非常
に遅くなる。
The concentration of manganese ions is 0.001 to 0.1 mol,
N! It is preferable that it is, more preferably 0.01 to
It is 0.03■of/j2. Outside the above range, i.e. below 0, OO111ot/42, or 0
.. If it exceeds I mol/l, the film formation rate becomes extremely slow.

マンガンイオンの濃度が0. I 曙o1/ Eを越え
る場合に:よ、無電解メッキ浴のp Hを高((pH=
l。
The concentration of manganese ions is 0. If it exceeds 1/E, the pH of the electroless plating bath should be increased ((pH=
l.

程度)して成膜速度を増大させることも考えらねるが、
この場合、上記無電解メッキ浴か分解し易くなるので好
ましくない。
Although it is unthinkable to increase the deposition rate by increasing the
In this case, the electroless plating bath becomes easy to decompose, which is not preferable.

タングステンイオンは、アンモニウム塩、ナトリウム塩
等の可溶性塩を無電解メッキ浴中に溶解させることによ
り供給される。タングステンイオンの濃度は、0.00
1=O,1mol/ffiであることが好ましい。更に
、良好な成膜速度を確保するとともに、優れた角形比を
得るために、0.0 O5〜0゜02mol#!とする
ことがより好ましい。
Tungsten ions are supplied by dissolving soluble salts such as ammonium salts, sodium salts, etc. in the electroless plating bath. The concentration of tungsten ions is 0.00
It is preferable that 1=O, 1 mol/ffi. Furthermore, in order to ensure a good film formation rate and obtain an excellent squareness ratio, 0.0 O5 to 0°02 mol#! It is more preferable that

本発明の無電解メッキ膜の下地i々しては、適宜選定し
て使用すればよいが、下地膜の種類によって、得られる
無電解メッキ膜の磁気特性が異なる。例えば、スパッタ
等によるPd膜を下地膜とすると、垂直磁気異方性を有
する磁性膜が得られる。また、無電解メッキ法によるN
1−P膜を下地膜として用いると、面内磁化膜が得られ
る。
The base for the electroless plating film of the present invention may be appropriately selected and used, but the magnetic properties of the resulting electroless plating film differ depending on the type of base film. For example, if a Pd film formed by sputtering or the like is used as a base film, a magnetic film having perpendicular magnetic anisotropy can be obtained. In addition, N
When a 1-P film is used as a base film, an in-plane magnetized film can be obtained.

〔作用] 本発明の無電解メッキ膜では、CoMnP[性膜に加え
てタングステンが導入され、更にその組成比が規定され
ており、これにより高保磁力が得られるとともに、膜厚
が厚くとも良好な角形比が確保され、同時に実用的な成
膜速度も維持される。
[Function] In the electroless plated film of the present invention, tungsten is introduced in addition to the CoMnP film, and the composition ratio thereof is further specified, and as a result, a high coercive force can be obtained, and even when the film is thick, it has good properties. The squareness ratio is ensured, and at the same time, a practical film formation rate is maintained.

こ実施例] 本発明の好適な実施例を図面を参照しながら説明する。This example] Preferred embodiments of the present invention will be described with reference to the drawings.

クエン酸ナトリウム    0.2 mol/ j!ホ
ウ酸         0.5 mol/ 1上記基本
メッキ浴を水酸化ナトリウムを用いて所定のpHに調節
した。そして、この基本メッキ浴中にタングステン酸ナ
トリウム0、O05sol/ρ及び硫酸マンガン0.0
2 mol/ j!を加えた。そして、得られた無電解
メッキ浴をpH9、浴温80℃として、上記基板A上に
メッキを行い、約0.1μm厚のCo M n W P
磁性膜を作製した。
Sodium citrate 0.2 mol/j! Boric acid 0.5 mol/1 The above basic plating bath was adjusted to a predetermined pH using sodium hydroxide. In this basic plating bath, sodium tungstate 0, O05sol/ρ and manganese sulfate 0.0
2 mol/j! added. Then, the obtained electroless plating bath was set to pH 9 and bath temperature to 80° C., and plating was performed on the substrate A to form a Co M n WP with a thickness of about 0.1 μm.
A magnetic film was fabricated.

実11津1 本実施例では、スライドガラス上にPdをスパッタして
触媒活性層を形成した基板Aを用いた。
Example 11 In this example, a substrate A was used in which a catalytically active layer was formed by sputtering Pd on a slide glass.

そして、以下の手法により無電解メッキ浴を調製した。Then, an electroless plating bath was prepared by the following method.

基本メッキ浴の組成 硫酸コバルト 0、1 mol/ 1 次亜リン酸ナトリウム   0.2 mol/ j2ス
ll津1 本実施例では、スライドガラス上にPdをスパッタして
触媒活性層を形成した後、更に無電解メッキ法により約
0.2μm厚のNiP非磁性膜を形成し、この基板Bを
用いた。
Composition of basic plating bath Cobalt sulfate 0.1 mol/1 Sodium hypophosphite 0.2 mol/1 In this example, after sputtering Pd onto a slide glass to form a catalytic active layer, Further, a NiP nonmagnetic film having a thickness of about 0.2 μm was formed by electroless plating, and this substrate B was used.

そして、上述のように調製した無電解メッキ浴中で、実
施例1と同一の手法により上記基板B上にメッキを行い
、約0.1 、l/ m厚のCoMnWP[性膜を作製
した。
Then, in the electroless plating bath prepared as described above, plating was performed on the substrate B by the same method as in Example 1 to produce a CoMnWP film having a thickness of about 0.1 l/m.

且flim 上述の基本メッキ浴の組成中に硫酸マンガン0゜04m
ol/βのみを加えた。そして、得られた無電解メッキ
浴をpH9、浴温80°Cとして、上記基Fj、A上に
メッキを行い、約0.15μm厚のCoMnP磁性膜を
作製した。
〔flim Manganese sulfate 0゜04m in the composition of the basic plating bath mentioned above.
Only ol/β was added. Then, the obtained electroless plating bath was adjusted to pH 9 and bath temperature to 80° C., and plating was performed on the above groups Fj and A to produce a CoMnP magnetic film with a thickness of about 0.15 μm.

上述のようにして作製した各磁性膜について、膜面内の
保磁力Hc及び角形比を調べた。
For each of the magnetic films produced as described above, the in-plane coercive force Hc and squareness ratio were examined.

この結果を第1表に示す。The results are shown in Table 1.

第1表 第1表が示すように、実施例1及び実施例2では、高い
保磁力Hcが得られた。また、比較例1と比べると、角
形比が著しく改善されることが明らかとなった。
Table 1 As shown in Table 1, high coercive force Hc was obtained in Example 1 and Example 2. Furthermore, when compared with Comparative Example 1, it became clear that the squareness ratio was significantly improved.

また、第1図は、実施例1に関する面内方向のB−((
曲線(a)と垂直方向のB−8曲線(b)を同時に示す
特性図である。同様に、第2図及び第3図Gこ実施例2
及び比較例1について面内方向のB−8曲線(a)と垂
直方向のB−8曲線(b)をそれぞれ示した。
Further, FIG. 1 shows B-(((
It is a characteristic diagram which shows the curve (a) and the vertical direction B-8 curve (b) at the same time. Similarly, in FIGS. 2 and 3, Example 2
For Comparative Example 1, a B-8 curve (a) in the in-plane direction and a B-8 curve (b) in the vertical direction are shown, respectively.

第1図に示すように、実施例1は、比較例1と同様に垂
直磁気異方性を有する高保磁力膜であることが判った。
As shown in FIG. 1, it was found that Example 1, like Comparative Example 1, was a high coercive force film having perpendicular magnetic anisotropy.

これに対し、実施例2は、良好な面内磁化膜であった。In contrast, Example 2 had a good in-plane magnetization film.

また、第1表からも明らかなように、この面内磁化膜は
実施例1における磁化膜よりもさらに優れた角形比を有
している。このことから、スパッタ等によるPd膜を下
地膜とした場合には、垂直磁気異方性を有する高保磁力
媒体が得られ、NiP膜を下地膜とした場合には、角形
比に優れた面内磁化膜が得られることが判った。
Furthermore, as is clear from Table 1, this in-plane magnetized film has an even better squareness ratio than the magnetized film in Example 1. From this, when a sputtered Pd film is used as the base film, a high coercive force medium with perpendicular magnetic anisotropy can be obtained, and when a NiP film is used as the base film, an in-plane medium with excellent squareness can be obtained. It was found that a magnetized film could be obtained.

この事実は、第4図に示すX線回折の結果からも明らか
となる。即ち、第4図に示すように、実施例1と実施例
2は、内部構造が異なっている。
This fact is also made clear from the results of X-ray diffraction shown in FIG. That is, as shown in FIG. 4, the first embodiment and the second embodiment have different internal structures.

この内部構造の差異によって磁気特性の変化が生ずると
考えられる。
It is thought that this difference in internal structure causes a change in magnetic properties.

次に、無電解メッキ浴中のタングステンイオンとマンガ
ンイオンの濃度を変化させてメッキを行い、得られた膜
の組成比とその膜の磁気特性との関係を検討した。
Next, plating was performed by varying the concentrations of tungsten ions and manganese ions in the electroless plating bath, and the relationship between the composition ratio of the resulting film and the magnetic properties of the film was investigated.

実1111 硫酸マンガンとタングステン酸ナトリウムの添加量を変
化させて上述の基本メッキ浴の組成中に加えた。これら
無電解メッキ浴中で、実施例2と同一の手法により上記
基板B上にメンキを行い、20種類の磁性膜(膜厚約0
.1μm)を作製した。
Example 1111 Manganese sulfate and sodium tungstate were added to the composition of the basic plating bath with varying amounts. In these electroless plating baths, plating was performed on the substrate B using the same method as in Example 2, and 20 types of magnetic films (film thickness approximately 0
.. 1 μm) was prepared.

なお、比較用として、実施例1における上記基本メッキ
浴の組成中にgmマンガン0.025eal/ 1のみ
を加えた無電解メッキ浴中で、実施例2と同一の手法に
より上記基板B上にメッキを行ってCoMnP磁性膜を
作製した。
For comparison, the above substrate B was plated by the same method as in Example 2 in an electroless plating bath in which only 0.025 eal/1 gm manganese was added to the composition of the basic plating bath in Example 1. A CoMnP magnetic film was prepared by performing the following steps.

そして、上述のように無電解メッキ浴中のマンガンイオ
ンの濃度及びタングステンイオンの濃度を変化させた時
Sこおける成膜速度を測定した出ころ、第60に示すよ
うな結果が得みれた。
Then, as mentioned above, when the concentration of manganese ions and the concentration of tungsten ions in the electroless plating bath were varied, the film formation rate in S was measured, and the results shown in No. 60 were obtained.

第6図に示すように、マンガンイオンの′eA度を0.
05mol/fとした時のように、マンガンイオンの濃
度が増大すると、成膜速度が遅くなる傾向;こあること
が判った。逆に、図中Δ印で示す組成においては、成膜
速度は非常に遅くなった。このことから、マンガンイオ
ンの濃度は0.001〜0.1ma1/ lであること
が好ましく、より好ましくは0゜01〜0.03 mo
l/ lとされる。一方、タングステンイオンについて
も、4度の増化に伴って成膜速度が低下することが判っ
た。
As shown in FIG. 6, the 'eA degree of manganese ion is 0.
It has been found that as the concentration of manganese ions increases, as in the case of 0.5 mol/f, the film formation rate tends to slow down. On the contrary, in the composition indicated by Δ in the figure, the film formation rate was extremely slow. From this, the concentration of manganese ions is preferably 0.001 to 0.1 ma/l, more preferably 0°01 to 0.03 mo.
It is assumed that l/l. On the other hand, for tungsten ions as well, it was found that the film formation rate decreased as the temperature increased by 4 degrees.

そこで、上記比較用のCoMnPtft性膜も含めた上
述の21i1類の磁性膜のうち、第2表に示す磁性膜を
用い、約0.1μm厚のCoMnWP磁性膜と1μm以
上の膜厚のCo M n W P磁性膜にっいてそれぞ
れ面内方向の保磁力Hc及び角形比を調べた。
Therefore, among the above-mentioned 21i1 type magnetic films, including the CoMnPtft film for comparison, the magnetic films shown in Table 2 were used, and a CoMnWP magnetic film with a thickness of about 0.1 μm and a CoM film with a film thickness of 1 μm or more were used. The in-plane coercive force Hc and squareness ratio of each nWP magnetic film were investigated.

この結果を第2表に示す。The results are shown in Table 2.

(以下余白) 第2表より、本実施例では、従来のCoMnP磁性膜と
同様に比較的高い保磁力Hcを確保することができた。
(Left below) Table 2 shows that in this example, a relatively high coercive force Hc could be secured, similar to the conventional CoMnP magnetic film.

また、この磁化膜は、優れた角形比を示す。更に、無電
解メッキ浴中のタングステンイオンの濃度が0.012
5mol/ff以下である場合については、ll!i!
厚が1μm以上のものでも、良好な角形比を維持してい
ることが判った。
Additionally, this magnetized film exhibits an excellent squareness ratio. Furthermore, the concentration of tungsten ions in the electroless plating bath is 0.012
If it is less than 5 mol/ff, ll! i!
It was found that a good squareness ratio was maintained even when the thickness was 1 μm or more.

〔発明の効果] 以上の説明からも明らかなように、本発明の無電解メッ
キ膜では、無電解メッキ法により所定の組成を有するC
oMnWP膜を成膜するので、高保磁力を有するととも
に、優れた角形比を実現することができる。
[Effects of the Invention] As is clear from the above explanation, in the electroless plated film of the present invention, carbon having a predetermined composition is formed by electroless plating.
Since the oMnWP film is formed, it has a high coercive force and can realize an excellent squareness ratio.

また、本発明の無電解メンキ膜は、下地膜を選定すれば
、面内磁化膜にも、垂直磁気異方性を存する磁化膜にも
なることが可能である。
Further, the electroless Menki film of the present invention can be used as either an in-plane magnetized film or a magnetized film having perpendicular magnetic anisotropy, depending on the selection of the underlying film.

更に、本発明の無電解メッキ膜は、膜厚に依存せずに良
好な磁気特性を示すので、例えば2〜3μm程度の膜厚
を必要とするマグネスケール等に用いて好適な磁気記録
媒体を捉供することができる。
Furthermore, since the electroless plated film of the present invention exhibits good magnetic properties independent of film thickness, it can be used as a suitable magnetic recording medium, such as in Magnescale, which requires a film thickness of about 2 to 3 μm. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPd下地膜上に成膜されたC o M nWP
無電解メッキ膜の13−8曲線を示す特性図、第2図は
NiP下地股上に成膜されたCoMnWP無電解メ、キ
膜のB−8曲線を示す特性図、第3図は従来のCoMn
P無電解メッキ膜のB−8曲線を示す特性図である。第
4図iま上記Pd下地膜上に成膜されたC o M n
 W P無電解メンキ膜のX線回折像を示す特性図、第
5図は上記N1PT地膜上に成膜されたC o M n
 W P無電解メ、キ膜のX線回折像を示す特性図であ
る。第6図は無電解メンキ浴中のマンガンイオンとタン
グステンイオンの濃度を変化させた時の成膜速度の関係
を示す特性図である。
Figure 1 shows CoM nWP deposited on a Pd base film.
A characteristic diagram showing the 13-8 curve of the electroless plated film. Figure 2 is a characteristic diagram showing the B-8 curve of the CoMnWP electroless plated film formed on the NiP base layer.
It is a characteristic diagram which shows the B-8 curve of P electroless plating film. FIG. 4 shows the C o M n film formed on the above Pd base film.
A characteristic diagram showing the X-ray diffraction image of the W P electroless Menki film, and FIG. 5 shows the C o M n film formed on the N1PT film.
FIG. 2 is a characteristic diagram showing an X-ray diffraction image of a WP electroless film. FIG. 6 is a characteristic diagram showing the relationship between the film formation rate when the concentrations of manganese ions and tungsten ions in the electroless coating bath are changed.

Claims (1)

【特許請求の範囲】  Co_xMn_aW_bP_y(但し、前記x,y,
a及びbはそれぞれ各元素の割合を原子%で表す。)で
表され、その組成範囲が 85≦x≦95 0.1≦a≦1.5 0.1≦b≦5 x+a+b+y=100 であることを特徴とする無電解メッキ膜。
[Claims] Co_xMn_aW_bP_y (however, the x, y,
a and b each represent the proportion of each element in atomic %. ), and its composition range is 85≦x≦95 0.1≦a≦1.5 0.1≦b≦5 x+a+b+y=100.
JP18944390A 1990-07-19 1990-07-19 Electroless plated film Pending JPH0476905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18944390A JPH0476905A (en) 1990-07-19 1990-07-19 Electroless plated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18944390A JPH0476905A (en) 1990-07-19 1990-07-19 Electroless plated film

Publications (1)

Publication Number Publication Date
JPH0476905A true JPH0476905A (en) 1992-03-11

Family

ID=16241338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18944390A Pending JPH0476905A (en) 1990-07-19 1990-07-19 Electroless plated film

Country Status (1)

Country Link
JP (1) JPH0476905A (en)

Similar Documents

Publication Publication Date Title
JP3201892B2 (en) Soft magnetic thin film and magnetic inductive MR head using the same
JPH0766034A (en) Soft magnetic material film and manufacture thereof
JPH0476905A (en) Electroless plated film
JPS613316A (en) Magnetic recording medium and its production
JPH04229607A (en) Magnetically soft thin film and its manufacture
JPS59170254A (en) Electroless plating bath
JPS63111195A (en) Electroplating bath
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JPH03265104A (en) Soft magnetic alloy film
JPH0696949A (en) Manufacture of magnetic thin film
JP2757586B2 (en) Soft magnetic thin film
JPH0515790B2 (en)
JPH0372611A (en) Electroless plated soft magnetic thin film
JPH0322647B2 (en)
JPH03294483A (en) Electroless plating solution
KR20120100108A (en) Manufacturing method of cop alloy thin film and perpendicular magnetic recording medium
JP2979557B2 (en) Soft magnetic film
JPS62130281A (en) Electroless plating bath
JPH0565658A (en) Electroless nickel plating bath
JPS5817824B2 (en) Electroless plating bath
JPH02156090A (en) Electroless plating bath
JPS61235570A (en) Electroless plating bath
JPH0429132B2 (en)
JPH0323969B2 (en)
JPS62298918A (en) Magnetic recording medium