JPS61210681A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS61210681A
JPS61210681A JP61035594A JP3559486A JPS61210681A JP S61210681 A JPS61210681 A JP S61210681A JP 61035594 A JP61035594 A JP 61035594A JP 3559486 A JP3559486 A JP 3559486A JP S61210681 A JPS61210681 A JP S61210681A
Authority
JP
Japan
Prior art keywords
film
electrode film
photoelectric conversion
conversion element
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61035594A
Other languages
Japanese (ja)
Other versions
JPH053752B2 (en
Inventor
Seiichi Kiyama
木山 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61035594A priority Critical patent/JPS61210681A/en
Publication of JPS61210681A publication Critical patent/JPS61210681A/en
Publication of JPH053752B2 publication Critical patent/JPH053752B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent the generation of a leaking current, by removing the laminated body of a semiconductor film and a second electrode film by projection of an energy beam on the first electrode film at a neighboring interval part of a photoelectric conversion element. CONSTITUTION:On one main surface of a substrate 1, transparent conducting films 2a, 2b... comprising a single-layer or laminated-layer structure of tin oxide, indium-tin oxide and the like are separately arranged in correspondence with photoelectric conversion elements 5a, 5b.... Dividing grooves 7... having an insulating interval W1 are provided. The dividing grooves 7... between the transparent conducting films 2a, 2b... are buried by a semiconductor film 3a constituting one photo-electric conversion element 5a. The film 3a is extended on the other (right side) transparent conducting film 2b. The other transparent conducting film 2b is exposed by the projection of an energy beam such as a laser beam. A back surface electrode film 4a is formed by a first back surface electrode film 41a and a second back surface electrode film 42a, which also serves a third electrode film. The film electrode 42a is extended over the laminated body of the semiconductor film 3a and the first back surface electrode film 41a in one photoelectric conversion element 5a and contacted with the exposed film 2b.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体膜を光活性層とする光起電力装置の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for manufacturing a photovoltaic device using a semiconductor film as a photoactive layer.

〈台)従来の技術 第2図は既に実用化されている太陽電池の基本構造を示
し、(1)はガラス、面j熱プラスチック等の絶縁性且
つ透光性を有する基板、(2a)(2b)(2c〉・・
・は基板(1)上に一定間隔で被着された透明導電膜、
(3a)’(3b)(3c)・・・は各透明導電膜上に
重畳被着された非晶質シリコン等の非晶質半導体膜、(
4a)(4b>’(4c)・・・は各非晶質半導体膜上
に重畳被着され、かつ各右隣りの透明導電膜(2b)(
2c)・・・に部分的に重畳せる裏面電極膜である。
(1) Conventional technology Figure 2 shows the basic structure of a solar cell that has already been put into practical use. 2b) (2c>...
・ is a transparent conductive film deposited on the substrate (1) at regular intervals,
(3a)'(3b)(3c)... are amorphous semiconductor films such as amorphous silicon superimposed on each transparent conductive film, (
4a) (4b>'(4c)... are superimposed and deposited on each amorphous semiconductor film, and each transparent conductive film (2b) (
2c) It is a back electrode film that can be partially overlapped with...

各非晶質半導体膜(3a)(3b)(3c)・・・は、
その内部に例えば膜面に平行なPIN接合を含み、従っ
て透光性基板(1)及び透明導電膜(2a)(2b)(
2c)・・・を順次介して光入射があると、光起電力を
発生する。各非晶質半導体膜(3a)(3b)(3c)
・・・内で発生した光起電力は裏面電極膜(4aH4b
)(4c)での接続により直列的に相加される。
Each amorphous semiconductor film (3a) (3b) (3c)...
It contains, for example, a PIN junction parallel to the film surface, and therefore includes a transparent substrate (1) and a transparent conductive film (2a) (2b) (
2c) When light is incident sequentially through..., a photovoltaic force is generated. Each amorphous semiconductor film (3a) (3b) (3c)
...The photovoltaic force generated within the back electrode film (4aH4b
) (4c) are added in series.

この様な装置において、光利用効率を左右する一つの要
因は、装置全体の受光面積(即ち、基板面積)に対し、
実際に発電に寄与する非晶質半導体膜(3a)(3b)
(3c)・・・の総面積の占める割合いである。然るに
、各非晶質半導体膜(3a)(sb)(3c)・・・の
隣接間に必然的に存在する非晶質半導体のない領域(図
中符号NONで示す領域)は上記面積割合いを低下させ
る。
In such devices, one factor that affects the light utilization efficiency is the light receiving area (i.e. substrate area) of the entire device.
Amorphous semiconductor films that actually contribute to power generation (3a) (3b)
(3c) It is the ratio of... to the total area. However, the area without an amorphous semiconductor (the area indicated by the symbol NON in the figure) that inevitably exists between adjacent amorphous semiconductor films (3a) (sb) (3c), etc. has the above-mentioned area ratio. decrease.

従って光利用効率を向上するには、まず透明導電膜(2
a)(2b)(2c)・・・の隣接間隔を小言くし、そ
して非晶質半導体膜(3a)(3b)(3c)・・・の
隣接間隔を小さくせねばならない。この様な間隔縮小は
6膜の加工精度で決まり、従って、従来は細密加工性に
優れている写真蝕刻技術が用いられている。この技術に
よる場合、基板(1)止金面への透明導電膜の被着工程
と、フォトレジスト及びエツチングによる各個別の透明
導電膜(2a)(2b)(2c)・・・の分離、即ち、
各透明導電膜(2a)(2b)(2c)・・・の隣接間
隔部分の除去工程と、これら各透明導電膜上を含む基板
(1)止金面への非晶質導体膜の被着工程と、フ第1・
レジスト・及びエツチングによる各個別の非晶質半導体
膜(3a)(3b)(3c)・・・の分離、即ち、各非
晶質半導体膜(3a)(3b)(3c)・・・の隣接間
隔部分の除去工程とを順次経ることになる。
Therefore, in order to improve the light utilization efficiency, first the transparent conductive film (2
The adjacent spacing between a) (2b) (2c), etc. must be reduced, and the adjacent spacing between the amorphous semiconductor films (3a), (3b), (3c), and so on must be reduced. Such a reduction in the spacing is determined by the processing accuracy of the six films, and therefore, conventionally, photolithographic technology, which has excellent precision processing properties, has been used. In the case of this technique, the step of applying a transparent conductive film to the clasp surface of the substrate (1), and the separation of each individual transparent conductive film (2a), (2b), (2c), etc. by photoresist and etching, i.e. ,
Removal process of adjacent interval parts of each transparent conductive film (2a) (2b) (2c)... and adhesion of an amorphous conductor film to the clasp surface of the substrate (1) including on each of these transparent conductive films Process and F1.
Separation of each individual amorphous semiconductor film (3a) (3b) (3c)... by resist and etching, that is, separation of each amorphous semiconductor film (3a) (3b) (3c)... The step of removing the spaced portions is sequentially performed.

しかし乍ら、写真蝕刻技術は細密加工の上で優れてはい
るが、蝕刻バクーンを規定するフォトレジストのピンホ
ールや周縁での剥れにより非晶質半導体膜に欠陥を生じ
させやすい。
However, although the photo-etching technique is excellent in terms of fine processing, it tends to cause defects in the amorphous semiconductor film due to pinholes and peeling at the periphery of the photoresist that defines the etching pattern.

特開昭57−12568号公報に開示きれた先行技術は
、レーザビームの照射による膜の焼き切りで上記隣接間
隔を設けるものであり、写真蝕刻技術で必要なフォトレ
ジスト、即ちウェットプロセスを一切使わず細密加工性
に富むその技法は上記の課題を解決する上で極めて有効
である。
The prior art disclosed in Japanese Unexamined Patent Publication No. 57-12568 provides the above-mentioned adjacent spacing by burning out the film by laser beam irradiation, and does not use any photoresist, that is, a wet process, which is required in photoetching technology. This technique, which is highly capable of fine processing, is extremely effective in solving the above problems.

一方、第3図に示す如く、各光電変換素子(5a)(,
5b)・・・に連続して被着された非晶質半導体膜(3
)を各素子(5a)(5b)・・・毎に分割するに先立
って直ちに裏面電極膜(41)を上記各半導体膜(3)
止金面に予め積層被着する工程を含む製造方、法が提案
された。即ち、非晶質半導体膜(3)を分割せしめる工
程後裏面電極膜を被着せしめたのでは両者の接合界面に
塵埃や、写真蝕刻技術用した水分等が介在することがあ
り、斯る介在物を原因として発生していた裏面電極膜(
4a)(4b)の剥離や腐蝕自己を抑圧することができ
る。
On the other hand, as shown in FIG. 3, each photoelectric conversion element (5a) (,
5b) Amorphous semiconductor film (3
) into each element (5a), (5b), etc., the back electrode film (41) is immediately replaced with each of the semiconductor films (3).
A manufacturing method has been proposed that includes a step of pre-layering and adhering to the stopper surface. That is, if the back electrode film is applied after the step of dividing the amorphous semiconductor film (3), dust, moisture from photolithography, etc. may be present at the bonding interface between the two, and such intervening may occur. The back electrode film (
Peeling and corrosion of 4a) and 4b can be suppressed.

この様に、レーザビームを使用してパターニングを行な
うことにより、光電変換に寄与しない無効領域の減少は
図れるものの、斯る無効領域の減少が図られた透明導電
膜(2a)(2b)(2c)・・・の分割溝(7)(7
)・・・内に第2図に示す如く左隣りの光電変換素子(
5a)(5b)・=の裏面電極膜(4a)(4b)が右
隣りの光電変換素子(5b)(5c)・・・と電気的に
結合すべく延在し位置すると、隣接せる透明導電膜(2
a)(2、b)、(2b)(2c)、・・・の絶縁間隔
W1は上記裏面電極膜(4a)(4b)・・・の埋入に
より、この裏面電極膜(4a)、(4b)、・・・と一
方の透明導電膜(2aL (2b)、・・・との間隔で
あるW2に極めて縮小することになる。斯る絶縁間隔の
縮小は両透明導電膜(2a)(2b)、(2b)(2c
)、・・・間にリーク電流が発生する原因となる。
In this way, by patterning using a laser beam, it is possible to reduce the ineffective area that does not contribute to photoelectric conversion, but the transparent conductive film (2a) (2b) (2c) in which the ineffective area is reduced is )... dividing groove (7) (7
)... As shown in Figure 2, the photoelectric conversion element on the left (
When the back electrode films (4a) (4b) of 5a) (5b) and = are extended and positioned to be electrically coupled to the right-adjacent photoelectric conversion element (5b) (5c)..., the adjacent transparent conductive Membrane (2
The insulation interval W1 of a) (2, b), (2b) (2c), etc. is increased by embedding the back electrode films (4a), (4b), etc. 4b),... and one of the transparent conductive films (2aL (2b),...). This reduction in the insulation interval is caused by the distance between both transparent conductive films (2a) ( 2b), (2b) (2c
), ... causes leakage current to occur between them.

一方、隣接せる光電変換素子(5a)(5b)(5c)
 ’・・・同士を電気的に直列接続すべく透明導電膜(
2b)(2c)・・・を露出せしめる工程、即ち少なく
とも半導体膜(3)を除去する工程にレーザビームを使
用した場合、半導体膜(3)を幅狭く除去し、透明導電
膜(2b)(2c)・・・を露出せしめることができ無
効領域の減少が図れる。
On the other hand, adjacent photoelectric conversion elements (5a) (5b) (5c)
'...Transparent conductive film (
2b) (2c)..., in other words, in the step of removing at least the semiconductor film (3), the semiconductor film (3) is removed narrowly and the transparent conductive film (2b) ( 2c)... can be exposed, and the ineffective area can be reduced.

しかし、この透明導電膜(2b)(2c)・・・の露出
部分は、上述の如く隣接せる光電変換素子(5a)(5
b)(5c)・・・同士の接続に利用される部分であリ
、この露出長が狭くなると、斯る接続部分に於ける直列
抵抗成分の増加を招くために所定の露出長が必要となる
。従って、除去幅の縮幅が図れるレーザビーム、を使用
すると所定の露出長を得るために多数回走査しなければ
ならないこともあり、その場合作業性が低下する。
However, as described above, the exposed portions of the transparent conductive films (2b) (2c)...
b) (5c)...This is the part used for connection between the two, and if this exposed length becomes narrower, the series resistance component in such a connecting part will increase, so a certain exposed length is required. Become. Therefore, if a laser beam capable of reducing the removal width is used, it may be necessary to scan a number of times to obtain a predetermined exposure length, and in this case, work efficiency is reduced.

(ハ)発明が解決しようとする問題点 本発明は上記レーザビームやその他覚子ビーム等のエネ
ルギビームを使用してパターニングする光起電力装置の
製造方法に於いて、基板側に設けられた透明導電膜の如
き第1電極膜間の絶縁間隔の縮小によるリーク電流の発
生と、作業性の欠如を解決しようとするものである。
(c) Problems to be Solved by the Invention The present invention relates to a method for manufacturing a photovoltaic device in which patterning is performed using the above-mentioned laser beam or other energy beams such as a machining beam. This is an attempt to solve the problem of leakage current caused by a reduction in the insulation gap between the first electrode films and the lack of workability.

(二〉 問題点を解決するための手段 ・ 本発明は上記問題点を解決するために、個別の光電
変換素子を構成する半導体膜及び第2電極膜の積層体を
、光電変換素子の隣接間隔部の第1電極膜上に於いてエ
ネルギビームの照射により除去し各領域毎に分割すると
共に直列接続するための第1電極膜の一部分を露出せし
める工程と、上記第1電極膜の露出部分と隣接する光電
変換素子の第2電極膜を含む露出面上に第3電極膜を設
ける工程と、 上記第3電極膜を隣接した一方の光電変換素子の第2電
極膜と連なり他方の光電変換素子の第1電極膜露出部分
全面と結合せしめた状態で、その結合部近傍に於ける他
方の光電変換素子の第3電極膜、第2電極膜及び半導体
膜の積層体をエネルギービームの照射により除去し、一
方の光電変換素子と他方の光電変換素子とを電気的に直
列接続せしめる工程と、 を備えたことを特徴とする。
(2) Means for Solving the Problems In order to solve the above problems, the present invention provides a stacked body of a semiconductor film and a second electrode film constituting an individual photoelectric conversion element by adjusting the distance between adjacent photoelectric conversion elements. a step of removing a portion of the first electrode film on the first electrode film by irradiating with an energy beam, dividing it into each region and exposing a part of the first electrode film for series connection; a step of providing a third electrode film on an exposed surface including a second electrode film of an adjacent photoelectric conversion element; The stacked structure of the third electrode film, second electrode film, and semiconductor film of the other photoelectric conversion element in the vicinity of the joint part is removed by irradiation with an energy beam while the first electrode film is combined with the entire exposed part of the first electrode film. and a step of electrically connecting one photoelectric conversion element and the other photoelectric conversion element in series.

(ホ)作用 上述の如く半導体膜と第2電極膜の積層体は、隣接間隔
部の第1電極膜上に於いて工゛ネルギービームの照射に
より除去されると、第1電極膜間に形成された分割溝を
上記半導体膜が埋めることとなり、上記第1電極膜間の
絶縁間隔に導電体が侵入し絶縁間隔を縮小せしめる危惧
を回避し得る2共に、エネルギビームの照射部分は隣接
光電変換素子の電気的接続箇所の第1電極膜上であり、
露出せしめられた部分を有効に−F記電気的接続に利用
することができる。
(E) Function As described above, when the stacked body of the semiconductor film and the second electrode film is removed by irradiating the energy beam on the first electrode film in the adjacent spaced portion, the layered body formed between the first electrode films is removed. The semiconductor film fills the divided grooves, thereby avoiding the risk of the conductor invading the insulation gap between the first electrode films and reducing the insulation gap. on the first electrode film at the electrical connection point of the element,
The exposed portion can be effectively used for -F electrical connection.

(へ) 実施例 第1図は本発明製造方法により製造きれた光起電力装置
の要部拡大断面図であって、2つの光電変換素子(5a
H5b)を電気的に直列接続する隣接間隔部(6)を中
心に描いである。即ち、絶縁性且つ透光性を有する基板
(1)の−主面上に於ける複数の領域に、第1電極膜を
司どる透明導電膜(2a)(2b)・・・と、膜面に平
行なPIN接合を備えた非晶質半導体膜(3a)(3b
)・・・と、第2電極膜を司どる第1裏面電極膜(41
a)(41b)・・・とをこの順序で積層した光電変換
素子(’ 5 a)(5b)・・・が分割配置されてい
ると共に、それら光電変換素子(5a)(5b)・・・
は当該素子(5a)(5b)間の隣接間隔部(6)に於
いて電気的に直列接続されている。斯る光電変換素子(
5a>(5b)・・・の電気的直列接続形態は、第1図
から明らかな如く基板(1)の−主面上に於いて各光電
変換素子(5a)(5b)・・・毎に絶縁間隔W1を有
する分割溝(7)・・・を隔てて酸化スズ、酸化インジ
ウムスズ等の単層或いは積層構造からなる透明導電膜(
2a)(2b)・・・が分割配置され、この透明導電膜
(2a)(2b)・・・間の上記分割溝(7)・・・を
、一方(左隣り)の光電変換素子(5a)を構成する半
導体膜(3a)が埋めて、他方(右隣り)の透明導電膜
(2b)上にまで延び、そしてレーザビームの如きエネ
ルギビームの照射により露出せしめられた上記他方の透
明導電膜(2b)上に、上記一方の光電変換素子(5a
)の半導体膜(3a)と第1裏面電極膜(41a)の積
層体を越えて第1裏面電極膜(41a>と共に裏面電極
膜(4a)を構成し第3電極膜を司どる第2裏面寛極膜
(42a)が延在することによって実現している。
(f) Example FIG. 1 is an enlarged cross-sectional view of the main parts of a photovoltaic device manufactured by the manufacturing method of the present invention, in which two photoelectric conversion elements (5a
The drawing is centered on the adjacent spaced portion (6) that electrically connects the H5b) in series. That is, transparent conductive films (2a) (2b), which control the first electrode film, and the film surface are formed in a plurality of regions on the main surface of the substrate (1), which is insulating and translucent. Amorphous semiconductor film (3a) (3b) with PIN junction parallel to
)... and the first back electrode film (41
The photoelectric conversion elements (' 5 a) (5b)... in which a) (41b)... are laminated in this order are arranged in a divided manner, and the photoelectric conversion elements (5a) (5b)...
are electrically connected in series at the adjacent spacing (6) between the elements (5a) and (5b). Such a photoelectric conversion element (
As is clear from FIG. 1, the electrical series connection form of 5a>(5b)... is such that each photoelectric conversion element (5a) (5b)... A transparent conductive film (made of a single layer or a laminated structure of tin oxide, indium tin oxide, etc.) is separated by a dividing groove (7) having an insulation interval W1.
2a) (2b)... are arranged in a divided manner, and the dividing groove (7)... between the transparent conductive films (2a) (2b)... is used to connect one (adjacent left) photoelectric conversion element (5a)... ) is filled with the semiconductor film (3a), extends onto the other (adjacent to the right) transparent conductive film (2b), and is exposed by irradiation with an energy beam such as a laser beam. (2b) Above one of the photoelectric conversion elements (5a
) A second back surface that extends over the laminate of the semiconductor film (3a) and the first back electrode film (41a) and constitutes the back electrode film (4a) together with the first back electrode film (41a) and controls the third electrode film. This is achieved by extending the polar membrane (42a).

斯る透明導電膜(2a)(2b)の分割溝(7)に一方
の光電変換素子(5a)を構成する半導体膜(3a)を
埋入せしめ、他方の光電変換素子(5b)の透明導電膜
(2b)上にまで至る本発明光起電力装置の製造方法を
第3図乃至第6図を参照して詳述すると、第4図の工程
以前にあっては従来と同じ第3図の工程が施きれる。即
ち、第3図の工程では既に絶縁性且つ透光性を有する基
板(1)の−主面上に於いて各光電変換素子(5a)(
5b)・・・毎に分割された酸化スズ、酸化インジウム
スズ等の単層或いは積層構造から成る透明導電膜(2a
)(2b)・・・を連続的に覆う如く非晶質シリコン系
の非晶質半導体膜(3)及び第1裏面電極膜(41)が
被着される。より詳しくは非晶質半導体膜(3)が水素
化非晶質シリコンであって、光入射側から膜面に平行な
PIN接合を備えている場合、先ずシリコン化合物雰囲
気例えばシラン(S i H4)ガス雰囲気にP型決定
不純物を含むジボラン(B2 He )を添加しグロー
放電を生起せしめることにより膜厚50人〜200人程
度のP型層を形成し、次いで順次S i H4ガスのみ
により膜厚4000〜6000人程度の真性(I型〉層
とSjH斗ガスにN型決定不純物を含むホスフィン(P
H3>を添加し膜厚100人〜500人程度のN型層と
が積層被着される。斯る非晶質半導体膜(3)形成後該
半導体膜(3)上への塵埃の付着等を防止すべく 20
00人〜IIJ+T1程度のアルミニウム(Aりから成
る第1の裏面電極膜(41)が直ちに蒸着される。
The semiconductor film (3a) constituting one photoelectric conversion element (5a) is embedded in the dividing groove (7) of the transparent conductive films (2a) (2b), and the transparent conductive film (3a) constituting one photoelectric conversion element (5b) is The manufacturing method of the photovoltaic device of the present invention up to the top of the film (2b) will be explained in detail with reference to FIGS. 3 to 6. Before the process shown in FIG. The process can be done. That is, in the process shown in FIG. 3, each photoelectric conversion element (5a) (
5b)...Transparent conductive film consisting of a single layer or a laminated structure of tin oxide, indium tin oxide, etc. (2a
) (2b) . More specifically, when the amorphous semiconductor film (3) is hydrogenated amorphous silicon and has a PIN junction parallel to the film surface from the light incident side, first, a silicon compound atmosphere such as silane (S i H4) is used. A P-type layer with a thickness of about 50 to 200 layers is formed by adding diborane (B2 He ) containing P-type determining impurities to the gas atmosphere and causing glow discharge, and then sequentially increasing the thickness using only SiH4 gas. About 4,000 to 6,000 intrinsic (type I) layers and phosphine (P
H3> is added and an N-type layer with a film thickness of about 100 to 500 layers is deposited. After forming such an amorphous semiconductor film (3), in order to prevent dust from adhering to the semiconductor film (3), etc. 20
A first back electrode film (41) made of aluminum (A) having a thickness of about 000 to IIJ+T1 is immediately deposited.

第4図の工程では、隣接光電変換素子(5a)(5b)
・・・の直列接続が行なわれる隣接間隔部(6)・・・
の非晶質半導体膜(3)′・・・及び第1裏面電極膜<
41)’が矢印で示す如き基板(1)の他方の主面側か
らレーザビームの照射により除去されて、個別の各非晶
質半導体膜(3a)(3b)・・・及び第1裏面電極膜
(41a)(41b)−が各光電変換素子(5a〉(5
b)・・・毎に分割形成される。使用されるレーザは例
えば波長1.06IjlTl、パルス周波数3KHzの
Nd:YAGレーザであり、そのエネルギ密度は2×1
0’W/cm2になるべくレーザビーム径が調整されて
いる。このレーザビームの照射により隣接間隔部(6)
の距離(Ll)は約300+1Tll 〜500u刊に
設定される。
In the process shown in FIG. 4, adjacent photoelectric conversion elements (5a) (5b)
Adjacent spacing section (6) where series connection of ... is carried out...
The amorphous semiconductor film (3)'... and the first back electrode film<
41)' is removed by laser beam irradiation from the other main surface side of the substrate (1) as indicated by the arrow, and the individual amorphous semiconductor films (3a), (3b)... and the first back electrode are removed. Films (41a) (41b)- are attached to each photoelectric conversion element (5a>(5
b) It is divided and formed for each... The laser used is, for example, an Nd:YAG laser with a wavelength of 1.06 IjlTl and a pulse frequency of 3 KHz, and its energy density is 2×1
The laser beam diameter is adjusted to 0'W/cm2. By irradiating this laser beam, the adjacent spaced part (6)
The distance (Ll) is set to approximately 300+1Tll to 500u.

斯るレーザビームの照射はレーザビームの照射方向が除
去すべき隣接間隔部(6)・・・の露出面側、即ち第1
裏面電極膜(41) ’側からではなく透明導電膜(2
a)(2b)・・・との被着、界面側である非晶質半導
体膜(3)′・・・側からなるべく基板(1)の他方の
主面側から為きれている。そして、レーザビームは、透
明導電膜(2a)(2b)の分割溝(7)に一方の光電
変換素子(5a)の半導体膜(3a)を埋入上しめると
共に、その終端を他方の透明導電膜(2b〉上にまで延
在せしめるへく、隣接間隔部(6)に位置する透明導電
膜(2b)上の非晶質半導体膜(3)′に対して照射さ
れる。
The irradiation direction of the laser beam is directed toward the exposed surface side of the adjacent gap portion (6) to be removed, that is, the first
Back electrode film (41) Transparent conductive film (2
a) (2b) . . . The amorphous semiconductor film (3)' . Then, the laser beam embeds the semiconductor film (3a) of one photoelectric conversion element (5a) into the dividing groove (7) of the transparent conductive films (2a) and (2b), and connects the end of the semiconductor film (3a) to the other transparent conductive film. The amorphous semiconductor film (3)' on the transparent conductive film (2b) located in the adjacent gap (6) is irradiated so as to extend onto the film (2b>).

続く第5図の工程では、基板(1)の他方の主面側から
のレーザビームの照射により隣接間隔部(6)が除去さ
れた複数の光電変換素子(5a)(5b)・・・毎に分
割された第1裏面電極膜(41aH41b)・・・上及
び隣接間隔部(6)に於いて露出状態にある透明導電膜
(2a)(2b)・・・を連続的に覆うべく、膜厚数1
000人程度0チタン(T i )或いはチタン銀(T
 i A g >と、膜厚数1000人のANと、更に
膜厚数1000人〜5000人のTi或いはTiAgの
三層構造の第2裏面を極膜(42)が重畳被着される。
In the subsequent process shown in FIG. 5, each of the plurality of photoelectric conversion elements (5a) (5b) whose adjacent spacing portions (6) have been removed by laser beam irradiation from the other main surface side of the substrate (1) is removed. In order to continuously cover the transparent conductive films (2a) (2b) which are exposed in the upper and adjacent interval parts (6), the first back electrode film (41aH41b) divided into Thickness number 1
Approximately 000 titanium (T i ) or titanium silver (T
i A g >, a polar film (42) is superimposed on the second back surface of the three-layer structure of AN with a thickness of several 1,000 layers and Ti or TiAg with a thickness of several 1,000 to 5,000 layers.

と記一層目、三層目のTi或いはTlAgは下層のA!
の水分による腐食を防止すると共に、次工程に於けるレ
ーザ加工を容易ならしめるものであり、また第2裏面電
極膜(42〉に於けるARMは直列抵抗を低減せしめる
ものである。
Ti or TlAg in the first and third layers is A in the lower layer!
This prevents corrosion due to moisture and facilitates laser processing in the next step, and the ARM in the second back electrode film (42) reduces series resistance.

第6図の最終工程では、他方の光電変換素子(5b)の
透明導電膜(2b)の露出部分(8)も全面的に覆った
第2裏面電極膜(42)が、各個別の光電変換素子(5
aH5b)を電気的に直列接続すべく分割される。斯る
第2裏面電極膜(42)の分割は、左隣りの光電変換素
子(5a)の裏面電極膜(42a)と、右隣りの光電変
換素子(5b)の透明導電膜(2b)の露出部分(8)
とが全面的に結合すべく、その結合部近傍に於ける右隣
りの光電変換素子(5b)上で第1裏面電極膜(41b
)と共に行なわれる。具体′的には、上記結合部近傍に
於ける右隣りの光電変換素子(5b〉の第2裏面電極膜
(42)、第1裏面電極膜(41b)及び半導体膜(3
b〉の積層体にレーザビームを照射することにより、こ
れら積層体が除去されて、個別の各第2裏面電極膜(4
2a)(42b)・・・が形成きれる。その結果、各光
電変換素子(5a)(5b)・・・が電気的に直列接続
される。上記レーザビームは矢印で示す如く基板(1)
の他方の主面側から施す方法と、その逆の基板(1)の
一方の主面側から施す方法がある。例λ、ば半導体膜(
3)及び第1裏面電極膜(41)の照射と同じく基板(
1)の他方の主面側から施すときに使用されるレーザは
、Nd:YAGレーザであり、その時のエネルギ密度は
約3×107W/cIT12である。
In the final step in FIG. 6, the second back electrode film (42), which completely covers the exposed portion (8) of the transparent conductive film (2b) of the other photoelectric conversion element (5b), is applied to each individual photoelectric conversion element (5b). Motoko (5
aH5b) to be electrically connected in series. This division of the second back electrode film (42) involves exposing the back electrode film (42a) of the photoelectric conversion element (5a) on the left and the transparent conductive film (2b) of the photoelectric conversion element (5b) on the right. Part (8)
In order to fully combine the two, the first back electrode film (41b
). Specifically, the second back electrode film (42), the first back electrode film (41b), and the semiconductor film (3
By irradiating the laminated bodies of (b) with a laser beam, these laminated bodies are removed and each of the individual second back electrode films (4
2a) (42b)... are completed. As a result, the photoelectric conversion elements (5a), (5b), etc. are electrically connected in series. The above laser beam is directed towards the substrate (1) as shown by the arrow.
There are two methods: applying from the other main surface side of the substrate (1), and vice versa. For example, λ is a semiconductor film (
3) and the first back electrode film (41), the substrate (
The laser used in 1) from the other main surface side is a Nd:YAG laser, and the energy density at that time is approximately 3 x 107 W/cIT12.

(ト〉  発明の効果 本発明光起電力装置の製造方法は以上の説明から明らか
な如く、隣接した一方の光電変換素子を構成する半導体
膜と第2電極膜の積層体は、隣接間隔部の第1寛極膜に
於いてエネルギビームの照射により除去きれるので、第
1電極膜間に形成きれた分割溝を上記半導体膜が埋める
こととなり、上記分割溝内に導電体が侵入し絶縁間隔を
縮小せしめる危惧を確実に回避し得、斯る第1電極膜間
のリーク電流を減少せしめることができる。
(G) Effects of the Invention As is clear from the above description, in the method for manufacturing the photovoltaic device of the present invention, the laminate of the semiconductor film and the second electrode film constituting one adjacent photoelectric conversion element is Since the first polar polar film can be completely removed by irradiation with the energy beam, the semiconductor film fills up the dividing grooves formed between the first electrode films, and the conductor enters into the dividing grooves, thereby increasing the insulation gap. The risk of shrinkage can be reliably avoided, and the leakage current between the first electrode films can be reduced.

また、半導体膜及び第2を極膜の積層体がエネルギビー
ムの照射により除去される部分は隣接間隔部に於ける隣
接光電変換素子の電気的接続箇所の第1電極膜上である
ので、上記エネルギビームの照射により除去され露出せ
しめられた部分は有効に上記電気的接続に利用すること
ができ、その結果無駄な箇所へのエネルギビームの照射
はなくエネルギビームの走査回数も最小限に済ませるこ
とができる。更に、隣接光電変換素子を電気的に結合す
る第3電極膜の電気的な分離は、エネルギビームを使用
するものの第3電極膜単独で行なわず、第2電極膜及び
半導体膜の積層体に対して施すので、加工条件の厳しい
選択加工の必要性がなく、従って、上記エネルギビーム
の走査回数の低減化と相俟って作業性の向上が図れる。
In addition, since the portion of the stack of the semiconductor film and the second electrode film that is removed by irradiation with the energy beam is on the first electrode film at the electrical connection point of the adjacent photoelectric conversion element in the adjacent spacing part, the above-mentioned The parts removed and exposed by the energy beam irradiation can be effectively used for the above-mentioned electrical connection, and as a result, the energy beam is not irradiated to unnecessary parts and the number of times the energy beam is scanned can be minimized. I can do it. Furthermore, electrical separation of the third electrode film that electrically couples adjacent photoelectric conversion elements is performed using an energy beam, but is not performed on the third electrode film alone, but on the stacked structure of the second electrode film and the semiconductor film. Therefore, there is no need for selective machining with strict machining conditions.Therefore, together with the reduction in the number of scans of the energy beam, workability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造方法により製造きれる光起・ 電力
装置の一実施例を示す要部拡大断面図、第2図は従来装
置の断面図、第3図乃至第6図ば本発明光起電力装置の
製造方法の製造工程を工程別に示す要部拡大断面図、を
夫々示している。 (1)・・・基板、(2a)(2b”)(2c)−透明
導電膜、(3)(3a)(3b)(3C〉・・・半導体
膜、(41)(41a)(41b ) ・・・第1裏面
電極膜、(42)(42a)(42b)・・・第2裏面
電極膜、(5a>(5b)(5c)・・・光電変換素子
FIG. 1 is an enlarged cross-sectional view of essential parts showing an embodiment of a photovoltaic/power device manufactured by the manufacturing method of the present invention, FIG. 2 is a cross-sectional view of a conventional device, and FIGS. 2A and 2B are enlarged cross-sectional views of main parts showing each step of the manufacturing process of the power device manufacturing method. (1)...Substrate, (2a) (2b") (2c)-transparent conductive film, (3) (3a) (3b) (3C>...semiconductor film, (41) (41a) (41b) ...First back electrode film, (42) (42a) (42b)...Second back electrode film, (5a>(5b)(5c)...Photoelectric conversion element.

Claims (1)

【特許請求の範囲】[Claims] (1)基板の一主面に於ける複数の領域に第1電極膜、
半導体膜及び第2電極膜をこの順序で積層した光電変換
素子を分割配置し、それら光電変換素子を当該素子間の
隣接間隔部で第3電極膜を介して電気的に直列接続せし
めた光起電力装置の製造方法であって、 上記半導体膜と第2電極膜の積層体を、上記隣接間隔部
の第1電極膜上に於いてエネルギビームの照射により除
去し各領域毎に分割すると共に直列接続するための第1
電極膜の一部分を露出せしめる工程と、 上記第1電極膜の露出部分と隣接する光電変換素子の第
2電極膜を含む露出面上に第3電極膜を設ける工程と、 上記第3電極膜を隣接した一方の光電変換素子の第2電
極膜と連なり他方の光電変換素子の第1電極膜露出部分
全面と結合せしめた状態で、その結合部近傍に於ける他
方の光電変換素子の第3電極膜、第2電極膜及び半導体
膜の積層体をエネルギービームの照射により除去し、一
方の光電変換素子と他方の光電変換素子とを電気的に直
列接続せしめる工程と、 を備えたことを特徴とする光起電力装置の製造方法。
(1) A first electrode film in multiple regions on one main surface of the substrate,
A photovoltaic device is a photovoltaic device in which a photoelectric conversion element in which a semiconductor film and a second electrode film are laminated in this order is arranged in a divided manner, and these photoelectric conversion elements are electrically connected in series through a third electrode film at an adjacent interval between the elements. A method for manufacturing a power device, the stack of the semiconductor film and the second electrode film being removed by irradiation with an energy beam on the first electrode film in the adjacent spaced portion, dividing into each region, and serially connecting the semiconductor film and the second electrode film. 1st to connect
a step of exposing a portion of the electrode film; a step of providing a third electrode film on an exposed surface including a second electrode film of the photoelectric conversion element adjacent to the exposed portion of the first electrode film; The third electrode of the other photoelectric conversion element in the vicinity of the joint is connected to the second electrode film of one adjacent photoelectric conversion element and combined with the entire exposed portion of the first electrode film of the other photoelectric conversion element. A step of removing the laminate of the film, the second electrode film, and the semiconductor film by irradiation with an energy beam, and electrically connecting one photoelectric conversion element and the other photoelectric conversion element in series. A method for manufacturing a photovoltaic device.
JP61035594A 1986-02-20 1986-02-20 Manufacture of photovoltaic device Granted JPS61210681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035594A JPS61210681A (en) 1986-02-20 1986-02-20 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035594A JPS61210681A (en) 1986-02-20 1986-02-20 Manufacture of photovoltaic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59126918A Division JPS616828A (en) 1984-06-20 1984-06-20 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS61210681A true JPS61210681A (en) 1986-09-18
JPH053752B2 JPH053752B2 (en) 1993-01-18

Family

ID=12446123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035594A Granted JPS61210681A (en) 1986-02-20 1986-02-20 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61210681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253674A (en) * 1987-04-10 1988-10-20 Sanyo Electric Co Ltd Manufacture of photovoltaic device
US6822158B2 (en) 2002-03-11 2004-11-23 Sharp Kabushiki Kaisha Thin-film solar cell and manufacture method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633889A (en) * 1979-08-28 1981-04-04 Rca Corp Amorphous silicon solar battery
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5750295A (en) * 1980-09-11 1982-03-24 Matsushita Electric Ind Co Ltd Laser working method
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array
JPS5935489A (en) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd Manufacture of photo semiconductor device
JPS5986269A (en) * 1982-11-09 1984-05-18 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
JPS5994885A (en) * 1982-11-24 1984-05-31 Semiconductor Energy Lab Co Ltd Photoelectric conversion device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633889A (en) * 1979-08-28 1981-04-04 Rca Corp Amorphous silicon solar battery
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5750295A (en) * 1980-09-11 1982-03-24 Matsushita Electric Ind Co Ltd Laser working method
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array
JPS5935489A (en) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd Manufacture of photo semiconductor device
JPS5986269A (en) * 1982-11-09 1984-05-18 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
JPS5994885A (en) * 1982-11-24 1984-05-31 Semiconductor Energy Lab Co Ltd Photoelectric conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253674A (en) * 1987-04-10 1988-10-20 Sanyo Electric Co Ltd Manufacture of photovoltaic device
US6822158B2 (en) 2002-03-11 2004-11-23 Sharp Kabushiki Kaisha Thin-film solar cell and manufacture method therefor

Also Published As

Publication number Publication date
JPH053752B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
US4542578A (en) Method of manufacturing photovoltaic device
JPH053151B2 (en)
JPS61210681A (en) Manufacture of photovoltaic device
JP2798772B2 (en) Method for manufacturing photovoltaic device
JP2877328B2 (en) Method for manufacturing photovoltaic device
JP2004095661A (en) Photoelectric converting device and its manufacturing method
JPH0464473B2 (en)
JP2598967B2 (en) Method for manufacturing photovoltaic device
JPS63261883A (en) Manufacture of photovoltaic device
JP3521268B2 (en) Method for manufacturing photovoltaic device
JPH07105511B2 (en) Photovoltaic device manufacturing method
JPS6213829B2 (en)
JPH0464472B2 (en)
JPH053150B2 (en)
JPS61164274A (en) Manufacture of photovoltaic device
JP2771650B2 (en) Method for manufacturing photovoltaic device
JP2883370B2 (en) Photovoltaic device
JPH0443432B2 (en)
JP2638235B2 (en) Method for manufacturing photoelectric conversion device
JPH0542142B2 (en)
JPH0370184A (en) Photovoltaic device
JP2752183B2 (en) Method for manufacturing photovoltaic device
JPS62145781A (en) Manufacture of semiconductor device
JPS6030184A (en) Manufacture of photovoltaic device
JPS60262471A (en) Manufacture of photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term