JPS6238543A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS6238543A
JPS6238543A JP17807885A JP17807885A JPS6238543A JP S6238543 A JPS6238543 A JP S6238543A JP 17807885 A JP17807885 A JP 17807885A JP 17807885 A JP17807885 A JP 17807885A JP S6238543 A JPS6238543 A JP S6238543A
Authority
JP
Japan
Prior art keywords
magnetic material
recording medium
magneto
alloy
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17807885A
Other languages
Japanese (ja)
Other versions
JPH0731830B2 (en
Inventor
Tadao Tokushima
忠夫 徳島
Makoto Shiraki
白木 真
Satsuki Nagayama
五月 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP60178078A priority Critical patent/JPH0731830B2/en
Publication of JPS6238543A publication Critical patent/JPS6238543A/en
Publication of JPH0731830B2 publication Critical patent/JPH0731830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To permit the use of a low-output laser light source by specifying the diameter of the pores of a porous anodized film of a photomagnetic recording medium constituted by packing a magnetic material into the pores of the porous anodized film to 18-6nm. CONSTITUTION:The pore size of the porous anodized film on the surface of a substrate consisting of aluminum or aluminum alloy is specified to 18-6nm. The same effect as the effect obtd. when the magnetic material is extremely finely pulverized is resulted and consequently, the magnetic material has nearly the ultra-paramagnetic state, thus exhibiting the paramagnetical behavior, if the bore size is made smaller than said sizes. The decreased coercive force Hc and decreased Curie temp. are thereby resulted. The decreased Curie temp. leads to a decreased temp. to be attained by the irradiation of laser light in the stage of signal writing. The use of the low-output laser light source such as general purpose-semiconductor layer is made possible as the laser light source for writing.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は高密度記録可能な光磁気記録媒体に関し、特
にアルミニウムもしくはアルミニウム合金基板の陽極酸
化皮膜の微細孔中に磁性材を充填した光磁気記録媒体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a magneto-optical recording medium capable of high-density recording, and more particularly to a magneto-optical recording medium in which a magnetic material is filled into the fine pores of an anodized film on an aluminum or aluminum alloy substrate. It is related to.

従来の技術 近年に至り、磁気的カー効果を利用した光磁気記録方式
が開発されるようになった。この光磁気記録方式は、記
録時にはレーザ光等の光を磁性体表面に局部的に照射し
てその部分を磁性体のキュリ一温度以上の温度に加熱す
ることによって信号の書込みを行ない、信号再生時には
レーザ光などの特定の偏光角の光束を磁性体表面に照射
して、磁気的カー効果による反射光の偏向面の回転角度
(偏光角度)を検出することにより磁気記録を読出すも
のでおる。
BACKGROUND OF THE INVENTION In recent years, a magneto-optical recording system that utilizes the magnetic Kerr effect has been developed. In this magneto-optical recording method, during recording, a signal is written by locally irradiating the surface of a magnetic material with light such as a laser beam and heating that area to a temperature above the Curie temperature of the magnetic material, and then the signal is reproduced. Sometimes, magnetic records are read by irradiating the surface of a magnetic material with a beam of light with a specific polarization angle, such as a laser beam, and detecting the rotation angle (polarization angle) of the polarization plane of the reflected light due to the magnetic Kerr effect. .

このような光磁気記録方式に使用される記録媒体として
は、特に高密度記録が可能なものとして、既に特開昭5
9−72663号公報に記載の光磁気記録媒体が提案さ
れている。この提案の記録媒体は、第6図に示すように
アルミニウムもしくはアルミニウム合金からなる基板1
の表面に多孔質陽極酸化皮膜2を形成し、その陽極液化
皮膜2の各微細孔3中に純鉄等の磁性材4を電解析出に
より充填した構造とされている。このような構造の記録
媒体は、もともと高密度磁気記録可能な垂直磁気記録媒
体として開発されたものでおるが、光磁気記録方式にも
好適に使用されるものであることが前記提案によって明
らかにされている。すなわちこのような構造の記Bts
体を光磁気記録方式に使用する際には、予め各微細孔3
中の磁性材4を膜面tこ垂直な方向に磁化させてあくこ
とになるが、この場合微細孔3中に充填された磁性材4
は膜面に垂直な方向に異方性を有するため垂直方向に充
分に磁化され、しかもこの場合垂直方向に磁化された磁
性材4の端面に照射した光の反射光の磁気的カー効果に
よる偏光角度が大きくなるため、信号読出しも容易とな
るとされている。
As a recording medium used in such a magneto-optical recording method, one that is capable of particularly high-density recording has already been proposed in Japanese Patent Application Laid-open No. 5
A magneto-optical recording medium described in Japanese Patent No. 9-72663 has been proposed. The recording medium of this proposal consists of a substrate 1 made of aluminum or an aluminum alloy, as shown in FIG.
A porous anodic oxide film 2 is formed on the surface of the anodic oxide film 2, and each micropore 3 of the anodic liquefaction film 2 is filled with a magnetic material 4 such as pure iron by electrolytic deposition. A recording medium with such a structure was originally developed as a perpendicular magnetic recording medium capable of high-density magnetic recording, but the above proposal makes it clear that it can also be suitably used for magneto-optical recording. has been done. That is, the description of such a structure Bts
When using the body for magneto-optical recording, each fine hole 3 is
The magnetic material 4 inside is magnetized in a direction perpendicular to the film surface t, but in this case, the magnetic material 4 filled in the micropores 3
has anisotropy in the direction perpendicular to the film surface, so it is sufficiently magnetized in the perpendicular direction, and in this case, polarization due to the magnetic Kerr effect of the reflected light of the light irradiated on the end face of the magnetic material 4, which is magnetized in the perpendicular direction. It is said that since the angle becomes larger, signal reading becomes easier.

発明が解決すべき問題点 前述のように多孔質陽極酸化皮膜の微細孔に磁性材を充
填してなる光磁気記録媒体自体は既に提案されているが
、本発明者等の研究によれば、これを実際に適用した場
合、次のような問題かめることが判明した。
Problems to be Solved by the Invention As mentioned above, a magneto-optical recording medium in which the fine pores of a porous anodic oxide film are filled with a magnetic material has already been proposed, but according to research by the present inventors, When this was actually applied, it was found that the following problems occurred.

すなわちこの種の光磁気記録媒体においては、信号の書
込み時には微細孔中に充填された磁性材にレーザ光を照
射してその磁性材のキュリ一温度(TC>以上の温度に
、加熱しなければならない。
In other words, in this type of magneto-optical recording medium, when writing a signal, the magnetic material filled in the micropores must be heated to a temperature higher than the Curie temperature (TC) by irradiating the magnetic material filled in the micropores with a laser beam. No.

しかるに前記提案において実施例として記載されている
Co(コバルト)のキュリ一温度は117℃と著しく高
く、またFe(鉄)のキュ1ノ一温度も770’Cと相
当に高いが、汎用の書込み用光源として使用されること
が予想される簡単かつ安価な半導体レーザではパワー不
足であって、上記各キュリ一温度以上の高温に昇温させ
ることは困難であり、したがって特殊かつ高価なレーザ
光源を用いざるを得ない問題がある。また陽極液化皮膜
は400 ’C程度以上の高温に加熱した場合、クラッ
クが生じてしまい、そのため光磁気記録媒体として実用
に供し得なくなる問題もある。なおNiにッケル)のキ
ュリ一温度は358°Cとかなり低いが、N1の場合は
照射光に対する磁気的カー効果による偏光角(以下これ
をカー回転角と記す)θkが0.17°に過ぎず、Fe
の場合のθk = 1.1°や、Goの場合のθに=o
、9°と比較して著しく小さく、そのためN1単独で使
用することは困難である。
However, the Curie point temperature of Co (cobalt) described as an example in the above proposal is extremely high at 117'C, and the Curie point temperature of Fe (iron) is also quite high at 770'C. Simple and inexpensive semiconductor lasers, which are expected to be used as light sources for commercial applications, lack power and are difficult to raise to temperatures above one Curie temperature. Therefore, special and expensive laser light sources are required. There is a problem that necessitates its use. Furthermore, when the anodic liquefaction film is heated to a high temperature of about 400'C or higher, cracks occur, which causes the problem that it cannot be put to practical use as a magneto-optical recording medium. The Curie temperature of Ni (nickel) is quite low at 358°C, but in the case of N1, the polarization angle (hereinafter referred to as Kerr rotation angle) due to the magnetic Kerr effect on the irradiated light θk is only 0.17°. Zu, Fe
θk = 1.1° in the case of Go, and θ = o in the case of Go.
, 9°, and therefore it is difficult to use N1 alone.

この発明は以上の事情を背景としてなされたものであっ
て、半導体レーザの如き低出力のレーザ光源によっても
信号の書込みが可能となるように、しかも高温加熱より
陽極液化皮膜にクラックが生じたりしないように、多孔
質陽極酸化皮膜の微細孔に充填された磁性材のキュリ一
温度(TC)を低下させること、具体的にはキュリ一温
度を最高でも400℃以下、望ましくは200 ’C以
下にまで低下させた光磁気記録媒体を提供することを目
的とするものである。なおここで微細孔中の磁性材の飽
和磁束密度3sを低下させることは光磁気記録媒体とし
て好ましくなく、したがってBSを低下させずにキュリ
一温度を引下げることが必要である。
This invention was made against the background of the above circumstances, and is designed to enable signal writing even with a low-output laser light source such as a semiconductor laser, and to prevent cracks from occurring in the anodic liquefaction film due to high-temperature heating. As such, it is necessary to lower the Curie temperature (TC) of the magnetic material filled in the micropores of the porous anodic oxide film, specifically, to lower the Curie temperature to at most 400°C or less, preferably to 200'C or less. The object of the present invention is to provide a magneto-optical recording medium in which the optical density is reduced to . Note that lowering the saturation magnetic flux density 3s of the magnetic material in the micropores is not preferable for a magneto-optical recording medium, and therefore it is necessary to lower the Curie temperature without lowering the BS.

問題点を解決するための手段 本発明者等は、前)小のようにアルミニウムもしくはア
ルミニウム合金の多孔質陽極酸化皮膜の微細孔中に磁性
材を充填した型式の光磁気記録媒体において飽和磁束密
度BSを低下させることなくキュリ一温度TCを下げる
手法について種々検討を重ねた結果、先ず基本的には微
細孔中の磁性材の体積(寸法)を小ざくするべく、微細
孔の孔径を小ざくすること、特に13nm以下とするこ
とがキュリ一温度の低下に有効でおることを見出した。
Means for Solving the Problems The present inventors have discovered that the saturation magnetic flux density can be improved in a magneto-optical recording medium of a type in which a magnetic material is filled into the fine pores of a porous anodic oxide film of aluminum or an aluminum alloy, as described in the previous section. As a result of various studies on methods of lowering the Curie temperature TC without lowering the BS, the first step was to reduce the diameter of the micropores in order to reduce the volume (dimensions) of the magnetic material in the micropores. It has been found that setting the thickness to 13 nm or less is effective in lowering the Curie temperature.

また第2には、微細孔中に充填する磁性材として、Fe
を主成分としそれにN i 、Cr、 Mn、CIJ。
Secondly, Fe is used as the magnetic material to be filled into the micropores.
The main components are Ni, Cr, Mn, and CIJ.

Be、As、Re、Ru、Osのうちから選ばれた1種
または2種以上を添加した合金を用いることも、キュリ
一温度の低下に有効であることを見出した。
It has been found that using an alloy to which one or more selected from Be, As, Re, Ru, and Os is added is also effective in lowering the Curie temperature.

したがってこの発明は、基本的には、アルミニウムもし
くはアルミニウム合金からなる基板の表面に多孔質陽極
酸化皮膜が形成され、かつその多孔質陽極酸化皮膜の微
細孔中に磁性材が充填されてなる光磁気記録媒体におい
て、前記微細孔の直径が18〜6nniとされているこ
とを特徴とするものである。
Therefore, this invention basically consists of an opto-magnetic film in which a porous anodic oxide film is formed on the surface of a substrate made of aluminum or an aluminum alloy, and a magnetic material is filled in the fine pores of the porous anodic oxide film. The recording medium is characterized in that the micropores have a diameter of 18 to 6 nni.

またこの発明の光磁気記録媒体は、前記微細孔中に充填
される磁性材として、Niにッケル)、Cr(クロム)
、Mn(?ンガン)、Cu(銅)、Be(ベリリウム)
、AS(ヒ素)、Re(レニウム)、RIJ(ルテニウ
ム)、O3(オスミウム)のうちから選ばれた1種また
は2種以上を50原子%以下含有し、残部か実質的にF
e(鉄)からなる合金を用いたものでおる。
Further, in the magneto-optical recording medium of the present invention, as the magnetic material filled in the fine holes, Ni (nickel), Cr (chromium),
, Mn (?ngan), Cu (copper), Be (beryllium)
, AS (arsenic), Re (rhenium), RIJ (ruthenium), and O3 (osmium).
It uses an alloy consisting of e (iron).

作   用 この発明の光磁気記録媒体においては、アルミニウムも
しくはアルミニウム合金からなる基板の表面の多孔質陽
極酸化皮膜の孔径(ボア径)を18〜5nmとする。通
常の多孔質陽極酸化皮膜のボア径は100〜2001m
程度であって小ざくてもせいぜい数十nm程度でおるか
ら、この発明の場合は一般的な多孔質陽極酸化皮膜のボ
ア径よりも著しく小さくする。このようにボア径を小さ
くすることによってその微細孔中に充填される磁性材の
寸法も著しく小さくなる。すなわち磁性材が著しく微粒
子化されたと同じ効果がもたらされ、これによって磁性
材は超常磁性(スーパーパラ)に近い状態となり、その
ため常磁性的な挙動を示し、保磁力Hcが減少するとと
もにキュリ一温度TCが低下する。このようにキュリ一
温度が低下することは、信号書込み時においてレーザー
光照射により到運させるべき温度が低下することを意味
し、したがって書込みのためのレーザ光源として汎用の
半導体レーザの如き低出力のものを使用することが可能
となる。また書込み時のレーザによる加熱温度か低くな
るため、陽1化皮膜にクラックが生じるおそれもなくな
る。
Function: In the magneto-optical recording medium of the present invention, the porous anodic oxide film on the surface of the substrate made of aluminum or aluminum alloy has a pore diameter (bore diameter) of 18 to 5 nm. The bore diameter of normal porous anodic oxide coating is 100 to 2001 m.
Since the bore diameter is only a few tens of nanometers at most, in the case of the present invention, the bore diameter is significantly smaller than the bore diameter of a general porous anodic oxide film. By reducing the bore diameter in this manner, the size of the magnetic material filled in the micropores is also significantly reduced. In other words, the same effect is brought about as if the magnetic material were made into extremely fine particles, and as a result, the magnetic material becomes close to superparamagnetic (superpara), exhibiting paramagnetic behavior, decreasing the coercive force Hc, and increasing the Curie uniformity. Temperature TC decreases. This reduction in the Curie temperature means that the temperature that should be reached by laser light irradiation during signal writing is reduced, and therefore low-power lasers such as general-purpose semiconductor lasers are used as laser light sources for writing. It becomes possible to use things. Furthermore, since the heating temperature by the laser during writing is lower, there is no risk of cracks occurring in the anodic film.

例えば本発明者等が多孔質陽極酸化皮膜の微細孔に充填
する磁性材としてFe、Niを用いてその微細孔の孔径
を種々変化させた場合の孔径(ボア径)とキュリ一温度
TC1保磁力)−1cとの関係を調べたところ、第1図
、第2図に示す結果が得られた。第1図から明らかなよ
うに、特にFeの場合ボア径を13nm以下とすること
によって40O℃程度までキュリ一温度TCが低下する
ことが判る。なおここでN1もボア径18nm以下でキ
ュリ一温度Tcが低下し、しかも全体としてFeの場合
よりキュリ一温度が低いが、既に述べたようにN1はカ
ー回転角θkが小さく、したがってNiを単独で使用す
ることは好ましくない。なおまた、ボア径が6止未満で
は、キュリ一温度が低下し過ぎて至温でも記録が消失し
てしまうおそれがあるから、ボア径の下限は6nmとし
た。
For example, the present inventors used Fe and Ni as magnetic materials to fill the micropores of a porous anodic oxide film and varied the diameter of the micropores. )-1c, the results shown in FIGS. 1 and 2 were obtained. As is clear from FIG. 1, especially in the case of Fe, by setting the bore diameter to 13 nm or less, the Curie temperature TC can be lowered to about 400°C. Note that the Curie temperature Tc of N1 also decreases when the bore diameter is 18 nm or less, and the Curie temperature as a whole is lower than that of Fe. However, as already mentioned, the Kerr rotation angle θk of N1 is small, so if Ni is used alone It is not recommended to use it in Furthermore, if the bore diameter is less than 6 nm, there is a risk that the Curie temperature will drop too much and the record will disappear even at the highest temperature, so the lower limit of the bore diameter was set to 6 nm.

ざらにこの発明の光磁気記録媒体においては、前述のよ
うにボア径を’13nm以下、5nm以上にするに加え
て、微細孔に充填する磁性材として、Feを主成分とし
これにN i、Cr、Mn1Cu。
Roughly speaking, in the magneto-optical recording medium of the present invention, in addition to having a bore diameter of 13 nm or less and 5 nm or more as described above, the magnetic material filling the micropores is made of Fe as a main component and Ni, Ni, Cr, Mn1Cu.

3e、As、Re、Ru、O5のうちから選ばれた1種
または2種以上を添加した合金を用いれば、より一層キ
ュリ一温度TCを低下させることができる。すなわち、
Ni以下の添加元素はFeよりも磁性が弱いかまたは非
磁性の金属元素であるが、これらを強磁性材であるFe
に添加して希釈することにより、キュリ一温度をFe単
体の場合よりも格段に低下させることができるのでおる
If an alloy containing one or more selected from 3e, As, Re, Ru, and O5 is used, the Curie temperature TC can be further reduced. That is,
Additive elements below Ni are metal elements that have weaker magnetism than Fe or are non-magnetic;
By adding Fe to diluting it, the Curie temperature can be significantly lowered than when using Fe alone.

このような現象は次のように説明される。すなわちキュ
リ一温度は、磁性体金属の磁性を定める電子スピンを保
持し得る限界温度を怠味するものであるが、他の非磁性
金属元素や磁性の弱い金、嘱元素の外殻電子が混じれば
、スピンを持つ限界温度が低下し、かつその非磁性金属
元素や磁性の弱い金属元素の混じる割合が大きくなれば
、磁性をもたらすスピンを保ち得る限界温度が一層低下
するのでおる。
This phenomenon can be explained as follows. In other words, the Curie temperature is the limit temperature at which the electron spin that determines the magnetism of magnetic metals can be maintained. Therefore, if the critical temperature at which spin can be maintained is lowered, and the proportion of non-magnetic metallic elements and weakly magnetic metallic elements is increased, the critical temperature at which magnetic spin can be maintained will further decrease.

前述のようにFeを主体とし、これに他の希釈材として
のN1等の元素を添加した磁性材を使用する場合、その
Feと他の希釈相元素との配合比は、原子%でFeを5
0%以上、他のN1等の希釈材−元素を合計で50%以
下とすることが適当でおる。すなわち希釈相元素の割合
が高くなれば通常はキュリ一温度TCが一層低下するが
、カー回転角θにも小さくなる。光磁気記録媒体として
実用可能なカー回転角θには少なくとも0.2°以上、
好ましくは0.3°以上であるが、Feか50原子%よ
り少なくなれば充分なカー回転角を確保することが困難
となるから、Feは50原子%以上、仙の希釈付元素を
50原子%以下とした。
As mentioned above, when using a magnetic material that mainly consists of Fe and other elements such as N1 as a diluent are used, the blending ratio of Fe and other diluent phase elements is as follows: 5
It is appropriate that the total amount of other diluent elements such as N1 be 50% or less. That is, as the proportion of dilute phase elements increases, the Curie temperature TC usually decreases further, but the Kerr rotation angle θ also decreases. The Kerr rotation angle θ, which is practical as a magneto-optical recording medium, is at least 0.2° or more.
Preferably it is 0.3° or more, but if Fe is less than 50 at%, it will be difficult to secure a sufficient Kerr rotation angle, so Fe should be at least 50 at% and the diluted element should be at least 50 atoms. % or less.

なおN1等の希釈付元素は、いずれか1種のみを単独に
添加しても、2種以上を裏金添加しても良いが、1種の
みを単独添加する場合は前記各元素のうちN1もしくは
Orを使用することが望ましく、その他のMn、Cu、
Be、As、Re、RLJ、QsはN1および/または
Crと併せて添加することが望ましい。また−ここでM
n、Cu、Be、As、Re、Ru、Qsのいずれか1
種または2種以上を添加する場合、これらはいずれもキ
ュリ一温度の低下には効果が大きいものの、カー回転角
θにの低下や飽和磁束密度BSの低下にも大ぎく作用し
てしまうから、これらは合計で10原子%以下とするこ
とが望ましい。
Note that with regard to the diluting elements such as N1, only one type may be added alone, or two or more types may be added as a backing metal, but when only one type is added alone, N1 or It is desirable to use Or, and other Mn, Cu,
It is desirable to add Be, As, Re, RLJ, and Qs together with N1 and/or Cr. Again - M here
Any one of n, Cu, Be, As, Re, Ru, Qs
When adding a species or two or more species, although these are all highly effective in lowering the Curie temperature, they also have a large effect on lowering the Kerr rotation angle θ and lowering the saturation magnetic flux density BS. It is desirable that the total amount of these elements is 10 atomic % or less.

なおまた、Feに添加するN1等の希釈付元素は若干で
も添加すればキュリ一温度を低下させる効果が得られる
からその下限は将に定めないが、通常は合計で少なくと
も5原子%以上は添加することが好ましい。
Furthermore, if even a small amount of diluent elements such as N1 are added to Fe, the effect of lowering the Curie temperature can be obtained, so the lower limit is not set in advance, but usually a total of at least 5 atomic % or more is added. It is preferable to do so.

実施例 [実施例11 純度99.99%のA1を用いて溶製した4%MO−A
I合金からなる圧延板の表面を研磨してA1基板とし、
そのA1基板の表面に、3%シュウ酸水溶液を電解液と
して用いて種々の異なる電解電圧で陽極酸化処理を施し
、種々の異なるボア径の陽極酸化皮膜を生成させた。
Example [Example 11 4% MO-A produced using A1 with a purity of 99.99%
Polishing the surface of a rolled plate made of I alloy to obtain an A1 substrate,
The surface of the A1 substrate was anodized using a 3% aqueous oxalic acid solution as an electrolytic solution at various electrolytic voltages to produce anodic oxide films with various different bore diameters.

次いで種々のボア径の陽極酸化皮膜に対し、硫酸鉄10
g/l 、 5A酸ニッケル40g/l、ホウ酸3Qg
/l 、グリセリン2g/lを含有する電解液にて交流
電解により電解析出処理を行ない、陽極酸化皮膜の微細
孔にFe50原子%−N i 50原子%の組成の合金
(Fe5oNi5o合金)を充填した。
Next, iron sulfate 10
g/l, nickel 5A acid 40g/l, boric acid 3Qg
Electrolytic deposition is performed by alternating current electrolysis using an electrolytic solution containing 2 g/l of glycerin, and the fine pores of the anodic oxide film are filled with an alloy (Fe5oNi5o alloy) with a composition of 50 at% Fe-50 at% Ni. did.

また前記同様の種々のボア径の陽極酸化皮膜に対し、5
A酸鉄10g/l、硫酸ニッケル40(1/l、硫酸マ
ンガン5(]/l 、ホウ1lt30c+/l 、グリ
セリン2g/lを含有する電解液にて交流電解析出処理
を行ない、陽極酸化皮膜の微細孔中にFe50原子%−
N145原子%−Mn5原子%の組成の合金(F e 
5ON l a5M n s合金)を充IJした。
In addition, for anodic oxide coatings with various bore diameters similar to those described above,
AC electrolytic deposition treatment was carried out using an electrolytic solution containing 10 g/l of iron A acid, 40 g/l of nickel sulfate, 5(]/l of manganese sulfate, 1 lt/l of porium, and 2 g/l of glycerin. Fe50 atomic% in micropores-
Alloy with a composition of N145 at%-Mn5 at% (F e
5ON l a5M n s alloy) was filled with IJ.

以上のようにF e 5ON ! soおよびF e 
5ON l a5へ4n5合金を充填した種々のボア径
の陽極酸化皮膜に充填した場合のボア径(Dp )とキ
ュリ一温度(TC>との関係について調べた結果を第3
図に示す。なお第3゛図には、Fe単体を充填した結果
(第1図と同じ)についても比較のため併せて示す。
As mentioned above, F e 5ON! so and F e
The results of investigating the relationship between the bore diameter (Dp) and the Curie temperature (TC>) when the 4N5 alloy is filled into the 5ON 1 a5 and the anodic oxide coatings with various bore diameters are shown in the third section.
As shown in the figure. Note that FIG. 3 also shows the results of filling with Fe alone (same as in FIG. 1) for comparison.

第3図から明らかなように、F e 5ON I so
合金を用いた場合およびF e5ON!45Mn5合金
を用いた場合はいずれもFe単体を用いた場合と比較し
て格段にキュリ一温度が低く、しかもボア径が1Bnm
以下でキュリ一温度が著しく低下していることが判る。
As is clear from Figure 3, F e 5ON I so
When using alloys and Fe5ON! When using 45Mn5 alloy, the Curie temperature is much lower than when using Fe alone, and the bore diameter is 1Bnm.
It can be seen below that the Curie temperature has decreased significantly.

そして特にF e 5ON ! a5M n 5合金を
用いた場合はFe5ON!so合金を用いた場合よりも
キュリ一温度が低くなっている。なお残留磁束密度3s
はF e50I’l ! 50合金で0.32 T、 
Fe5gN ! 45M n 5合金で0.317であ
り、またカー回転角θには前者で0.46°後者で0.
45°であり、いずれも光磁気記録媒体として実用可能
な程度である。
And especially F e 5ON! When using a5M n5 alloy, Fe5ON! The Curie temperature is lower than when SO alloy is used. Note that the residual magnetic flux density is 3s
F e50I'l! 0.32 T for 50 alloy,
Fe5gN! 45M n 5 alloy is 0.317, and the Kerr rotation angle θ is 0.46° for the former and 0.46° for the latter.
The angle is 45°, which is a level that can be used practically as a magneto-optical recording medium.

[実施例21 実施例1の場合と同様にして種々のボア径の陽極酸化皮
膜を形成し、その陽極酸化皮膜のg1細孔にFe70原
子%−Cr30原子%の合金(F e 70 Cr a
o金合金、Fe70原子%−Cr25原子%−Cu5原
子%の合金(F e 70Cr 25Cu5合金)、F
e70原子%−Cr25原子%−0s5原子%の合金(
Fe700r25035合金)をそれぞれ交流電解によ
り析出させる電解析出処理を行なった。なお電解析出の
ために使用した電解液は、F e 70Cr so合金
の場合はFeSO410g/l 、CrSO420g/
l 、ホウa3og/+ 、グリセリン2g/lを含有
するものであり、またF e 70Cr 25Cu 5
合金の場合はFeSO410g/I 、Cr 3041
5(]/I 、CuSO41Cl/l、ホウ酸30(]
/l、グリセリン2g/l、F e 70Cr 250
55合金の場合はFeSO410g/l 、CrSO4
15g/l 、H20SO4”H/l、ホウ酸30g/
l 、グリセリン2g/lである。
[Example 21 Anodic oxide films with various bore diameters were formed in the same manner as in Example 1, and an alloy of 70 atomic % Fe-30 atomic % Cr (Fe 70 Cr a
o Gold alloy, alloy of Fe70 at%-Cr25 at%-Cu5 at% (Fe70Cr25Cu5 alloy), F
Alloy of e70 at%-Cr25 at%-0s5 at% (
Electrolytic deposition treatment was performed to deposit Fe700r25035 alloy) by alternating current electrolysis. The electrolytic solution used for electrolytic deposition was FeSO410g/l and CrSO420g/l in the case of Fe70Crso alloy.
It contains F e 70Cr 25Cu 5
For alloys, FeSO410g/I, Cr3041
5(]/I, CuSO41Cl/l, boric acid 30(]
/l, glycerin 2g/l, Fe 70Cr 250
55 alloy, FeSO410g/l, CrSO4
15g/l, H20SO4”H/l, boric acid 30g/l
l, glycerin 2g/l.

これらの場合について、ボア径(Do >とキュリ一温
度(TC)との関係について調べた結果を第4図に示す
。またそれぞれの場合の飽和磁束密度Bsおよびカー回
転角について調べた結果を第1表に示す。
Figure 4 shows the results of investigating the relationship between the bore diameter (Do>) and the Curie temperature (TC) for these cases. Figure 4 also shows the results of investigating the saturation magnetic flux density Bs and Kerr rotation angle in each case. It is shown in Table 1.

第1表 第4図から明らかなようにFe−Cr系の場合も第3図
に示すFe−N1系の場合と同様な効果が得られること
が判る。また第1表から、飽和磁束密度3sおよびカー
回転角θにも光磁気記録媒体として実用可能な程度でお
ることが明らかでおる。
As is clear from Table 1 and FIG. 4, it can be seen that the same effect as the Fe--N1 system shown in FIG. 3 can be obtained in the case of the Fe--Cr system. Furthermore, from Table 1, it is clear that the saturation magnetic flux density of 3 s and the Kerr rotation angle θ are within the range of practical use as a magneto-optical recording medium.

「実施例3」 実施例1の場合と同様にしで種々のボア径の陽極酸化皮
膜を形成し、その陽極酸化皮膜の微細孔に対する電解析
出処理を施すに当って、実施例1で用いたFe−Ni合
金析出用の電解液の硫酸ニッケル濃度を種々変化させ、
種々の成分比のFe−N1合金を析出させた。また実施
例2で用いたFe−Cr合金析出用の電解液のFa醒ク
ロム濃度を種々変化させ、種々の成分比のFe−Cr合
金を析出させた。そして各1”e−Ni合金、各Fe−
Cr合金を充填した種々のボア径の陽極酸化皮膜につい
てボア径(Dp >とキュリ一温度(Tc )との関係
を調べた結果を第5図に示す。また有孔率20%(ボア
径約15nm)の陽極酸化皮膜に充填した各合金の飽和
磁束密度BSおよびカー回転角θkを調べた結果を第2
表に示す。
"Example 3" In the same manner as in Example 1, anodic oxide films with various bore diameters were formed on the anodic oxide film, and when performing electrolytic deposition treatment on the fine pores of the anodic oxide film, the same method as that used in Example 1 was applied. Varying the nickel sulfate concentration of the electrolytic solution for Fe-Ni alloy precipitation,
Fe-N1 alloys with various component ratios were precipitated. Further, the concentration of Fa-free chromium in the electrolytic solution for depositing the Fe-Cr alloy used in Example 2 was varied, and Fe-Cr alloys having various component ratios were deposited. and each 1” e-Ni alloy, each Fe-
Figure 5 shows the results of investigating the relationship between the bore diameter (Dp > and the Curie temperature (Tc) for anodic oxide coatings with various bore diameters filled with Cr alloy. The results of examining the saturation magnetic flux density BS and Kerr rotation angle θk of each alloy filled in the anodic oxide film (15 nm) are shown in the second table.
Shown in the table.

第2表 第5図から明らかなように、Fe−Ni合金、Fe−C
r合金ではいずれもFe単体の場合よりもキュリ一温度
(Tc )が低くなっている。但し、第2表から明らか
なように、Felが50原子%未満(X>50原子%)
の場合、BS、θkが小さく、光磁気記録媒体として適
当でないことが判る。
As is clear from Table 2 and Figure 5, Fe-Ni alloy, Fe-C
The Curie temperature (Tc) of all r-alloys is lower than that of Fe alone. However, as is clear from Table 2, Fe is less than 50 at% (X>50 at%)
In the case of , BS and θk are small, and it is found that it is not suitable as a magneto-optical recording medium.

発明の効果 この発明の光磁気記録媒体は、磁性材が充填される多孔
質陽極酸化皮膜の微細孔の孔径(ボア径)を13nm以
下とすることによって、その微細孔中の磁性材のキュリ
一温度を低くすることができ、そのため汎用の半導体レ
ーザの如き低出力レーザ光源を用いて信号の書込みを行
なうことが可能となり、また書込み時の加熱により陽極
酸化皮膜にクラックが生じることも防止できるようにな
った。
Effects of the Invention In the magneto-optical recording medium of the present invention, the diameter (bore diameter) of the micropores of the porous anodic oxide film filled with the magnetic material is set to 13 nm or less, thereby reducing the curve of the magnetic material in the micropores. The temperature can be lowered, which makes it possible to write signals using a low-power laser light source such as a general-purpose semiconductor laser, and also prevents cracks in the anodic oxide film due to heating during writing. Became.

そして微細孔に充填される磁性材として、Feを主成分
としこれをN i 、Cr、Mn、CIJ、13e、A
S、Re、Ru、O3のうちの1種または2種以上で希
釈した合金を用いることによって、キュリ一温度をより
一層低下させ、低出力レーザ光源の使用をより一層容易
化することができる。
The magnetic material filled in the micropores is composed of Fe as the main component and Ni, Cr, Mn, CIJ, 13e, and A.
By using an alloy diluted with one or more of S, Re, Ru, and O3, the Curie temperature can be further lowered and use of a low-power laser light source can be further facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁性材としてFe、Niを用いた場合の陽極酸
化皮膜のボア径(DF) )とキュリ一温度(TC)と
の関係を示すグラフ、 第2図は同じく磁性材としてFe、Niを用いた場合の
陽極酸化皮膜のボア径(Dp >と保磁力(Hc >と
の関係を示すグラフ、 第3図は実施例1にあける陽極酸化皮膜のボア径(Dp
 >とキュリ一温度(Tc >との関係を示すグラフ、 第4図は実施例2における陽極酸化皮膜のボア径(Dp
 )とキュリ一温度(Tc >との関係を示すグラフ、 第5図は実施例3における陽極酸化皮膜のボア径(Do
>とキュリ一温度(Tc )との関係を示すグラフ、 第6図は先行技術の光磁気記録媒体の一例を模式的に示
す縦断面図である。 1・・・基板、  2・・・多孔質陽極酸化皮膜、3・
・・微細孔、 4・・・磁性材。
Figure 1 is a graph showing the relationship between the bore diameter (DF) and the Curie temperature (TC) of the anodic oxide film when Fe or Ni is used as the magnetic material. Figure 3 is a graph showing the relationship between the bore diameter (Dp > and coercive force (Hc >) of the anodic oxide film when using
Figure 4 is a graph showing the relationship between Curie temperature (Tc) and Curie temperature (Tc).
) and the Curie temperature (Tc >). Figure 5 is a graph showing the relationship between the Curie temperature (Tc >
6 is a vertical cross-sectional view schematically showing an example of a prior art magneto-optical recording medium. 1... Substrate, 2... Porous anodic oxide film, 3...
...Minute pores, 4...Magnetic material.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウムもしくはアルミニウム合金からなる
基板の表面に多孔質陽極酸化皮膜が形成され、かつその
多孔質陽極酸化被膜の各微細孔中に磁性材が充填されて
なる光磁気記録媒体において、 前記多孔質陽極酸化皮膜の微細孔の直径が6〜18nm
の範囲内である光磁気記録媒体。
(1) In a magneto-optical recording medium in which a porous anodic oxide film is formed on the surface of a substrate made of aluminum or an aluminum alloy, and each micropore of the porous anodic oxide film is filled with a magnetic material, the porous The diameter of the fine pores of the quality anodic oxide film is 6 to 18 nm.
Magneto-optical recording media within the range of
(2)特許請求の範囲第1項記載の光磁気記録媒体にお
いて、前記磁性材として、Ni、Cr、Mn、Cu、B
e、As、Re、Ru、Osのうちから選ばれた1種ま
たは2種以上を合計で50原子%以下含有し、残部が実
質的にFeからなる合金を用いている光磁気記録媒体。
(2) In the magneto-optical recording medium according to claim 1, the magnetic material may include Ni, Cr, Mn, Cu, B.
1. A magneto-optical recording medium using an alloy containing one or more selected from e, As, Re, Ru, and Os in a total amount of 50 atomic % or less, with the remainder substantially consisting of Fe.
JP60178078A 1985-08-13 1985-08-13 Magneto-optical recording medium Expired - Lifetime JPH0731830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60178078A JPH0731830B2 (en) 1985-08-13 1985-08-13 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60178078A JPH0731830B2 (en) 1985-08-13 1985-08-13 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS6238543A true JPS6238543A (en) 1987-02-19
JPH0731830B2 JPH0731830B2 (en) 1995-04-10

Family

ID=16042236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60178078A Expired - Lifetime JPH0731830B2 (en) 1985-08-13 1985-08-13 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0731830B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103861A (en) * 1985-10-31 1987-05-14 Nippon Gakki Seizo Kk Optical magnetic recording medium
JPS62212949A (en) * 1986-03-12 1987-09-18 Matsushita Electric Ind Co Ltd Medium for photomagnetic recording
US4925738A (en) * 1987-09-30 1990-05-15 Noboru Tsuya Substrate for a magnetic disk and process for its production
EP0368616A2 (en) * 1988-11-07 1990-05-16 Hitachi Maxell Ltd. Magneto-optical recording medium and production process
US5209837A (en) * 1987-09-30 1993-05-11 Noboru Tsuya Process for preparing magnetic disk
JP2006152360A (en) * 2004-11-29 2006-06-15 Sankyo Kosan:Kk Lightweight magnetic material and its production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972633A (en) * 1982-10-18 1984-04-24 Toshiba Corp Sub-code signal generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972633A (en) * 1982-10-18 1984-04-24 Toshiba Corp Sub-code signal generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103861A (en) * 1985-10-31 1987-05-14 Nippon Gakki Seizo Kk Optical magnetic recording medium
JPS62212949A (en) * 1986-03-12 1987-09-18 Matsushita Electric Ind Co Ltd Medium for photomagnetic recording
US4925738A (en) * 1987-09-30 1990-05-15 Noboru Tsuya Substrate for a magnetic disk and process for its production
US5074971A (en) * 1987-09-30 1991-12-24 Noboru Tsuya Process for preparing magnetic disk
US5209837A (en) * 1987-09-30 1993-05-11 Noboru Tsuya Process for preparing magnetic disk
EP0368616A2 (en) * 1988-11-07 1990-05-16 Hitachi Maxell Ltd. Magneto-optical recording medium and production process
EP0368616A3 (en) * 1988-11-07 1991-08-07 Hitachi Maxell Ltd. Magneto-optical recording medium and production process
JP2006152360A (en) * 2004-11-29 2006-06-15 Sankyo Kosan:Kk Lightweight magnetic material and its production method

Also Published As

Publication number Publication date
JPH0731830B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US5792564A (en) Perpendicular recording medium and magnetic recording apparatus
JP3762277B2 (en) Magnetic recording medium and method for manufacturing the same
JP4637040B2 (en) Magnetic recording medium and method for manufacturing the same
JP2821456B1 (en) Cobalt / iron / nickel magnetic thin film and manufacturing method thereof, and composite thin film magnetic head and magnetic storage device using the same
JP4027145B2 (en) Perpendicular magnetic recording medium, magnetic recording / reproducing apparatus, and information processing apparatus
JP2923791B2 (en) Magnetic recording media
JP2005209290A (en) Thermomagnetic transfer type magnetic recording system and magnetic disk unit
Weller et al. MOKE spectra and ultrahigh density data storage perspective of FePt nanomagnet arrays
JPS6238543A (en) Photomagnetic recording medium
US20080292906A1 (en) Enhancement of Magnetic Media Recording Performance Using Ion Irradiation to Tailor Exchange Coupling
US6794063B2 (en) Thin film magnetic head and method of fabricating the head
Meneses et al. L10-FeNi ordered phase in AC electrodeposited iron-nickel biphasic nanowires
JPH0689422A (en) Production of cobalt-iron-nickel magnetic film
Yoshida et al. Magnetic properties and media noise of Co‐Ni‐P plated disks
JP2002093620A (en) Magnetic thin film, its manufacturing method, magnetic head using the same, and electroplating apparatus
Osaka et al. An attempt on control of perpendicular coercivity toward film thickness direction of electroless plated cobalt alloy films for perpendicular magnetic recording
JPH07235034A (en) Perpendicular magnetic recording medium and magnetic recording-reproducing device
Chang Magnetic Data Storage and Nanoparticles
JP2898996B2 (en) Magnetic recording medium, method of manufacturing the same, and recording / reproducing apparatus using the same
JPH0482012A (en) Magnetic recording medium
Jiang Effects of additives on magnetic properties of electroplated CoNiFe films
JPS59221826A (en) Magnetic recording medium
JP4694536B2 (en) Magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic information recording method
Sun Fabrication and characterization of ultra-uniform magnetic nanoparticle arrays in ordered aluminum oxide templates
JPH03273540A (en) Magnetic recording medium and magnetic recording device and spin glass magnetic material