JPS59220978A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS59220978A
JPS59220978A JP58097233A JP9723383A JPS59220978A JP S59220978 A JPS59220978 A JP S59220978A JP 58097233 A JP58097233 A JP 58097233A JP 9723383 A JP9723383 A JP 9723383A JP S59220978 A JPS59220978 A JP S59220978A
Authority
JP
Japan
Prior art keywords
layer
electrode
laser beam
photovoltaic device
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58097233A
Other languages
Japanese (ja)
Inventor
Yasuji Honjo
本所 又嗣
Koji Imoto
井本 弘次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58097233A priority Critical patent/JPS59220978A/en
Publication of JPS59220978A publication Critical patent/JPS59220978A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To unnecessitate the strict control of laser output by a method wherein a plurality of the first clear electrodes are formed on a transparent insulation substrate at fixed intervals, which are covered with a photosemiconductor layer, and further provided with the second electrode for series connection, thereafter, when said layer is split into a plurality of photoelectric conversion regions with laser beams, a difficultly processed conductive protection layer is provided at the position of beam irradiation. CONSTITUTION:A plurality of the first electrode layers 11a and 11b and the like made of SnO2, etc. are formed on the transparent glass substrate at intervals 11', and said conductive protection layer 12 of Ag, Au, Pt, etc. is adhered on the layer 11b' alternately arranged thereof. Next, a photoconductive layer 13 of amorphous Si is deposited over the entire surface and then removed from the part of the interval 11' to the most of the layer 12. Thereafter, the second electrode layer 14 is adhered over the entire surface, and the end of the layer 12 is irradiated with the laser beam, thus generating therein the individual second electrode layers 14a and 14b separated at intervals 14'. Afterwards, photoconductive regions 15a and 15b and the like constructed of these electrodes are connected in series.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は太陽光等の光エネルギを直接電気エネルギに変
換する光起電力装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a photovoltaic device that directly converts light energy such as sunlight into electrical energy.

←)従来技術 光エネルギを直接1を気エネルギに変換する光起電力装
置、所謂太陽電池は無尽蔵な太陽光を主たるエネルギ嚢
源としているために、エネルギ資源の枯渇が問題となる
中で脚光を浴でいる。
←) Conventional technology Photovoltaic devices that directly convert light energy into air energy, so-called solar cells, are attracting attention as the depletion of energy resources becomes a problem because they use inexhaustible sunlight as their main energy source. Take a bath.

第1図は斯る光起電力装置を示し、(1)は力゛ラス・
透光性プラスチック等の絶縁基板、(2a)(2b)C
20)は該絶縁基板(1)の−主面に並設された複数の
光電変換領域で、該変換領域(2a)(2bX21の各
々は、絶縁基板(1)側から酸化スズ(8n02 )、
酸化インジウムスズ(InzOs−8nOz)等の透明
酸化電極材の第1 Wf極層(3B)(3b)(30)
、!:、例えばi入射側からPIN接合を有するアモル
ファスシリコン等の膜状光半導体層(4B)(4b)(
4c)と、EIJ導体1(4a)(4b)(4c)とオ
ーミック接触するアルミニウムAd等の第2電極層(5
1m)(5b)(51と、を順次重畳せしめた積層構造
を成している。更に、上記並設された光if換領領域2
a)(2b)(2o)は右111117)光半導体層(
4b)(4c)下面から絶縁基板(1)上に露出した第
1電極層(3b)(30’)の露出部(5b’) (5
C’)に、左繭シの光半導体層(4B)(4b)上面か
ら延出して来た第2電極層(5B)(5b)の延長部(
5B’)(5b)が直接結合し、従って複数の光電変換
領域(2B)(2b)(21i1:電9(的に直列接続
される。
Figure 1 shows such a photovoltaic device, and (1) shows the power
Insulating substrates such as translucent plastic, (2a) (2b)C
20) is a plurality of photoelectric conversion regions arranged in parallel on the main surface of the insulating substrate (1), and each of the conversion regions (2a) (2bX21) is made of tin oxide (8n02),
First Wf electrode layer (3B) (3b) (30) of transparent oxide electrode material such as indium tin oxide (InzOs-8nOz)
,! :, For example, a film-like optical semiconductor layer (4B) (4b) (such as amorphous silicon having a PIN junction from the i incident side)
4c) and a second electrode layer (5
1m), (5b), and (51) are sequentially overlapped to form a laminated structure.
a) (2b) (2o) is on the right 111117) Optical semiconductor layer (
4b) (4c) Exposed portions (5b') (5b') of the first electrode layer (3b) (30') exposed on the insulating substrate (1) from the bottom surface
In C'), the extension part (5B) of the second electrode layer (5B) (5b) extending from the upper surface of the optical semiconductor layer (4B) (4b) of the left cocoon is shown.
5B') (5b) are directly coupled, and thus a plurality of photoelectric conversion regions (2B) (2b) (21i1:electron9) are connected in series.

この様な装置に於いて、光利用効率を左右する一つの要
因は、装吟全体の受光面積(即ち、基板内債)に列し、
実際に発電に寄与する光電変換領域(2B)(2b)(
20)の総面積の占メル割合いである。然るに各光電変
換領域(2B > (,2b)(2C)の1しく¥接間
隔に必然的に存在する分離領域は上記面仔1割合いを低
−トさせる。
In such devices, one of the factors that influences the light utilization efficiency is the light-receiving area of the entire device (i.e., the area inside the board).
Photoelectric conversion area (2B) (2b) (which actually contributes to power generation)
20) is the proportion of the total area. However, the separation region that necessarily exists at the tangential interval of each photoelectric conversion region (2B > (, 2b) (2C)) lowers the ratio by 1%.

従って、光利用効率を向上させるためには各光TlL及
力君領域(2+1)(2b)(20)の降接間隔である
分離領域を小さくしなければならない。
Therefore, in order to improve the light utilization efficiency, it is necessary to reduce the separation region, which is the descending interval of each light TIL and power region (2+1) (2b) (20).

Jviる間隔縮小は各層の加工精度で決まり、従って、
細密加工性に@免れている写真蝕刻技術が有望である。
The reduction in spacing between Jvi is determined by the processing accuracy of each layer, and therefore,
Photo-etching technology is promising because of its ability to produce fine details.

この技術による場合、基板(1)全面への第1ηL庵層
の被着工程と、フォトレジスト及ヒエッチングによる各
個別の第1電極層(6B)(3b)(30)の分離、即
ち各第1電極層(3B)(3b)i’o)の隣接間隔部
分の除去工程と、を順次経た後、同様の被着工程及び除
去工程を光半導体層(48)(4b)(40)並びに第
2ffl極層(5a)(5b)’(50)Kついても各
々再度繰シ返し行なうことになる。
In the case of this technique, the first ηL layer is deposited on the entire surface of the substrate (1), and the individual first electrode layers (6B) (3b) (30) are separated by photoresist and etching. 1 electrode layer (3B) (3b) i'o), followed by a similar deposition process and removal process for the optical semiconductor layer (48) (4b) (40) and the third electrode layer (48) (4b) (40). The process is repeated again for each of the 2ffl pole layers (5a), (5b)', and (50)K.

然し乍ら、上記写真蝕刻技術は水洗い等のウェットプロ
セスを含むために、膜状を成す光半導体層(4a)(4
b)(40)Kピンホーtvが形成されることがあシ、
次工程で被着される第2電極材が斯るピンホールを介し
て第1電極層(3B)(3b)(30)に到達する結果
、該第1¥N、極層(3B)(3b)(3(りI/′i
当該光電変換領域(2B)(2b)(2C)の光半導体
層(41(4b)(40)を挾んで対向する第2電極層
(5B)(5b)(50)と電気的に短絡する事故を招
いていた。また、第2電極層(5B ) (5b )(
5C)がオーミック接触する光半導体層(4B)(4b
)(4C)の接触面は上記写真蝕刻技術によるフォトレ
ジストの塗布・剥離及び水洗いに於いてピンホールが形
成されないまでも膜質が劣化せしめられると共に、水洗
いに使用した水が僅かながら残留し次工程で被着される
第2電極層(511)(5b)(5G)を腐食する危惧
を有してい7’(n 特開昭57−12568号公報に開示された先行技術は
、レーザビーム照射による層の焼き切りで、上記吟接間
隔を設けるものであり、写真蝕刻技術を使わないその技
法は上記の課題を解決する上で極めて有効である。
However, since the photo-etching technique described above involves a wet process such as washing with water, the photo-semiconductor layer (4a) (4) is formed in a film-like manner.
b) (40) K pinho tv may be formed;
As a result of the second electrode material deposited in the next step reaching the first electrode layer (3B) (3b) (30) through such pinholes, the first electrode layer (3B) (3b) )(3(riI/'i
Accident of electrical short-circuiting with the second electrode layer (5B) (5b) (50) which is opposite to the photo-semiconductor layer (41 (4b) (40)) of the photoelectric conversion region (2B) (2b) (2C). In addition, the second electrode layer (5B) (5b) (
5C) is in ohmic contact with the optical semiconductor layer (4B) (4b
)(4C) The film quality deteriorates even if no pinholes are formed during coating and peeling of the photoresist using the above-mentioned photolithography technique and washing with water, and a small amount of the water used for washing remains, which may cause problems in the next process. There is a risk that the second electrode layer (511) (5b) (5G) deposited with The above-mentioned spacing is provided by burning out the layers, and this technique, which does not use photolithography, is extremely effective in solving the above-mentioned problems.

斯るレーザ技術により第1図の如き光起電力装置を製造
する場合、第1電極層、光半導体層及び第2電極層は各
層被着工程終了後に各光電変換領域(2a)(2b)(
2c)毎KL/−fP::−Aの照射によ部分h1tさ
れる。このレーザビームの照射による分離に於いて留潰
、しなければならないことは、焼き切らんとする膜部分
の下に他の膜が存在しておれば、それに損傷を与えない
ことである。
When manufacturing a photovoltaic device as shown in FIG. 1 using such laser technology, the first electrode layer, the optical semiconductor layer, and the second electrode layer are formed in the respective photoelectric conversion regions (2a) (2b) (
2c) Every KL/-fP::-A is irradiated by a portion h1t. What must be done in separating by laser beam irradiation is not to damage other films if they exist beneath the film to be burnt out.

さもなければ、目的の膜部分を焼き切った上、必要とし
ない下の膜まで焼き切ってしまう。
Otherwise, not only the desired portion of the membrane will be burned off, but also the underlying membrane that is not needed will be burned off.

上記先行技術はこの要求を満すべく第1電極層、光半導
体層及び第2電極層の閾値エネルギ祷度が加工する順序
に小さいことに着目し、レーザビームの出力を選択する
ことを提案している。
In order to meet this requirement, the above-mentioned prior art focuses on the fact that the threshold energy levels of the first electrode layer, optical semiconductor layer, and second electrode layer are smaller in the order of processing, and proposes selecting the output of the laser beam. ing.

然し乍ら、上記レーザビーム出力の選択はレーザビーム
を対物レンズを介してビームを収束せしめる度合、即ち
ビーム径を調整することによって行なわれるために、上
記対物レンズと被加工面との距離を常に一定に保持しな
ければビーム径が変動し、大面積化が要求される光起電
力装置にあって斯るビーム径を厳密に制御することは製
造工程上困難である。
However, since the selection of the laser beam output is done by adjusting the degree of convergence of the laser beam through the objective lens, that is, the beam diameter, the distance between the objective lens and the surface to be processed must always be kept constant. If it is not maintained, the beam diameter will fluctuate, and it is difficult in the manufacturing process to strictly control the beam diameter in a photovoltaic device that requires a large area.

e→ 発明の目的 本発明は斯る点に鑑みて為されたものであって、その目
的は細密加工性に富むレーザ技術の使用を可能ならしめ
ることにある。
e→ Purpose of the Invention The present invention has been made in view of the above points, and its purpose is to enable the use of laser technology that is highly capable of fine processing.

に)発明の構成 本発明光起電力装置の製造方法は、基板の絶縁表面に分
割配置された複数の第1TFL価層を連続的に覆う膜状
の光半導体層を被着した後、該光半導体層をレーザビー
ムの照射により除去し複数の光電変換領域毎に分割する
と同時に上記第1電極層の一部を直列接続せしめるべく
電気的に露出せしめるχ際し、該露出部を予め上記レー
ザビームの照射に列して鮭加工性の導電保護層で被覆す
る、構成にある。
B) Structure of the Invention The method for manufacturing a photovoltaic device of the present invention includes depositing a film-like photosemiconductor layer that continuously covers a plurality of first TFL layers dividedly arranged on an insulating surface of a substrate, and then When the semiconductor layer is removed by irradiation with a laser beam and divided into a plurality of photoelectric conversion regions, and at the same time a part of the first electrode layer is electrically exposed for series connection, the exposed portion is irradiated with the laser beam in advance. The structure consists of coating the salmon with a processable conductive protective layer in line with the irradiation.

0う 実 〃向 例 第2図乃至第8図は・本発明実施例方法を工程順に示し
ている。第2図の工程では、厚み1間〜3闘程度の透明
なガラス製絶縁基板(10)α上面に、厚ら成る第1〒
lj−JM層(11)が被着される。
EXAMPLE Figures 2 to 8 show the method according to the present invention in the order of steps. In the process shown in FIG.
A lj-JM layer (11) is deposited.

第6図の工程では、隣接間隔部01)がレーザビームの
照射によp除去されて、個別の各第1電極層(11B)
(11b)・・・が分離形成される。使用されるレーザ
は波長1.06μm、エネルギ密度6 X 107W/
ct4、パ/I/ス周波数6KHz ノN d :YA
Gレーザが適当であり、苅物レンズf50MM。
In the process shown in FIG. 6, the adjacent spacing portions 01) are removed by laser beam irradiation, and each of the individual first electrode layers (11B)
(11b)... are separated and formed. The laser used has a wavelength of 1.06 μm and an energy density of 6 x 107 W/
ct4, pass/I/pass frequency 6KHz No Nd: YA
G laser is suitable, and Karimono lens f50MM.

走査速度50門/渡により加工される。このレーザ加工
により隣接間隔部面の間隔(Ll)は約5第4図の工程
では、第1電極M#(Ilb)・・・の直列接続に必要
な露出部(11b’戸・を露出せしめたマスクを介して
該第1電極#(11b)・・・に比してレーザビームの
照射に対して熱加工性の導電保護層■を電子ビーム蒸着
、スパッタ等により幅(W)300μm、厚み1000
A程度被着せしめる。斯る難加工性の導電保護層(12
)としては、使用されるレーザに対し反射率、熱伝導率
及び融点の高い銀、金、銅、白金が好適である。
Processed at a scanning speed of 50 gates/cross. Through this laser processing, the distance (Ll) between the adjacent spacer surfaces is approximately 5. In the process shown in Fig. 4, the exposed portion (11b' door) necessary for series connection of the first electrode M# (Ilb)... is exposed. A conductive protective layer (1), which is thermally processable against laser beam irradiation, was formed on the first electrode #(11b) through a mask by electron beam evaporation, sputtering, etc. to a width (W) of 300 μm and a thickness. 1000
Cover with A grade. Such a difficult-to-process conductive protective layer (12
) is preferably silver, gold, copper, or platinum, which have high reflectance, thermal conductivity, and melting point for the laser used.

第5図の工程では、各第1電極層(11B)(11b)
・・・及び導電保護層02)の表面を含んで絶縁基板0
0)上全面に連続的に厚み5000A〜7000Aのア
モルファスシリコンの光半導体?1(131が被着され
る。斯る光半導体#(13)はその内部に膜面に平行な
FIN接合を含み、従ってより具体的には、先fPWの
アモルファスシリコン層が被着され、次いでl型及びぺ
型のアモルファスシリコン層が順次積層被着される。
In the process shown in FIG. 5, each first electrode layer (11B) (11b)
... and the surface of the conductive protective layer 02), the insulating substrate 0
0) Amorphous silicon optical semiconductor with a thickness of 5000A to 7000A continuous on the entire upper surface? 1 (131) is deposited. Such an optical semiconductor #(13) contains a FIN junction parallel to the film plane within it, and therefore, more specifically, a first fPW amorphous silicon layer is deposited, and then L-shaped and P-shaped amorphous silicon layers are deposited in sequence.

第6図の工程では、隣接間隔部(13)鋺レーザビーム
の照射によシ除去されて、個別の各光半導体層(13a
 )(13b)・・・が分離形成される。使用されるレ
ーザは上n己Nd:YAGレーザであり、そのエネルギ
密度は2 X 107W/dである。斯るレーザビーム
の照射により内接間隔部(13)′の光半導体層が60
0μmnの間隔(L2)に亘り除去され、導市;保hl
t層(12)が露出せしめられる。
In the process shown in FIG. 6, the adjacent spacing portions (13) are removed by irradiation with a laser beam, and each individual optical semiconductor layer (13a
)(13b)... are separated and formed. The laser used is a superior Nd:YAG laser, whose energy density is 2 x 107 W/d. By irradiating the laser beam, the optical semiconductor layer in the inscribed space (13)' becomes 60
removed over a distance (L2) of 0 μmn;
The t-layer (12) is exposed.

この時、上記導電保護層(12)にレーザビームが最終
的に到達するが、注目すべきは斯る導電保護層(J2)
が下層の第17■枠にり(llb)の露出部(11b 
/、よりもレーザビームの照射に対して難加工性を呈し
、f!’51ii!i工ネルギ密度が高くなっているこ
とである。従って、光半導体層(13)をその膜部分だ
け除去するに?7!、は必要十分な照射時間長をもって
レーザビームを走査させると、光半導体層α3)の膜部
分だけ完全に除去されて、その結果一時的にレーザビー
ムが導■i保設層(12)を直撃するに致ったとしても
、その部分けはとんと損傷を受けず、また、たとえレー
ザビームのエネルギ密度の厳密な制御が行なわれ外かっ
たと靴も、23電保眼層Uは閾値エネルギ密度が遥かに
高いために、加工されるに至らない。
At this time, the laser beam finally reaches the conductive protective layer (12), but what should be noted is that the conductive protective layer (J2)
is the exposed part (11b) of the lower 17th frame (llb).
/, is more difficult to process with laser beam irradiation than f! '51ii! This means that the i-engine energy density is increasing. Therefore, should we remove only that part of the optical semiconductor layer (13)? 7! When the laser beam is scanned with a necessary and sufficient irradiation time, only the film portion of the optical semiconductor layer α3) is completely removed, and as a result, the laser beam temporarily hits the guiding layer (12) directly. Even if the laser beam's energy density was not strictly controlled, the 23 electric eye protection layer U would have a threshold energy density. It is far too expensive to be processed.

第7図の工程では、導電保護層α2及び光半導体層(1
3B)(13b)・・・の各表面を含んで絶縁基板(1
αα上面に厚み5000X〜1μm程度のチタンから成
る第2電極層(14)が被着される。
In the process shown in FIG. 7, the conductive protective layer α2 and the optical semiconductor layer (1
3B) (13b)... including each surface of the insulating substrate (1
A second electrode layer (14) made of titanium and having a thickness of about 5000X to 1 μm is deposited on the upper surface of αα.

第8図の最終工程では、隣接間隔部(14)畷レーザビ
ームの照射によシ除去されて、個別の各第2電極層(1
4B)(14b)・・・が形成され、その結果各光驚変
換領域(151L)(15b)・・・が電気的に直列接
続される。使用されるレーザはNd:8)は約20μm
に設定される。
In the final process shown in FIG.
4B) (14b)... are formed, and as a result, each light shock conversion region (151L) (15b)... is electrically connected in series. The laser used is Nd: 8) about 20 μm.
is set to

(へ)発明の効果 本発明は以上の説明から明らかな如く、第1電極層の電
気的露出部を予めレーザビームの照射に対して難加工性
の導電保護層で被覆したので、レーザ出力を厳密に制御
することなく、複数の第1電極層を連続的に覆う膜状の
光半導体層をレーザビームの照射によシ各光電変換領域
毎に分割せしめると同時に上記第HQ:4i!li粕の
一部を直列接続せしめるべく電気的に露出せしめること
ができ、製造工程が簡便となる。
(F) Effects of the Invention As is clear from the above description, the present invention covers the electrically exposed portion of the first electrode layer with a conductive protective layer that is difficult to process against laser beam irradiation, so that the laser output can be reduced. Without strict control, the film-like optical semiconductor layer that continuously covers the plurality of first electrode layers is divided into photoelectric conversion regions by laser beam irradiation, and at the same time, the above-mentioned HQ:4i! A part of the li lees can be electrically exposed for series connection, which simplifies the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は典型的な光起電力装置の要部斜視図、第2図乃
至第8図は本発明製造方法を工程順に示す断面図、であ
る。 aO+ −−−−・−絶R基板、(111(11R) 
(11b )−・−第1電極層、(12)・・・・・・
導電保護層、(131(13B)(13b )−−−・
−光半導体層、(141(14B)(14b)・・・・
・・第2電極層、(15B)(15b)・・・・・・光
iぼ変換領域。
FIG. 1 is a perspective view of essential parts of a typical photovoltaic device, and FIGS. 2 to 8 are sectional views showing the manufacturing method of the present invention in order of steps. aO+ −−−−・− Absolute R substrate, (111 (11R)
(11b)--first electrode layer, (12)...
Conductive protective layer, (131 (13B) (13b)----
- Optical semiconductor layer, (141 (14B) (14b)...
...Second electrode layer, (15B) (15b)...Light conversion region.

Claims (1)

【特許請求の範囲】[Claims] (1)複数の膜状光電変換領域が基板の絶縁表面に於い
て電匈的に直列接続された光起電力装置の製造方法であ
って、上記基板の絶縁表面に分割配置されfc複数の第
1電極層を連続的に覆う膜状の光半導体層を被着した後
、゛該元半導体層をレーザビームの照射によシ除去し複
数の光電変換領域毎に分¥;!Iすると同時に上記第1
Wm層の一部を直列接続せしめるべくm:’A的に露出
せしめるに際し、該露出部を予め上記レーザビームの照
射に対して難加工性の導電保膜層で被法することを特徴
とした光起電力装置の製造方法。
(1) A method for manufacturing a photovoltaic device in which a plurality of film-like photoelectric conversion regions are electrically connected in series on an insulating surface of a substrate, the photovoltaic device having a plurality of fc After depositing a film-like photosemiconductor layer that continuously covers one electrode layer, the original semiconductor layer is removed by laser beam irradiation and separated into multiple photoelectric conversion regions. At the same time as above
When exposing a part of the Wm layer in an m:'A manner to connect in series, the exposed part is covered in advance with a conductive protective film layer that is difficult to process against irradiation with the laser beam. Method of manufacturing a photovoltaic device.
JP58097233A 1983-05-31 1983-05-31 Manufacture of photovoltaic device Pending JPS59220978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58097233A JPS59220978A (en) 1983-05-31 1983-05-31 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58097233A JPS59220978A (en) 1983-05-31 1983-05-31 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPS59220978A true JPS59220978A (en) 1984-12-12

Family

ID=14186899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58097233A Pending JPS59220978A (en) 1983-05-31 1983-05-31 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS59220978A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734379A (en) * 1985-09-18 1988-03-29 Fuji Electric Corporate Research And Development Ltd. Method of manufacture of solar battery
US4783421A (en) * 1985-04-15 1988-11-08 Solarex Corporation Method for manufacturing electrical contacts for a thin-film semiconductor device
JPH0193174A (en) * 1987-10-05 1989-04-12 Kanegafuchi Chem Ind Co Ltd Manufacture of semiconductor device
US4956023A (en) * 1987-03-31 1990-09-11 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Integrated solar cell device
JP2008060374A (en) * 2006-08-31 2008-03-13 Sanyo Electric Co Ltd Solar-battery module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783421A (en) * 1985-04-15 1988-11-08 Solarex Corporation Method for manufacturing electrical contacts for a thin-film semiconductor device
US4734379A (en) * 1985-09-18 1988-03-29 Fuji Electric Corporate Research And Development Ltd. Method of manufacture of solar battery
US4956023A (en) * 1987-03-31 1990-09-11 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Integrated solar cell device
JPH0193174A (en) * 1987-10-05 1989-04-12 Kanegafuchi Chem Ind Co Ltd Manufacture of semiconductor device
JP2008060374A (en) * 2006-08-31 2008-03-13 Sanyo Electric Co Ltd Solar-battery module

Similar Documents

Publication Publication Date Title
US4542578A (en) Method of manufacturing photovoltaic device
US4824488A (en) Photovoltaic device
JPH0472392B2 (en)
JP2008543067A (en) Method for manufacturing single-sided contact solar cell and single-sided contact solar cell
JPH0560674B2 (en)
JPH04116986A (en) Integrated solar cell and manufacture of the same
JPS616828A (en) Manufacture of semiconductor device
JP2680582B2 (en) Method for manufacturing photovoltaic device
JPS59220978A (en) Manufacture of photovoltaic device
JPH10209475A (en) Manufacture of integrated photovoltaic device
JPH11103079A (en) Manufacture of laminated photovoltaic device
JP2798772B2 (en) Method for manufacturing photovoltaic device
JP3332487B2 (en) Method for manufacturing photovoltaic device
JPS6031258A (en) Manufacture of photovoltaic device
JPS6342180A (en) Manufacture of integrated type photovoltaic device
JPS60262471A (en) Manufacture of photovoltaic device
JP2883370B2 (en) Photovoltaic device
JPS59220979A (en) Manufacture of photovoltaic device
JP2771653B2 (en) Method for manufacturing photovoltaic device
JPH03132080A (en) Photovoltaic device
JPS61164274A (en) Manufacture of photovoltaic device
JPH05267702A (en) Integrated solar battery device
JPS63202078A (en) Manufacture of photovoltaic device
JPS59168680A (en) Manufacture of photovoltaic device
JPS62142369A (en) Manufacture of solar battery