JPS5935489A - Manufacture of photo semiconductor device - Google Patents

Manufacture of photo semiconductor device

Info

Publication number
JPS5935489A
JPS5935489A JP57147357A JP14735782A JPS5935489A JP S5935489 A JPS5935489 A JP S5935489A JP 57147357 A JP57147357 A JP 57147357A JP 14735782 A JP14735782 A JP 14735782A JP S5935489 A JPS5935489 A JP S5935489A
Authority
JP
Japan
Prior art keywords
film
laser beam
conductive film
laser
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57147357A
Other languages
Japanese (ja)
Other versions
JPH0447466B2 (en
Inventor
Toshiaki Yokoo
横尾 敏昭
Takashi Shibuya
澁谷 尚
Masaru Takeuchi
勝 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57147357A priority Critical patent/JPS5935489A/en
Publication of JPS5935489A publication Critical patent/JPS5935489A/en
Publication of JPH0447466B2 publication Critical patent/JPH0447466B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To enable to attain partial removal of a semiconductor film according to laser without damging another film at the photo semiconductor device consisting of the laminate of the transparently conductive film and the semiconductor film by a method wherein the difference between the optical absorption factor characteristics of the respective films thereof is utilized. CONSTITUTION:The transparently conductive film 11 is adhered on the whole surface of a transparent substrate 10. Then adjoining interval parts 11 are removed according to irradiation of the laser beam, and individual and respective transparently conductive films 11a-11c are isolatedly formed. Then the amorphous Si film 12 is adhered on the whole surface of the substrate 10. Then adjoining interval parts 12' are removed according to the laser beam, and independent and respective amorphous Si films 12a-12c are isolatedly formed. In this case, wave length of the laser beam to be used is so selected as to make the laser beam absorption factor of the film 11 to become extremely lower than the film 12. Accordingly, even when the laser beam reaches the transparently conductive film parts 110 existing under the adjoining interval parts 12', the parts 110 thereof receive almost no damage.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、光起電力装置や光導電装置の如き光半導体装
置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method of manufacturing an optical semiconductor device such as a photovoltaic device or a photoconductive device.

〈背景技術〉 この種の装置において、その光感応層に非晶質シリコン
の様な半導体膜を用いたものは既に知られている。
<Background Art> Devices of this type using a semiconductor film such as amorphous silicon for the photosensitive layer are already known.

第1図は、非晶質半導体膜を用いた従来の光半導体装置
を示し、(1)は透明基板、(2a)(2b)(2c)
・・・は基板(1)上に一定間隔で被着された透BA導
−電膜、(3a)(3b)(3c)=・は各di ”/
4 導電膜上に重畳被着された非晶質半導体膜、(4a
)(4b)(4c)・・・は各非晶質半導体膜上に重畳
被着され、かつ各右隣りの透明導電膜(2b)(2c)
・・・に部分的に重畳せる裏面電極膜である。
FIG. 1 shows a conventional optical semiconductor device using an amorphous semiconductor film, in which (1) is a transparent substrate, (2a) (2b) (2c)
. . . is a transparent BA conductive film deposited at regular intervals on the substrate (1), (3a) (3b) (3c)=. is each di ”/
4 Amorphous semiconductor film superimposed on the conductive film, (4a
) (4b) (4c)... are superimposed and deposited on each amorphous semiconductor film, and are transparent conductive films (2b) (2c) on the right side of each film.
It is a back electrode film that can be partially overlapped with...

各非晶質半導体膜(3a)(6b)(3c)・・・は、
その内部に例えば膜面に平行なPIN接合を含み、従っ
て透明基板+13及び透明導電膜(2a)(2b)(2
c)・・・を順次介して光入射があると、光起電力を発
生する。各非晶質半導体C3a)C3b)C5c)・・
・内で発生した光起電力は裏面電極膜(4a)(4b)
(4c)での接続により直列的に相加される。
Each amorphous semiconductor film (3a) (6b) (3c)...
For example, it includes a PIN junction parallel to the film surface, and thus includes a transparent substrate +13 and transparent conductive films (2a) (2b) (2).
c) When light is incident sequentially through..., a photovoltaic force is generated. Each amorphous semiconductor C3a)C3b)C5c)...
・The photovoltaic force generated inside the back electrode film (4a) (4b)
They are added in series by the connection at (4c).

この様な装置において、光利用効率を左右する一つの要
因は、装置全体の受光面積(即ち、基板面積)に対し、
実際に発電に寄与する非晶質半導体膜(3a)(Sb)
(5c)の総面積の占める割合いである。然るに、各非
晶質半導体膜(3a)(3b)(3c)・・・の隣接間
に必然的に存在する非晶質半導体のない領R(図中符号
NONで示すm域)は上記面積割合いを低下させる。
In such devices, one factor that affects the light utilization efficiency is the light receiving area (i.e. substrate area) of the entire device.
Amorphous semiconductor film (3a) (Sb) that actually contributes to power generation
(5c) is the proportion of the total area. However, the region R (region m indicated by the symbol NON in the figure) without an amorphous semiconductor that necessarily exists between adjacent amorphous semiconductor films (3a), (3b, 3c), etc. has the above-mentioned area. Decrease the ratio.

従って光利用効率を向上するには、まず透明導電膜(2
a)(2b)(2c)・・・の隣接間隔を小さくし、そ
して非晶質半導体膜(+a)(3b)(3c)・・・の
隣接間隔を小さくせねばならない。
Therefore, in order to improve the light utilization efficiency, first the transparent conductive film (2
It is necessary to reduce the adjacent spacing between a) (2b) (2c), . . . and the adjacent spacing between amorphous semiconductor films (+a), (3b), (3c), and so on.

この様な間隔縮少は6膜の加工精度で決まり、従って、
従来は細密加工性に優れている写真蝕刻技術が用いられ
ている。この技術による場合、基板(1)上全面への透
明導電膜の被着工程と、フォトレジスト及びエツチング
による各個別の透明導電膜(2a)(2b)(2c)−
の分離、即ち、各透明導電@(2a)(2b)(2c)
・・・の隣接間隔部分の除去工程と、これら各透91尋
電膜上を含む基板(1)上全面への非晶質半導体膜の被
着工程と、7オトレジスト及びエツチングによる各個別
の非晶質半導体膜(3a)(3b)(3c) ・”の分
離、即ち、各非晶質半導体膜(3a)(3b)(3c)
の隣接間隔部分の除去工程とを順次経ることVCなるっ しかし乍ら、写真蝕刻技術は細密加工の上で優れてはい
るが、蝕刻パターンを規定するフォトレジストのピンホ
ールや周縁での剥れにより非晶質半導体+1Qに欠陥を
生じさぜやラーい。
This kind of spacing reduction is determined by the processing accuracy of the 6 membranes, and therefore,
Conventionally, photo-etching technology, which has excellent precision processing properties, has been used. In the case of this technology, there is a step of depositing a transparent conductive film on the entire surface of the substrate (1), and each individual transparent conductive film (2a) (2b) (2c) by photoresist and etching.
Separation of each transparent conductor @ (2a) (2b) (2c)
..., the step of depositing an amorphous semiconductor film on the entire surface of the substrate (1), including on each of these transparent 91-layer dielectric films, and the step of removing each individual non-crystalline film by photoresist and etching. Separation of crystalline semiconductor films (3a) (3b) (3c) ・'', that is, each amorphous semiconductor film (3a) (3b) (3c)
However, although photo-etching technology is excellent in precision processing, it is prone to pinholes and peeling at the edges of the photoresist that defines the etched pattern. This may cause defects in the amorphous semiconductor +1Q.

特開昭57−12568号公報に+yr+示された先行
技術は、レーザ照射による膜の焼き切りで上記隣接間隔
を設けるものであり、写真蝕刻技術で必要なフォトレジ
ストを一切使わないその技法は上記の課題を解決する上
で極めて有効である。又写真蝕刻技術で得られる各非晶
質半導体IIQ (3a ) (3b)(3c)・・・
の隣接間隔は約600μmであるが、レーザ使用の場合
、その間隔を更に小さくすることができる。
The prior art disclosed in Japanese Unexamined Patent Publication No. 57-12568 provides the above-mentioned adjoining distance by burning out the film by laser irradiation, and the technique does not use any photoresist, which is required in photo-etching technology. It is extremely effective in solving problems. In addition, each amorphous semiconductor IIQ (3a) (3b) (3c) obtained by photo-etching technology...
The adjacent spacing is about 600 μm, but if a laser is used, the spacing can be made even smaller.

レーザ使用の際に留意すべきことは、焼き切らんとする
膜部分の下に他の膜が在社しておれば、それに損傷を与
えないことである。さもなければ、目的の膜部分を焼き
切った上、必要とトない下の膜まで焼き切ってしまう。
What should be kept in mind when using a laser is to avoid damaging other films if they exist beneath the part of the film to be burnt out. Otherwise, not only the desired part of the membrane will be burnt out, but also the unnecessary part of the lower membrane will be burned out.

上記先行技#は、この要求を満すために、レーザ出力や
パルス同波数を6膜に対して選択することを提案してい
る。
In order to satisfy this requirement, the above-mentioned prior art # proposes selecting the laser output and the same pulse number for six films.

しかし乍ら、レーザ出力やパルス同波数の安定化を図る
ことは困難であり、従ってこの種の装置における6膜の
厚みが非常に薄いことを考慮すると、レーザ出力あるい
はパルス同波数のノ鴬沢により他の膜の損傷を防止する
方法は最善のものではない。
However, it is difficult to stabilize the laser output or pulse frequency, and considering that the thickness of the six films in this type of device is extremely thin, it is difficult to stabilize the laser output or pulse frequency. Other methods of preventing membrane damage are suboptimal.

〈発明の開示〉 本発明は、レーザを利用するものであるが、透明導電膜
と半導体膜との重畳体からなる光半導体装置において、
これら6膜の光吸収率特性の差異に着目し、これを利用
している。
<Disclosure of the Invention> The present invention utilizes a laser, and in an optical semiconductor device comprising a superimposed body of a transparent conductive film and a semiconductor film,
We focused on the difference in light absorption characteristics of these six films and utilized this.

第2図は光波長と膜の吸収率との関係を示しており、図
中実線が非晶質シリコンの吸収率を、又破線が透明導電
膜(酸化錫膜)の吸収率を夫々表。
Figure 2 shows the relationship between light wavelength and film absorption rate, where the solid line represents the absorption rate of amorphous silicon, and the broken line represents the absorption rate of a transparent conductive film (tin oxide film).

わしでいる。従って、例えば約0.6μmの波長のレー
ザ光を非晶質半導体膜に、その部分的除去のために照射
すれば、所るレーザ光に対する吸収率は、非晶質半導体
に対して透FllF1導電膜の方が極めて低いので、透
明導電膜は上記レーザ照射により損傷を受は難い。
It's me. Therefore, for example, if a laser beam with a wavelength of about 0.6 μm is irradiated to an amorphous semiconductor film to partially remove it, the absorption rate for a given laser beam will be Since the thickness of the transparent conductive film is extremely low, the transparent conductive film is not easily damaged by the laser irradiation.

本発明は祈る新規な着想に基いており、その特徴は、要
約すれば、半導体膜の不要部分の少なくとも1部は、透
明導電膜に対する光吸収率が半導体膜に対するそれより
も十分低い波長のレーザ光を照射することにより除去さ
れる点にあるっ本発明を実施する上において、半導体膜
として非晶質シリコン、非晶質グルマニクム、非晶質窒
化シリコン等の非晶質半導体やその他の無定形半導体が
用いられ、又、透明導電膜として酸化錫膜、酸化錫・イ
ンジウム膜等が用いられろう又、本発明方法は、先行技
術に開示されたレーザ出力やパルス同波数による選択性
と共に組合わ実施例 〈実施例〉 第3図A乃至Fは本発明実施例方法を工程順に示してい
る。第3図Aの工程では、厚さ1謔〜6簡の透明なガラ
ス基板uQ上全面に、厚さ2000X〜5000λの酸
化錫からなる透明導電膜Uυが被着される。
The present invention is based on a novel idea, and its characteristics can be summarized as follows: At least a portion of the unnecessary portion of the semiconductor film is exposed to a laser beam whose light absorption rate for the transparent conductive film is sufficiently lower than that for the semiconductor film. In carrying out the present invention, amorphous semiconductors such as amorphous silicon, amorphous glumanicum, amorphous silicon nitride, etc. and other amorphous semiconductors may be used as the semiconductor film. A semiconductor may be used, and a tin oxide film, a tin oxide/indium film, etc. may be used as a transparent conductive film, and the method of the present invention can be combined with selectivity based on laser output and pulse frequency as disclosed in the prior art. Embodiment Embodiment FIGS. 3A to 3F show a method according to an embodiment of the present invention in the order of steps. In the process shown in FIG. 3A, a transparent conductive film Uυ made of tin oxide and having a thickness of 2000X to 5000λ is deposited on the entire surface of a transparent glass substrate uQ having a thickness of 1cm to 6cm.

第6図Bの工程では、隣接間隔部(115がレーザ光照
射により除去されて、個別の各透明導電膜(11a)(
11b)(11c)・・が分離形成される。使用される
レーザは波−要約1.06μm出力1.3 X 108
W/d、パルス周波数3KHzのYAGレーザが適当で
あり、隣接間隔部a1)の間隔(Ll)は約1o。
In the step shown in FIG. 6B, the adjacent spacing portions (115) are removed by laser beam irradiation, and each transparent conductive film (11a) (
11b) (11c)... are formed separately. The laser used is wave-length 1.06 μm output 1.3 x 108
A YAG laser with W/d and a pulse frequency of 3 KHz is suitable, and the interval (Ll) between adjacent interval parts a1) is about 1o.

μmK設定される。μmK is set.

第3図Cの工程では、各透明導電膜(11a)(11h
 ) (11c)・・・の表面を含んで基板(101上
全面に厚さ5oooX〜7000にの非晶質シリコン膜
+121が被着される。祈るシリコン膜はその内部に膜
面と平行なPIN接合を含み、従ってより具体的には、
まずP型の非晶質シリコン膜が被着され、次いで■型及
びN型の非晶質シリコン膜が順次積層被着される。
In the step of FIG. 3C, each transparent conductive film (11a) (11h
) (11c) An amorphous silicon film + 121 with a thickness of 500X to 7000 is deposited on the entire surface of the substrate (101, including the surface of...). including joining, and therefore more specifically,
First, a P-type amorphous silicon film is deposited, and then ■-type and N-type amorphous silicon films are sequentially deposited.

第6図りの工程では、隣接間隔部(l坏がレーザ光照射
により除去されて、個別の各非晶質シリコン膜(12a
バ12b)(12c)・・・が分離形成される。
In the step shown in Figure 6, the adjacent spaced portions (12a) are removed by laser beam irradiation, and each individual amorphous silicon film (12a
The bars 12b) (12c)... are formed separately.

使用されるレーザは波長0.51μm、出力2×105
W/c#l、CWのAr  レーデが適当であり、隣接
間隔部adの間隔(L2)は約6ooμmに設定される
The laser used has a wavelength of 0.51 μm and an output of 2×105
W/c#l, CW Ar radar is appropriate, and the interval (L2) between adjacent interval parts ad is set to about 6 ooμm.

このとき、隣接間隔部(l坏の下に存在する透F3A導
電膜部分(110)にもレーザ光が最終的に到達するが
、注意すべきは、現在の波長の光の吸収率は第2図にて
述べた如く、非晶質シリコン膜に対して透明導電膜の方
が極めて低い。よって非晶質シリコン膜α渇をその膜厚
分だけ除去するにはy必要十分な照射時間長をもってレ
ーザ光を走査させると、非晶質シリコン膜の膜厚分だけ
完全に除去されて、その結果一時的にレーザ光が透明導
電膜部分(110)を直撃するに致ったとしても、その
部分はほとんど損傷を受けない。
At this time, the laser light finally reaches the adjacent spaced part (the transparent F3A conductive film part (110) that exists under the latch, but it should be noted that the absorption rate of light at the current wavelength is As mentioned in the figure, the transparent conductive film has a much lower concentration than the amorphous silicon film.Therefore, in order to remove the α depletion of the amorphous silicon film by the thickness of the film, a sufficient irradiation time is necessary. When the laser beam is scanned, the thickness of the amorphous silicon film is completely removed, and even if the laser beam temporarily hits the transparent conductive film portion (110), that portion will be completely removed. is hardly damaged.

第6図Eの工程では、透り]導電膜部分(110)及び
非晶質シリコン膜(12a)(12b)(12c)−の
各表面を含んで基板α〔上全面に2000^〜1μm厚
さのアルミニウムからなる裏面電極膜t13が被着され
る。
In the step shown in FIG. A back electrode film t13 made of aluminum is deposited.

第3図Fの最終工程では、隣接間隔部u場がレーザ光照
射によシ除去されて、個別の各裏面電極膜(ISa)(
13b)(13c)−が形成される。使用されるレーザ
は波長的to6μm、出力5X10’W/d、パルス周
波数3KHzのYAGレーザが適当であり、隣接間隔部
(1jの間隔(L5)は約20μmに設定される。
In the final step in FIG.
13b) (13c)- is formed. The laser to be used is suitably a YAG laser with a wavelength of 6 μm, an output of 5×10' W/d, and a pulse frequency of 3 KHz, and the distance (L5) between the adjacent spacing parts (1j) is set to about 20 μm.

裏面電極膜0の材料であるアルミニウムの融点は透明導
電膜tll)に比して非常に低く、従って各透明導電膜
(11a)(11b)(11c)の分離に用いたレーザ
出力より十分低い出力値のレーザが用いられていること
に注意すべきである。よって裏面電釦對3)をその膜厚
分だけ除去するにはソ必要十分な照射時間長をもってレ
ーザ光を走査させると、天 裏面電極膜の膜厚分だけ完全に除、されて、その結果一
時的にレーザ光が透明導電膜部分(110)を直撃する
に致ったとしても、その部分はほとんど損傷を受けない
The melting point of aluminum, which is the material of the back electrode film 0, is very low compared to that of the transparent conductive film tll), so the laser output used to separate each transparent conductive film (11a), (11b), and (11c) is sufficiently lower. It should be noted that a value laser is used. Therefore, if the laser beam is scanned with a sufficient irradiation time to remove the back electrode film 3) by the thickness of the back electrode film, the thickness of the top and back electrode film will be completely removed. Even if the laser beam temporarily hits the transparent conductive film portion (110), that portion will hardly be damaged.

尚、裏面電極膜U東の祈る部分除去に際し、除去部分の
表面に黒色インク等を塗布してレーザ光の吸収を促進す
るようにすればより確実に裏面電極膜[3)の所望部分
のみを除去することができるっ上記実施例で挙げた各種
の故値は何本的なものであって、適宜変更できることは
もちろんであり、例えば各透l:!I′1導電膜(11
a)(11b)(11c)−の間隔を20μm程度にな
しても良い。
In addition, when removing the desired part of the back electrode film U east, if you apply black ink or the like to the surface of the removed part to promote absorption of laser light, you can more reliably remove only the desired part of the back electrode film [3]. There are a number of values that can be removed.The various values listed in the above embodiments can of course be changed as appropriate.For example, each value can be removed. I′1 conductive film (11
The interval between a) (11b) (11c)- may be approximately 20 μm.

〈効  果〉 本発明によれば、透明導電膜と、峰の上に被着された半
導体膜とを備えた光半導体装置を製造する際K、半導体
膜のレーザによる部分的除去を、他の膜を損傷すること
なく確実になすことができ、レーザによる超微細加工を
有効に利用することができる。
<Effects> According to the present invention, when manufacturing an optical semiconductor device including a transparent conductive film and a semiconductor film deposited on top of the ridges, partial removal of the semiconductor film by a laser can be carried out in accordance with other methods. This can be done reliably without damaging the film, and ultrafine processing using a laser can be effectively utilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は典型的な光半導体装置の側面図、第2図は光吸
収特性図、第3図A乃至Fは本発明実施例を示す工程別
側面図である。
FIG. 1 is a side view of a typical optical semiconductor device, FIG. 2 is a light absorption characteristic diagram, and FIGS. 3A to 3F are side views of each step showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)透明導電膜と、該導電膜上に被着され、該膜を透
過せるルに感応する半導体膜とを備えた光半導体装置の
製造に際し、上記半導体膜の不要部分の少なくとも1部
は、上記透明導電膜に対する光吸収率が上記半導体膜に
対するそれよりも十分低い波長のレーザ光を照射するこ
とにより除去されることを特徴とする光半導体装置の製
造方法。
(1) When manufacturing an optical semiconductor device comprising a transparent conductive film and a semiconductor film that is coated on the conductive film and is sensitive to light that can pass through the film, at least part of the unnecessary portion of the semiconductor film is . A method for manufacturing an optical semiconductor device, characterized in that the light absorption rate of the transparent conductive film is removed by irradiating the semiconductor film with a laser beam having a sufficiently lower wavelength than that of the semiconductor film.
JP57147357A 1982-08-24 1982-08-24 Manufacture of photo semiconductor device Granted JPS5935489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147357A JPS5935489A (en) 1982-08-24 1982-08-24 Manufacture of photo semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147357A JPS5935489A (en) 1982-08-24 1982-08-24 Manufacture of photo semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3300520A Division JP2648064B2 (en) 1991-11-15 1991-11-15 Method for manufacturing optical semiconductor device

Publications (2)

Publication Number Publication Date
JPS5935489A true JPS5935489A (en) 1984-02-27
JPH0447466B2 JPH0447466B2 (en) 1992-08-04

Family

ID=15428363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147357A Granted JPS5935489A (en) 1982-08-24 1982-08-24 Manufacture of photo semiconductor device

Country Status (1)

Country Link
JP (1) JPS5935489A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182757A (en) * 1984-02-29 1985-09-18 Kanegafuchi Chem Ind Co Ltd Integrated type solar cell
JPS616828A (en) * 1984-06-20 1986-01-13 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPS6114727A (en) * 1984-06-29 1986-01-22 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPS6142971A (en) * 1984-08-06 1986-03-01 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPS6174376A (en) * 1984-09-19 1986-04-16 Fuji Electric Co Ltd Thin-film photovoltaic element
JPS61105884A (en) * 1984-10-29 1986-05-23 Semiconductor Energy Lab Co Ltd Photo-processing
JPS61210681A (en) * 1986-02-20 1986-09-18 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS6265479A (en) * 1985-09-18 1987-03-24 Fuji Electric Corp Res & Dev Ltd Manufacture of thin film solar battery
US4668840A (en) * 1984-06-29 1987-05-26 Sanyo Electric Co., Ltd. Photovoltaic device
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
JPH03154385A (en) * 1989-11-13 1991-07-02 Mitsubishi Heavy Ind Ltd Manufacture of photovoltaic generator
JPH04363071A (en) * 1991-11-15 1992-12-15 Sanyo Electric Co Ltd Manufacture of optical semiconductor device
JP2011517136A (en) * 2008-04-15 2011-05-26 リニューアブル・エナジー・コーポレーション・エーエスエー Fabrication method for wafer-based solar panels
US20120152339A1 (en) * 2010-03-18 2012-06-21 Fuji Electric Co., Ltd. Thin film solar cell and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108780A (en) * 1976-03-08 1977-09-12 Seiko Epson Corp Manufacture for solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108780A (en) * 1976-03-08 1977-09-12 Seiko Epson Corp Manufacture for solar cell

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182757A (en) * 1984-02-29 1985-09-18 Kanegafuchi Chem Ind Co Ltd Integrated type solar cell
JPS616828A (en) * 1984-06-20 1986-01-13 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH053151B2 (en) * 1984-06-20 1993-01-14 Sanyo Electric Co
US4668840A (en) * 1984-06-29 1987-05-26 Sanyo Electric Co., Ltd. Photovoltaic device
JPS6114727A (en) * 1984-06-29 1986-01-22 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH0566758B2 (en) * 1984-08-06 1993-09-22 Sanyo Electric Co
JPS6142971A (en) * 1984-08-06 1986-03-01 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH0531315B2 (en) * 1984-09-19 1993-05-12 Fuji Electric Co Ltd
JPS6174376A (en) * 1984-09-19 1986-04-16 Fuji Electric Co Ltd Thin-film photovoltaic element
JPS61105884A (en) * 1984-10-29 1986-05-23 Semiconductor Energy Lab Co Ltd Photo-processing
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
JPS6265479A (en) * 1985-09-18 1987-03-24 Fuji Electric Corp Res & Dev Ltd Manufacture of thin film solar battery
JPH053752B2 (en) * 1986-02-20 1993-01-18 Sanyo Electric Co
JPS61210681A (en) * 1986-02-20 1986-09-18 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPH03154385A (en) * 1989-11-13 1991-07-02 Mitsubishi Heavy Ind Ltd Manufacture of photovoltaic generator
JPH04363071A (en) * 1991-11-15 1992-12-15 Sanyo Electric Co Ltd Manufacture of optical semiconductor device
JP2011517136A (en) * 2008-04-15 2011-05-26 リニューアブル・エナジー・コーポレーション・エーエスエー Fabrication method for wafer-based solar panels
US10147830B2 (en) 2008-04-15 2018-12-04 Rec Solar Pte. Ltd. Method for production of wafer based solar panels
US20120152339A1 (en) * 2010-03-18 2012-06-21 Fuji Electric Co., Ltd. Thin film solar cell and method for manufacturing same

Also Published As

Publication number Publication date
JPH0447466B2 (en) 1992-08-04

Similar Documents

Publication Publication Date Title
JP3436858B2 (en) Manufacturing method of thin film solar cell
US4542578A (en) Method of manufacturing photovoltaic device
JPH0472392B2 (en)
JPS5935489A (en) Manufacture of photo semiconductor device
US4568409A (en) Precision marking of layers
JPH0851229A (en) Integrated solar battery and its manufacture
JPH053151B2 (en)
JPH0536998A (en) Formation of electrode
JP2002231986A (en) Method for manufacturing integrated thin film solar battery
JP2648064B2 (en) Method for manufacturing optical semiconductor device
JPS6213829B2 (en)
JPH02143467A (en) Manufacture of solar cell
JP4636689B2 (en) Method for structuring transparent electrode layers
JP3521268B2 (en) Method for manufacturing photovoltaic device
JPS5935491A (en) Photo semiconductor device
JPS59220978A (en) Manufacture of photovoltaic device
JP3505201B2 (en) Method for manufacturing photovoltaic device
JP3525048B2 (en) Method for manufacturing photovoltaic device
JPS61280680A (en) Manufacture of semiconductor device
JPS62195184A (en) Manufacture of solar battery device
JPH0370184A (en) Photovoltaic device
JPS60231372A (en) Manufacture of semiconductor device
JPS62193182A (en) Manufacture of photovoltaic device
JPS59220979A (en) Manufacture of photovoltaic device
JPS59110175A (en) Manufacture of solar battery