JPS5936520B2 - brushless motor - Google Patents

brushless motor

Info

Publication number
JPS5936520B2
JPS5936520B2 JP50155062A JP15506275A JPS5936520B2 JP S5936520 B2 JPS5936520 B2 JP S5936520B2 JP 50155062 A JP50155062 A JP 50155062A JP 15506275 A JP15506275 A JP 15506275A JP S5936520 B2 JPS5936520 B2 JP S5936520B2
Authority
JP
Japan
Prior art keywords
signal
back electromotive
switching
phase
commutation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50155062A
Other languages
Japanese (ja)
Other versions
JPS5280414A (en
Inventor
文夫 原
健一 飯塚
清雄 武安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP50155062A priority Critical patent/JPS5936520B2/en
Publication of JPS5280414A publication Critical patent/JPS5280414A/en
Publication of JPS5936520B2 publication Critical patent/JPS5936520B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は駆動巻線に発生する逆起電圧によつて界磁ロー
タの回転位置を検出する形式のブラシレスモータに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a brushless motor that detects the rotational position of a field rotor based on a back electromotive force generated in a drive winding.

一般にブラシレスモータでは永久磁石等で構成した界磁
ロータの回転位置を磁気あるいは光などを媒体として無
接触で検出し、これによつて駆動巻線の電流を転流する
ものが多い。
In general, in many brushless motors, the rotational position of a field rotor made of permanent magnets or the like is detected without contact using a medium such as magnetism or light, and the current in the drive winding is thereby commutated.

しかしモータの使用条件によつては、この種の検出器を
用いず、外部同期信号によつて同期モータとしτ起動さ
せ、一定回転速度に達したあと、駆動巻線に発生する逆
起電圧によりロータの回転位置を検出し、これによつて
駆動電流の転流を行なう形式のものに利点のある場合が
ある。しかしこの形式のブラシレスモータの問題点の一
つは、同期信号による回転状態から逆起電圧信号による
回転状態への切換えを行なう過渡状態において、負荷状
態その他の外乱によつて不安定状態が発生し、モータが
脱調停止してしまうことにある。本発明の目的は、この
ような問題点を除去し。
However, depending on the operating conditions of the motor, this type of detector may not be used, and the motor may be started as a synchronous motor using an external synchronizing signal, and after reaching a certain rotation speed, the back electromotive force generated in the drive winding may There may be advantages in detecting the rotational position of the rotor and commutating the drive current accordingly. However, one of the problems with this type of brushless motor is that during the transient state in which the rotation state is switched from the rotation state caused by the synchronization signal to the rotation state caused by the back electromotive voltage signal, an unstable state may occur due to load conditions or other disturbances. , the motor may step out and stop. The object of the present invention is to eliminate such problems.

且つ負荷条件の如何にかかわらず、きわめて高速な同期
起動を可能とし、短時間のうちに逆起電圧による定常回
転状態を達成するブラシレスモータを提供することにあ
る。以下本発明の基本原理について第1図、第2図およ
び第3図を用いて説明する。
Another object of the present invention is to provide a brushless motor that enables extremely high-speed synchronous starting regardless of load conditions and achieves a steady rotation state due to a back electromotive force in a short time. The basic principle of the present invention will be explained below with reference to FIGS. 1, 2, and 3.

第1図は逆起電圧検出形のブラシレスモータの基本構成
である。1は界磁ロータで、3相の駆動巻線3−a、3
一b、3−cの電流が、駆動電源2の出力電流をコミュ
テータ素子4−a、4−b、4−cおよび5−a、5−
b、5−cを用いて、界磁ロータ1の回転位置に応じて
転流されることによつてモータの回転が持続する。
FIG. 1 shows the basic configuration of a back electromotive force detection type brushless motor. 1 is a field rotor, and three-phase drive windings 3-a, 3
The currents of 1b and 3-c change the output current of the drive power source 2 to commutator elements 4-a, 4-b, 4-c and 5-a, 5-
b and 5-c are used to commutate the current according to the rotational position of the field rotor 1, thereby maintaining the rotation of the motor.

トランジスタ6−A,6− B,6−cはコミユテータ
素子4 − A,4− B,4−cのプリドライバ一で
あり、ダイオードヨ黷,?− B,7− cおよび8−
A,8−B,8−cは各々コミユテータ素子4− A,
4− B,4−cおよび5−A,5−B,5−cに並列
に接続された環流ダイオードである。第1図において1
3は同期信号および逆起電圧検出信号の切換,スイツチ
.15はこれらの信号のうち切換スイツチ13によつて
選択された3相信号24− A,24− B,24−c
を.6相のコミユテータ素子転流制御信号25−A,2
5−B,25−C,26−A,26− B,26− c
に変換するロジツク回路である。起動時においては、王
モータを同期モータとして駆動するための発振器11の
出力信号2Tをシフトレジスタ12によつて3相に変換
した同期信号23−A,23−B,23−cが切換スイ
ツチ13によつて選択される。この切換スイツチ13に
よつて選択された同期信号23−A,23− B,23
− cによつてモータの界磁ロータが起動加速し.駆動
巻線3− A,3− B,3− cに発生する逆起電圧
信号20−A,2O−B,2O−cが回転位置検出に利
用するのに十分なレベルになると、指令回路14による
切換信号28が発生し.これによつて切換スイツチ13
は逆起電圧検出信号22−A,22−B,22−cを選
択し、界磁ロータ1は定常回転状態となる。逆起電圧信
号20− A,2O− B,2O− cを同期信号23
− A,23− B,23− cと対等な逆起電圧検出
信号22− A,22− B,22− cに変更するた
めに、フイルタ回路9およびコンパレータ10が配置さ
れている。
Transistors 6-A, 6-B, 6-c are pre-drivers for commutator elements 4-A, 4-B, 4-c, and diodes are connected to each other. -B, 7-c and 8-
A, 8-B, and 8-c are commutator elements 4-A, respectively.
It is a freewheeling diode connected in parallel to 4-B, 4-c and 5-A, 5-B, 5-c. In Figure 1, 1
3 is a switch for switching the synchronization signal and back electromotive voltage detection signal. 15 is a three-phase signal 24-A, 24-B, 24-c selected by the changeover switch 13 among these signals.
of. 6-phase commutator element commutation control signal 25-A, 2
5-B, 25-C, 26-A, 26-B, 26-c
It is a logic circuit that converts At startup, synchronous signals 23-A, 23-B, and 23-c, which are obtained by converting the output signal 2T of the oscillator 11 into three phases by the shift register 12 for driving the main motor as a synchronous motor, are sent to the changeover switch 13. selected by. Synchronous signals 23-A, 23-B, 23 selected by this switch 13
- The field rotor of the motor is started and accelerated by c. When the back electromotive voltage signals 20-A, 2O-B, 2O-c generated in the drive windings 3-A, 3-B, 3-c reach a sufficient level to be used for rotational position detection, the command circuit 14 A switching signal 28 is generated by . This causes the changeover switch 13
selects the back electromotive voltage detection signals 22-A, 22-B, and 22-c, and the field rotor 1 enters a steady rotation state. The back electromotive voltage signals 20-A, 2O-B, 2O-c are used as the synchronization signal 23
A filter circuit 9 and a comparator 10 are arranged to change the back electromotive voltage detection signals 22-A, 22-B, and 22-c to be equal to those of the signals 22-A, 23-B, and 23-c.

その動作原理は、本出願人が本願と同日付で出願した判
願昭50一155061号にても述べたが、第2図のと
おりである。即ち、第2図において各相の逆起電圧信号
20− A,2O− bおよび20−cは各々電気角で
120゜の位相差を持つて発生する。例えば.このうち
のb相の逆起電圧信号20−bをフイルタ回路9に入力
すれば、その出力は21−bに示したように.原信号の
逆起電圧信号20−bに対し90゜遅れの正弦波電圧信
号となる。これをコンパレータ10に入力すれば. 2
2−aに示したようにa相のための逆起電圧検出信号と
なる。同様にbおよびc相のための逆起電圧検出信号は
それぞれcおよびa相の逆起電圧信号20−C,2O−
aによつて形成できる。これら180幅かつ120位相
差の3相信号が第1図のロジツク15によつて、第2図
に示した転流制御信号26−A,26−B,26−cお
よび25−A,25−B,25−cに形成される。これ
らのうち転流制御信号26− A,26− B,26−
cは第1図のコミユテータ4−A,4−B,4−C,
また転流制御信号25− A,25− B,25−cは
コミユテータ5−A,5−B,5−cを制御するのに利
用される。このように逆起電圧を利用した回転状態にお
いては、ロータの回転位置に対応した転流制御信号25
−A,25−B,25−C,26−A,26− B,2
6− cが得られるのに対し.同期信号23− A,2
3− B,23− cによる回転状態においては、同期
信号23−A,23−B,23−cを利用した転流制御
信号25−A,25−B,25− C,26− A,2
6− B,26−cとロータ1の回転位置との関係が一
定である保証が与えられない。
The principle of its operation is as shown in FIG. 2, as described in Japanese Patent Application No. 155061/1983 filed by the applicant on the same date as the present application. That is, in FIG. 2, the back electromotive voltage signals 20-A, 2O-b and 20-c of each phase are generated with a phase difference of 120 degrees in electrical angle. for example. If the b-phase back electromotive voltage signal 20-b is input to the filter circuit 9, its output will be as shown in 21-b. This becomes a sine wave voltage signal delayed by 90 degrees with respect to the original back electromotive voltage signal 20-b. Input this to comparator 10. 2
As shown in 2-a, this becomes a back electromotive force detection signal for the a phase. Similarly, the back electromotive force detection signals for the b and c phases are the back electromotive voltage signals 20-C and 2O- for the c and a phases, respectively.
It can be formed by a. These three-phase signals with a width of 180 and a phase difference of 120 are converted into commutation control signals 26-A, 26-B, 26-c and 25-A, 25- as shown in FIG. B, formed at 25-c. Among these, commutation control signals 26-A, 26-B, 26-
c is the commutator 4-A, 4-B, 4-C in Fig. 1,
Further, commutation control signals 25-A, 25-B, and 25-c are used to control commutators 5-A, 5-B, and 5-c. In this rotating state using the back electromotive force, the commutation control signal 25 corresponding to the rotational position of the rotor is
-A, 25-B, 25-C, 26-A, 26-B, 2
6- While c is obtained. Synchronous signal 23-A, 2
3-B, 23-c, commutation control signals 25-A, 25-B, 25-C, 26-A, 2 using synchronization signals 23-A, 23-B, 23-c.
There is no guarantee that the relationship between 6-B, 26-c and the rotational position of the rotor 1 is constant.

これを第3図によつて説明する。第3図において23−
aはa相のための同期信号であり、これと対の相の同期
信号23−bによつてロジツク15により転流制御信号
26− aおよび25−aが形成される。このとき、ロ
ータの回転位置を示す逆起電圧信号20−aは第3図に
示すように転流制御信号26− A,25− aより位
相進みの状態にあるのが普通である。(このように.位
相進みの状態、即ち、転流制御信号26− A,25−
aによる逆起電圧信号20−aに対する転流位置が位
相ずれを起しているため.実際に端子電圧として取り出
した逆起電圧信号20−aは非対称となり、破線のよう
になる。)このとき、逆起電圧にもとずく逆起電圧検出
信号は22−aのようになり、同期信号23−aに対し
αだけ位相が進んでいる。このような位相ずれがあると
き.たとえば第3図のT。のタイミングで同期信号から
逆起電圧検出信号に切換えると.20−aが進み位相で
あるため.正常な転流制御信号25−aが発生せず転流
制御信号25− a’が生じてしまう。従つて.転流制
御信号26−aと25−aとの正常な位相間隔が確保で
きず、前記転流制御信号25−a’は、転流制御信号2
6− a’との位相間隔が小さくなり、実際の回転子の
位置を与える情報信号とならない。他の相についても同
様であるため、このような切換えを行なうと駆動電流の
適正な転流状態が得られず、瞬時にモータが脱調停止す
ることがある。脱調しない場合でも、コミユテータ素子
4−A,4−B,4−C,5−A,5−B,5−cに過
大な電流が流れ、これを損傷する。一方、同期信号にも
とづく回転状態においても、負荷が軽くなると、界磁ロ
ータ1の位相進み状態、すなわち第3図のαが小さくな
つて、第3図の逆起電圧信号20−a′の状態に近づい
ていく。
This will be explained with reference to FIG. In Figure 3, 23-
A is a synchronization signal for the a phase, and commutation control signals 26-a and 25-a are formed by the logic 15 based on the synchronization signal 23-b of the opposite phase. At this time, the back electromotive voltage signal 20-a indicating the rotational position of the rotor is normally in a phase lead state than the commutation control signals 26-A and 25-a, as shown in FIG. (In this way, the phase lead state, that is, the commutation control signal 26-A, 25-
This is because the commutation position with respect to the back electromotive voltage signal 20-a due to a has caused a phase shift. The back electromotive voltage signal 20-a actually taken out as a terminal voltage is asymmetrical and appears as a broken line. ) At this time, the back electromotive voltage detection signal based on the back electromotive force becomes as shown in 22-a, which is ahead in phase by α with respect to the synchronizing signal 23-a. When there is such a phase shift. For example, T in Figure 3. If you switch from the synchronization signal to the back electromotive voltage detection signal at the timing of . Because 20-a is a leading phase. A normal commutation control signal 25-a is not generated, but a commutation control signal 25-a' is generated. Accordingly. A normal phase interval between the commutation control signals 26-a and 25-a cannot be ensured, and the commutation control signal 25-a' is different from the commutation control signal 2.
6- The phase interval with a' becomes small and the information signal does not provide the actual position of the rotor. The same applies to the other phases, so if such switching is performed, an appropriate commutation state of the drive current cannot be obtained, and the motor may instantly step out and stop. Even if no synchronization occurs, an excessive current flows through the commutator elements 4-A, 4-B, 4-C, 5-A, 5-B, and 5-c, damaging them. On the other hand, even in the rotating state based on the synchronization signal, when the load becomes lighter, the phase advance state of the field rotor 1, that is, α in FIG. 3 becomes smaller, and the state of the back electromotive voltage signal 20-a' in FIG. approaches.

このとき逆起電圧検出信号は22−a/0)ごとくであ
り、同期信号23−aと一致する。このような状態をと
らえて切換を行なうならば、上記の問題点が除去される
であろう。本発明の基本的な考え方は、この点に着目し
たものである。
At this time, the back electromotive voltage detection signal is as shown in 22-a/0), which coincides with the synchronizing signal 23-a. If such a situation is detected and switching is performed, the above-mentioned problem will be eliminated. The basic idea of the present invention focuses on this point.

すなわち、同期信号と逆期電圧検出信号の位相差に着目
し、この位相差を零もしくは切換時にトラブルが生じぬ
範囲内の零近くに制御することによつて、同期信号によ
る回転状態から逆起電圧による回転状態への切換えを円
滑かつ安定に行なわしめることである。以下に本発明の
内容について、第4図および第5図により、位相差検出
方式の一実施例を説明する。第4図において22−A,
22−bおよび22−cは逆起電圧をもとに形成した逆
起電圧検出信号である。一方23−aはa相のための同
期信号であり、逆起電圧検出信号22−aとの論理比較
により29の実線のパルス幅信号を得る。このパルス幅
信号29はそのパルス幅が界磁ロータの位相進みに比例
する゛。しかし、このままでは、逆に同期信号23一a
が相対的に位相進みになつた瞬間にもパルス幅信号29
が発生してしまう。このため第5図の論理回路16−a
に示したように、22−bの反転信号を論理にカロえる
。これによつて位相差零を基準として、界磁ロータ1が
位相進みのとき、これに比例したパルス幅信号29、位
相遅れのときにパルス発生なしの条件が一定限界内で可
能となる。各位相についても同様にし、これを第5図の
論理回路17−aで結合すれば、そのパルス幅信号29
は第4図の実線および破線で示すような信号になる。一
方、界磁ロータの位相が遅れた状態にあり、同期信号が
第4図23−a′0状態となつたときは、前と同様に第
5図の論理回路16−dおよび論理回路17−bにより
、第4図30の位相遅れを示すパルス幅信号が得られる
。これらのパルス幅信号29および30を各々フイルタ
18−A,l8−bによつて平滑し、これを差動アンプ
19に印カロしたとき、その出力32は界磁ロータすな
わち回転信号の同期信号に対する位相差を示す直流信号
となる。出力32は位相進みで正の電圧、位相遅れで負
の電圧、位相差なしで零電圧となるので、この零もしく
は零近くの電圧値を検出して第1図の指令回路14を動
作させて切換信号28を発生せしめることにより同期信
号と逆起電圧検出信号の位相が合つた安定な切換を実現
することができる。
In other words, by focusing on the phase difference between the synchronization signal and the reverse voltage detection signal, and controlling this phase difference to zero or close to zero within a range that does not cause trouble during switching, the rotation state caused by the synchronization signal can be eliminated from the reverse voltage detection signal. The purpose is to smoothly and stably switch to a rotating state using voltage. Regarding the content of the present invention, one embodiment of the phase difference detection method will be described below with reference to FIGS. 4 and 5. In Fig. 4, 22-A,
22-b and 22-c are back electromotive voltage detection signals formed based on the back electromotive force. On the other hand, 23-a is a synchronization signal for the a phase, and a solid line pulse width signal 29 is obtained by logical comparison with the back electromotive voltage detection signal 22-a. The pulse width of this pulse width signal 29 is proportional to the phase lead of the field rotor. However, as it is, the synchronization signal 231a
Even at the moment when the phase becomes relatively advanced, the pulse width signal 29
will occur. Therefore, the logic circuit 16-a in FIG.
As shown in , the inverted signal of 22-b is added to the logic. This makes it possible within certain limits to generate a pulse width signal 29 proportional to the phase difference of the field rotor 1 when the phase difference is zero, and to generate no pulse when the field rotor 1 has a phase lag. Do the same for each phase, and if they are combined in the logic circuit 17-a in FIG. 5, the pulse width signal 29
results in signals as shown by solid lines and broken lines in FIG. On the other hand, when the phase of the field rotor is delayed and the synchronization signal is in the state 23-a'0 in FIG. 4, the logic circuit 16-d and the logic circuit 17- in FIG. b, a pulse width signal indicating a phase delay as shown in FIG. 430 is obtained. When these pulse width signals 29 and 30 are smoothed by filters 18-A and 18-b, respectively, and applied to the differential amplifier 19, the output 32 is generated in response to the synchronization signal of the field rotor, that is, the rotation signal. This becomes a DC signal that indicates a phase difference. Since the output 32 is a positive voltage when the phase is advanced, a negative voltage when the phase is delayed, and zero voltage when there is no phase difference, this voltage value of zero or near zero is detected and the command circuit 14 shown in FIG. 1 is operated. By generating the switching signal 28, stable switching in which the synchronization signal and the back electromotive force detection signal are in phase can be realized.

第6図は以上説明した本発明により、実際のモータを起
動した際のカロ速特件の一例を示すものである。切換時
の速度は290〜370(Rpm)であり、起動から切
換までの時間は約2.6秒である。なお、図の斜線部分
が安定して切換えられる回転数の範囲である。以上説明
したように本発明によれば同期信号から逆起電圧検出信
号への切換が円滑に行なわれ、きわめて安定な逆起電圧
検出形ブラシレスモータの実現が可能である。
FIG. 6 shows an example of the Karo speed special condition when an actual motor is started according to the present invention described above. The speed at the time of switching is 290 to 370 (Rpm), and the time from startup to switching is about 2.6 seconds. Note that the shaded area in the figure is the range of rotation speeds that can be stably switched. As described above, according to the present invention, switching from a synchronization signal to a back electromotive force detection signal is performed smoothly, and an extremely stable back electromotive force detection type brushless motor can be realized.

なお、本発明は逆起電圧検出形のブラシレスモータの構
成方式あるいは構成素子の種類には無関係に適用可能で
ある。
It should be noted that the present invention is applicable regardless of the configuration method or the types of constituent elements of the back electromotive force detection type brushless motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図,第2図および第3図は本発明の基本原理を説明
する図、第4図および第5図は本発明の実現に必要な位
相検出方式の一実施例の説明図、第6図は本発明による
カロ速特性の一例を示す図である。 4−A,4−B,4−C,5−A,5−B,5一c・・
・・・・コミユテータ素子、6−A,6−B,6一c・
・・・・・コミユテータ素子のプリドライバ一用のトラ
ンジスタ、9・・・・・・フイルタ回路、10・・・・
・・コンパレータ、11・・・・・・発振器、12・・
・・・・シフトレジスタ、13・・・・・・切換スイツ
チ、14・・・・・・指令回路、15・・・・・・ロジ
ツク回路、16−A,l6−B,l6−C,l7−A,
l7−B,l7−c・・・・・・論理回路、18−A,
l8−b・・・・・・フイルタ、19・・・・・・差動
アンプ。
1, 2, and 3 are diagrams for explaining the basic principle of the present invention, Figures 4 and 5 are diagrams for explaining an embodiment of the phase detection method necessary for realizing the present invention, and Figure 6 is a diagram for explaining the basic principle of the present invention. The figure is a diagram showing an example of Karo speed characteristics according to the present invention. 4-A, 4-B, 4-C, 5-A, 5-B, 5-c...
... Commutator element, 6-A, 6-B, 61c.
... Transistor for pre-driver of commutator element, 9 ... Filter circuit, 10 ...
... Comparator, 11... Oscillator, 12...
...Shift register, 13...Selector switch, 14...Command circuit, 15...Logic circuit, 16-A, l6-B, l6-C, l7 -A,
l7-B, l7-c...Logic circuit, 18-A,
l8-b...Filter, 19...Differential amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 界磁ロータと複数個の駆動巻線と、この駆動巻線に
流れる駆動電流を切換えるためのコミユテータ素子を有
するとともに、外部同期信号にもとづく転流制御装置に
よつて前記コミユテータ素子のオンオフ状態を変化させ
て前記ロータを起動し、これが一定回転速度に達したの
ち、前記駆動巻線に発生した逆起電圧信号にもとづく転
流制御信号によつて前記コミユテータ素子のオンオフ状
態を変化させながら定常運転させる形式のブラシレスモ
ータにおいて、起動後、時間の経過と共に周波数が増加
する外部同期信号発振器と、該外部同期信号発振器より
出力される同期信号またはこの同期信号と一定位相関係
にある処理信号と前記逆起電圧信号またはこの逆起電圧
信号と一定位相関係にある処理信号との位相差を検出す
る位相差検出器と、この位相差検出器で検出された位相
差が零もしくは零近くのときに前記同期信号によるモー
タ運転から前記逆起電圧信号によるモータ運転に切換え
る切換信号を発生する切換器とからなる起動装置を有す
るブラシレスモータ。
1. It has a field rotor, a plurality of drive windings, and a commutator element for switching the drive current flowing through the drive windings, and the on/off state of the commutator element is controlled by a commutation control device based on an external synchronization signal. After the rotor reaches a constant rotational speed, steady operation is performed while changing the on/off state of the commutator element using a commutation control signal based on a back electromotive voltage signal generated in the drive winding. In a brushless motor of the type that operates, an external synchronizing signal oscillator whose frequency increases over time after startup, and a synchronizing signal output from the external synchronizing signal oscillator or a processed signal having a constant phase relationship with this synchronizing signal and the opposite a phase difference detector that detects a phase difference between an electromotive force signal or a processed signal that has a constant phase relationship with the back electromotive force signal; A brushless motor having a starting device comprising a switching device that generates a switching signal for switching from motor operation based on a synchronization signal to motor operation based on the counter electromotive voltage signal.
JP50155062A 1975-12-26 1975-12-26 brushless motor Expired JPS5936520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50155062A JPS5936520B2 (en) 1975-12-26 1975-12-26 brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50155062A JPS5936520B2 (en) 1975-12-26 1975-12-26 brushless motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59027050A Division JPS59162793A (en) 1984-02-17 1984-02-17 Brushless motor

Publications (2)

Publication Number Publication Date
JPS5280414A JPS5280414A (en) 1977-07-06
JPS5936520B2 true JPS5936520B2 (en) 1984-09-04

Family

ID=15597824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50155062A Expired JPS5936520B2 (en) 1975-12-26 1975-12-26 brushless motor

Country Status (1)

Country Link
JP (1) JPS5936520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012655A1 (en) * 1990-02-14 1991-08-22 Matsushita Electric Industrial Co., Ltd. Method of driving brushless motor and device therefor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642842U (en) * 1979-09-10 1981-04-18
JPS5646680A (en) * 1979-09-20 1981-04-27 Yoshida Dental Mfg Co Ltd Brushless motor driving system
JPS57145560A (en) * 1981-02-27 1982-09-08 Seiko Instr & Electronics Ltd Brushless motor
JPS5829380A (en) * 1981-08-14 1983-02-21 Hitachi Ltd Starting method for commutatorless motor
JPS5851794A (en) * 1981-09-21 1983-03-26 Nippon Yusoki Co Ltd Starting system for commutatorless motor
JPS5854891A (en) * 1981-09-25 1983-03-31 Secoh Giken Inc Driving device for semiconductor motor
JPS60118087A (en) * 1983-11-28 1985-06-25 Secoh Giken Inc Semiconductor motor
JPS60128888A (en) * 1983-12-12 1985-07-09 Secoh Giken Inc Semiconductor motor with 1-phase position detection output unit
JPS61135385A (en) * 1984-12-04 1986-06-23 Matsushita Electric Ind Co Ltd Brushless motor drive device
JPS61135380A (en) * 1984-12-04 1986-06-23 Matsushita Electric Ind Co Ltd Brushless motor drive device
JPS61135379A (en) * 1984-12-04 1986-06-23 Matsushita Electric Ind Co Ltd Brushless motor drive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012655A1 (en) * 1990-02-14 1991-08-22 Matsushita Electric Industrial Co., Ltd. Method of driving brushless motor and device therefor
DE4190247C2 (en) * 1990-02-14 1994-05-26 Matsushita Electric Ind Co Ltd Method of operating a brushless motor

Also Published As

Publication number Publication date
JPS5280414A (en) 1977-07-06

Similar Documents

Publication Publication Date Title
US4392099A (en) Starting system for brushless motor
US3931553A (en) Electronic commutation system having motor stator windings in push-pull
JPS5936520B2 (en) brushless motor
JPH09163789A (en) Morse start circuit and control method therefor
EP0897610A2 (en) Arrangement for generating drive signals for a multi-phase d.c. motor, lock detector, drive arrangement and disk drive
US6218794B1 (en) Spindle motor startup method and apparatus
US3840790A (en) Electronically commutated motor
EP0449687B1 (en) Control process of a self-piloted synchronous motor and device for using the same
US3302083A (en) Variable synchronous motors which rotate at a self-determined rotational speed
JP2536010B2 (en) 3-phase brushless motor device
JPS59162793A (en) Brushless motor
US8274250B2 (en) Method for controlling a direct current brushless motor, and control circuit
JP3692923B2 (en) Motor driver
JP2722750B2 (en) Drive device for brushless motor
US3746941A (en) Device for controlling the speed of a d. c. motor with a noncontact switch
KR100283517B1 (en) Reverse Electromotive Force Detection Mechanism for Pulse Width Modulated Driven Bildish Motors
JPH0161032B2 (en)
JPH05236785A (en) Drive circuit for brushless motor
JPH01283090A (en) Driving method for 3-phase dc motor
JP2653586B2 (en) Brushless DC motor
JP3300637B2 (en) Brushless DC motor
JPH0670578A (en) Brushless motor control circuit
EP0424467A1 (en) Motor drive system
JPH02197291A (en) Method and device for starting brushless motor
JPS61135388A (en) Brushless motor drive device