JPS5932187A - Silent discharge type gas laser device - Google Patents

Silent discharge type gas laser device

Info

Publication number
JPS5932187A
JPS5932187A JP14240982A JP14240982A JPS5932187A JP S5932187 A JPS5932187 A JP S5932187A JP 14240982 A JP14240982 A JP 14240982A JP 14240982 A JP14240982 A JP 14240982A JP S5932187 A JPS5932187 A JP S5932187A
Authority
JP
Japan
Prior art keywords
dielectric
discharge
electrode
gas laser
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14240982A
Other languages
Japanese (ja)
Other versions
JPS6245717B2 (en
Inventor
Shuji Ogawa
小川 周治
Shigenori Yagi
重典 八木
Masaki Kuzumoto
昌樹 葛本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14240982A priority Critical patent/JPS5932187A/en
Publication of JPS5932187A publication Critical patent/JPS5932187A/en
Publication of JPS6245717B2 publication Critical patent/JPS6245717B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To prevent the damage of a dielectric element due to thermal expansion of a dielectric electrode by covering the surface except a main discharge unit of the element which covers the metal electrode for forming the dielectric electrode, with an insulator having a flexibility. CONSTITUTION:The surface except a main discharge unit 5 of a dielectric element opposed to a ground metal electrode 2 with a dielectric electrode 3' is covered with an Si rubber insulator layer 13 which has a flexibility. Thus, even if the electrode 3' is thermally expanded due to the discharge energy, the layer 13 absorbs the variation in the expansion of the dielectric element due to its flexibility, thereby resulting in no damage of the element. Further, the layer 13 can increase its thickness, the creeping discharge except the main discharge unit 5 of the electrode 3' can be prevented, and a discharge energy is effectively applied to a laser medium. Even if the layer 13 is exposed with slight creeping discharge, the production of organic outgas can be extremely reduced.

Description

【発明の詳細な説明】 この発明は、無声放電式ガスレーザ装置の7L極構造の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the 7L pole structure of a silent discharge type gas laser device.

従来、無声放電式ガスレーザ装置の一例として三軸直交
型CO2レーザ装置がある。
Conventionally, there is a three-axis orthogonal CO2 laser device as an example of a silent discharge type gas laser device.

第1図は従来の三軸直交型CO,ンーザの構成原理を示
す図である。第2図はその誘電体電極の断面図、第3図
は第2図のl−IMによる断面図で放電状態を示す図で
ある。第1図において、レーザ梵振器1内には接地金属
電極2と高周波高磁圧が印加される誘電体電極3が相対
向して配置されている。この両電極2.3間には放電空
間4h;形成され、この放電空間4内には炭酸ガス(C
o2)。
FIG. 1 is a diagram showing the principle of construction of a conventional three-axis orthogonal CO/Nuser. FIG. 2 is a cross-sectional view of the dielectric electrode, and FIG. 3 is a cross-sectional view along line 1-IM of FIG. 2, showing the discharge state. In FIG. 1, a ground metal electrode 2 and a dielectric electrode 3 to which high frequency and high magnetic pressure are applied are arranged in a laser oscillator 1 to face each other. A discharge space 4h is formed between the two electrodes 2.3, and carbon dioxide gas (C
o2).

−リウムガス(He)、窒素ガス(N2)等の混合ガス
から成るガスレーザ媒質が熱交換器6にて冷却され、プ
ロア1により加速され毎秒3()m程度の高速度で循環
供給されるようKなっている。放電空間40両端には全
反射′a8および部分反射鏡9が固定配置され、光共振
器が形成されている。誘亀体電l!i3は、第2図に示
すように金属′11極1゜をF1!電休11が被俣し、
さらに誘電体電極3が接地金属電極2と対向する面であ
る主要放電部5以外の誘電体110表面が無機セメント
12で覆われた構造となって〜・る。g?!体電極3に
は交流電源14から100KHz、] 0KV(実効値
)程度の高周波高電圧が印加され、放電空間4に無声放
電として知られている安定したグロー状の放電が生起さ
れる。放電空間4においては、前記7゛ロア7によるガ
スレーデの媒質ガス循環流G、と両電+研2.3間の無
声放IS、とが第3図に示すように直交する状態となり
、この時の放電エネルギーがガスレーザ媒Is、に与え
られ、この例では炭酸ガス(Co、)分子がレーザ励起
され、前述した媒質ガス循環流G、および無声放’t 
s、とが直交することになる。すなわち、放電空間4と
その両端に固定配置された全反射鏡8と部分反射鏡9で
形成される光共振器の光軸に対してレーザビーム15の
励起が行われ、光共振器による共振増幅が行ゎれた後、
その一部が部分反射鏡9かもレーザビーム15として外
部へ放出されるのである。放電空間4における放電エネ
ルギーによるガスレーザ媒質の温度上列は、レーザラと
振のエネルギー効率を低下させる原因となるので、放市
、空間4の媒質ガスの循環流は熱交換器6にて冷却され
、プI:+77にて高速度で強制循環させられることに
より、ガスレーザ媒質の温度上昇を一定以下に抑制して
いる。また、誘電体電極3の温度上、IjtVcよる誘
電体電極3を構成する誘電体11の破壊を防止するため
に、誘電体1!極3の内部忙はポンプ16から冷却器1
7および純水器18を通って冷却され、かつ電気:11
℃抗の増加された純水冷却水が供給され、誘電体電極3
0発熱が直接冷却水によって冷却されるよ5になってい
る。
- A gas laser medium consisting of a mixed gas of lithium gas (He), nitrogen gas (N2), etc. is cooled in a heat exchanger 6, accelerated by a proa 1, and circulated at a high speed of about 3 m/s (K). It has become. A total reflection mirror 'a8 and a partial reflection mirror 9 are fixedly arranged at both ends of the discharge space 40 to form an optical resonator. Dictionary turtle electricity! i3 connects metal '11 pole 1° to F1! as shown in Figure 2. Electric holiday 11 is covered,
Further, the surface of the dielectric 110 other than the main discharge portion 5, which is the surface of the dielectric electrode 3 facing the ground metal electrode 2, is covered with an inorganic cement 12. G? ! A high frequency high voltage of about 100 KHz and 0 KV (effective value) is applied to the body electrode 3 from an AC power source 14, and a stable glow-like discharge known as a silent discharge is generated in the discharge space 4. In the discharge space 4, the medium gas circulation flow G of the gas lede caused by the 7゛ lower 7 and the silent discharge IS between the Ryoden + Ken 2.3 are in a state of being perpendicular to each other as shown in Fig. 3, and at this time discharge energy is applied to the gas laser medium Is, in this example carbon dioxide (Co) molecules are laser-excited, and the medium gas circulation flow G and the silent emission 't
s, are orthogonal to each other. That is, the laser beam 15 is excited with respect to the optical axis of an optical resonator formed by the discharge space 4 and a total reflection mirror 8 and a partial reflection mirror 9 fixedly arranged at both ends of the discharge space 4, and resonance amplification by the optical resonator is performed. After the
Part of it is also emitted from the partial reflecting mirror 9 to the outside as a laser beam 15. Since the temperature rise of the gas laser medium due to the discharge energy in the discharge space 4 causes a decrease in the energy efficiency of the laser beam and vibration, the circulation flow of the medium gas in the discharge space 4 is cooled by a heat exchanger 6, By forcedly circulating the gas at a high speed at +77, the temperature rise of the gas laser medium is suppressed to below a certain level. Furthermore, in order to prevent the dielectric 11 constituting the dielectric electrode 3 from being destroyed by IjtVc due to the temperature of the dielectric electrode 3, the dielectric 1! The internal flow of pole 3 is from pump 16 to cooler 1.
7 and water purifier 18, and electricity: 11
Pure water cooling water with increased temperature resistance is supplied to the dielectric electrode 3.
0 heat generation is directly cooled by cooling water.

従来の三軸直交型C02レーザ装置の構成は以上の通り
であるが、以下接地金属電極2.誘な体電極3間に印加
される高周波高電圧に基づく無声放電によるレーザ励起
作用を説明する。
The configuration of the conventional three-axis orthogonal C02 laser device is as described above. The laser excitation effect by silent discharge based on high frequency and high voltage applied between the dielectric electrodes 3 will be explained.

無声放電は両電極2.3間に印加される高周波高電圧(
約10KV)K基づき放電空間4内に誘電体11を介し
て生ずる交流放電であり、電源車l【−の各印加周期の
上列Jf’7において放電開始電圧(約51(V )に
達するとパルス的放′屯が生じる。
Silent discharge is caused by high frequency high voltage (
This is an alternating current discharge that occurs in the discharge space 4 via the dielectric 11 based on K (approximately 10 KV), and when it reaches the discharge starting voltage (approximately 51 (V) Pulse radiation occurs.

この放1Fにより誘電体110表面には放電電流によろ
東向が#積され、その結果数tlL空間4の電圧が低F
し”C,パルス放電が消滅する。以上のパルス放電が電
源it圧の各周期における上昇過程において繰り返えさ
れ、通常の用台、交流電源車圧の半ザイクル中数回〜数
十回のFi!り返えしパルス放電が得られる。また、翫
性の反転する次の半サイクルには逆極性の同様のパルス
放電が繰り返えされる。従って、I41.電空間4への
放電電力供給は継続的な繰り返しとなるが、レーザ励起
およびレーザtIe振出力はガスレーザ媒質中の窒素が
エネルギーブールとして作用するため時間的にほぼ一様
の出力として得ることができる。
Due to this discharge 1F, a discharge current is multiplied in the eastward direction on the surface of the dielectric 110, and as a result, the voltage in the space 4 becomes low by several tlL.
"C", the pulse discharge disappears. The above pulse discharge is repeated in the rising process of each cycle of the power supply voltage, and is repeated several times to several tens of times during a half-cycle of the AC power supply pressure in normal use. Fi! Repetitive pulse discharge is obtained.Also, in the next half cycle when the polarity is reversed, similar pulse discharge with opposite polarity is repeated.Therefore, I41.Discharge power supply to electric space 4 is continuously repeated, but the laser excitation and laser tIe oscillation outputs can be obtained as substantially uniform outputs over time because nitrogen in the gas laser medium acts as an energy bouquet.

す、上のよ5な無声放電では誘寛体′RL極3内の金属
l4t4′@100屯圧は約10KV(実効値)と、放
電空間4内の放電開始醒圧約5KVよりも大きいので、
第3図に示すよ5に誘電体11の背後まで沿面放電が広
がる可能性がある。また、この放電(以下沿面放電と称
する)Kより放電エネルギーが有効に放電空間4内(す
なわち光共振器空間)に入らないためH41u効率が低
下することになる。
In the above silent discharge, the metal l4t4'@100 tonne pressure in the inducer 'RL pole 3 is about 10 KV (effective value), which is larger than the discharge start pressure in the discharge space 4 of about 5 KV,
As shown in FIG. 3, creeping discharge may spread to the back of the dielectric 11. Furthermore, since the discharge energy from this discharge (hereinafter referred to as creeping discharge) K does not effectively enter the discharge space 4 (that is, the optical resonator space), the H41u efficiency decreases.

そこでこの対策として従来のレーザ発振器1の誘電体1
を極3は主要放電部5以外の誘電体110表面を無機セ
メント12で覆っていた。また、絶縁物として無機セメ
ント12を用いた理由は、無機セメントは沿面放電にさ
らされても発振効率を低下させる有機性7ウトガスの発
生が1ぷいためである。
Therefore, as a countermeasure to this problem, the dielectric 1 of the conventional laser oscillator 1
In the pole 3, the surface of the dielectric 110 other than the main discharge part 5 was covered with an inorganic cement 12. Furthermore, the reason why inorganic cement 12 is used as an insulator is that even when inorganic cement is exposed to creeping discharge, it generates less organic outgas that reduces oscillation efficiency.

従来の無声放電式ガスレーザ装置の電極は以上のように
構成され柔軟性のないjH(E機セメント12が誘電体
11に密着しているので放電に基づく誘電体電極3の熱
膨張による歪みのために誘電体11が破壊される事故が
175発し、また、沿面放電を減少させる目的で無機セ
メント120層のJVさを増すと、ますます接合面で生
ずる歪を増す結果と江るので厚く無機セメント120層
を施すことができフ、「いといつ欠点があった。
The electrodes of the conventional silent discharge gas laser device are constructed as described above and are inflexible. There were 175 accidents in which the dielectric 11 was destroyed, and if the JV of the inorganic cement 120 layer was increased for the purpose of reducing creeping discharge, the strain occurring at the bonding surface would further increase, so thick inorganic cement was used. Although 120 layers could be applied, there were some drawbacks.

この開明け、−に述の点Kかんがみてなされたもので、
11411シ体の主安故市部以外の表向を柔軟性を有す
る絶縁物層で破fQすることKより上述の欠点を解消し
、高効率、高信頼性を有する無声放1江式ガスレーザ装
置を提供することを目的とする。以下この発明を図面に
基づいて説明する。
This discovery was made in view of the point K mentioned in -.
11411 A silent emission type gas laser device which eliminates the above-mentioned drawbacks and has high efficiency and high reliability by breaking the surface of the body other than the main part with a flexible insulating layer. The purpose is to provide The present invention will be explained below based on the drawings.

第4図はこの発明の一実施例をなす誘電体電極の断面図
、第5図は第4図のn−ff線による断面図で、無声に
電S、および媒質ガス循i流G、の状態を示す図である
。第4図、@5図において、ta1図〜@3図と同一符
号を付した部分は同一部分を示すので説明は省略する。
FIG. 4 is a cross-sectional view of a dielectric electrode constituting an embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along the line n-ff in FIG. It is a figure showing a state. In FIGS. 4 and 5, the parts with the same reference numerals as those in ta1 to ta3 indicate the same parts, and therefore the description thereof will be omitted.

第4図、第5図に示すようKiT!1を体亀欅3′は金
属電極1oを誘電体11で林覆し、さらにシリコンゴム
系絶縁物層13にて誘電体1M、極3′が接地金属電極
2と対向する訪屯体11の主要放電部5以外の表面を被
覆する構造となっている1、 上述Q)よ5に、第4図、第5図に示す実施例において
け、#電体電極3′が接地金属電極2と対向する誘電体
11の主要放電部5以外の表面を、柔軟性を有(−1有
機性7ウトガスの発生σ)少ylいシリコンゴム系絶縁
物層13により被機する1、゛構造とした。従って故亀
エネルキーにより誘′亀体a 4仇3 ’が熱膨張して
もシリコンゴム系絶縁物層13がその柔軟性により誘電
体11の膨張変化を吸収することになり、誘電体11が
破壊されるということはない。さらにシリコンゴム系絶
縁物J〆13けjlさを噌ずことができ、第5図に示す
ように誘′屯体市極3′の主要放電部5以外の沿面放電
を防ぎ有効に放電エネルキーがガスレーザ媒質に与えら
れること忙なる。また、シリコンゴム系絶縁物層13は
その性質上多少の沿面放電にさらされても4機性アウト
ガスの発生が極めて少な(・。
As shown in Figures 4 and 5, KiT! Keyaki 3' covers the metal electrode 1o with a dielectric material 11, and further covers the main part of the visiting object 11 with a dielectric material 1M in a silicone rubber insulator layer 13, and a pole 3' facing the ground metal electrode 2. In the embodiments shown in FIGS. 4 and 5, the # electric body electrode 3' faces the ground metal electrode 2. The surface of the dielectric 11 other than the main discharge portion 5 was covered with a flexible (-1 organic 7 outgas generation σ) silicone rubber-based insulating layer 13 having a low yl structure. Therefore, even if the dielectric body a 4 and 3 ' thermally expand due to the turtle energy, the silicone rubber insulator layer 13 absorbs the expansion change of the dielectric 11 due to its flexibility, causing the dielectric 11 to break. There is no such thing as being done. Furthermore, silicone rubber-based insulators can be used to prevent creeping discharge in areas other than the main discharge part 5 of the dielectric duct 3', as shown in Fig. 5, and effectively reduce the discharge energy key. It is very important to be given a gas laser medium. Furthermore, due to its properties, the silicone rubber insulator layer 13 generates very little 4-functional outgas even when exposed to some creeping discharge (.

なお、上記実施例では誘電体電極3′が接地金属4i2
と対向する誘α体11の主要放電部5以外の表面をシリ
コンゴム系絶縁物層13で障5ことにより主要放電部5
以外の沿面放酢を防ぎ無声放電を7jk電空間4内のみ
に発生させてレーザσ〕発掘効率を増すようにしたが、
シリコンゴム系絶縁物JM13を」コl、下の(イ)、
←)で示す条件を満す材料およびtit造のものに換え
ても上記実施例と同様の効果をイIIることかできる。
In the above embodiment, the dielectric electrode 3' is the ground metal 4i2.
By blocking the surface of the dielectric material 11 other than the main discharge part 5 with the silicone rubber insulator layer 13, the main discharge part 5 is
The laser σ] excavation efficiency was increased by preventing other creeping discharges and generating silent discharge only in the 7jk electric space 4.
Silicone rubber insulator JM13, below (a),
Even if the material satisfying the conditions shown in (←) and titanium construction are used, the same effect as in the above embodiment can be obtained.

(rl  絶縁41 r’l凹と@電体面との間に誘電
体が熱膨張しても歪、)・が生じない(スト1/ス力穐
乍亀体にかからない)構造または材料であること。
(rl Insulation 41 r'l The structure or material does not cause distortion even if the dielectric material expands thermally between the r'l concave and the electric surface.) .

(ロ) 白面Ij’l Yににさらされても有機性アウ
トガスの発生が少ない絶縁材料であること。
(b) An insulating material that generates little organic outgassing even when exposed to white surfaces.

第6図は一ヒdシ: ((1、hlの条件を満すこの発
明の他の実Afq例を示す図である。この図において、
第1図乃至第3図と同一符号をイ1した部分は同一部分
を示すので説明は省略する、19はセラミックスパウダ
等からなる無[Tt扮休体20は絶縁性枠である。II
!E機グ(粉体19は適当な手段にて圧縮充填し、空隙
含有率の小さし・状態とされ、実質的に主要数n℃部5
月外の沿面放′屯が進展するのを防ぐ作用を奏する。ま
た、第6図に示す類似の構造であれば、グラスウール等
の無機IJf繊維をもってセラミックスパウダKかえる
ことも可能である。
FIG. 6 is a diagram showing another example of actual Afq of this invention that satisfies the conditions of ((1, hl). In this figure,
The parts marked with the same reference numerals as those in FIGS. 1 to 3 indicate the same parts, so the explanation will be omitted. Reference numeral 19 indicates an insulating frame made of ceramic powder or the like. II
! E machine (powder 19 is compressed and filled by appropriate means to reduce the void content, and substantially the main number n°C part 5
It works to prevent the extralunar creepage radiation from developing. Furthermore, if the structure is similar to that shown in FIG. 6, it is also possible to replace the ceramic powder K with inorganic IJf fibers such as glass wool.

以上説明したようKこの発明に係る無声放電式ガス・−
ぜ装置は、g市7体市捧を構成する金属亀(−を被層す
る誘電体の接地金机PiJ、極と対向4−るili分以
外の表面に柔軟性を有する絶縁物層を設けたので、誘電
体?a極の熱膨張による誘一体の破吻を防電し、電極の
信頼性が向上すると共に、a面放電の進展を抑え発振効
率が上昇するとい5伶めてすぐ第1た効果を有するもの
である。
As explained above, the silent discharge type gas according to this invention -
The device consists of a dielectric grounding metal plate (PiJ) that covers the metal turtle (-) that makes up the 7-piece body, and a flexible insulating layer is provided on the surface of the surface other than the 4-metal surface facing the pole. As a result, it is possible to prevent breakdown of the dielectric material due to thermal expansion of the dielectric material A-electrode, improve the reliability of the electrode, suppress the progress of A-plane discharge, and increase the oscillation efficiency. This has several effects.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は従来の無声放電式ガスレーザの一例を示す概略
図、第2図は第3図の要部′電極構造を示す断面図、第
3図は第2図の1−1線による断面図、第4図はこの発
明に係るガスレーザの実施例の要部宵、極4り造を示す
断面図、第5図は第4図σ)I−■線忙よる断面し!、
第6図はこの発[IIjの他の実施例を示す断面図であ
る。 図中、2は接地金属電極、3.3′は88曳体亀16ζ
54は放電空間、5は主要数″PiL部、10は金N[
極、11は誘電体、13はシリコンゴム系絶縁物層、1
4は交流電源、19は無機)(粉体、20け絶縁枠であ
る。なお、図中の同−才−)号は同一または相当部4〕
?示l゛。 代理人 C!、野 信 −(外1名) 第1図 か 第3図
@Figure 1 is a schematic diagram showing an example of a conventional silent discharge type gas laser, Figure 2 is a sectional view showing the main part of Figure 3' electrode structure, and Figure 3 is a sectional view taken along line 1-1 in Figure 2. , FIG. 4 is a sectional view showing the main part of the embodiment of the gas laser according to the present invention, and FIG. 5 is a sectional view taken along the line σ) I-■ in FIG. 4. ,
FIG. 6 is a sectional view showing another embodiment of this generator [IIj]. In the figure, 2 is the ground metal electrode, 3.3' is 88 drag body turtle 16ζ
54 is the discharge space, 5 is the main number "PiL part, 10 is gold N[
pole, 11 is a dielectric, 13 is a silicone rubber insulator layer, 1
4 is an AC power source, 19 is an inorganic powder, and a 20-piece insulating frame. In addition, the same or equivalent part 4 in the figure is the same number.
? Show ゛. Agent C! , Shin Nobu - (1 other person) Figure 1 or Figure 3

Claims (1)

【特許請求の範囲】 (+l  相対向して配置された接地金属電極と誘電体
t11. +iの間に交流高電圧を印加し前記両電欅間
に無声放電を発生さ・杖、この無声放電をレーザ励起源
とする無声放電式ガスレーザ装置dにおいて、前記誘電
体電極を構成する金属電極を被覆する誘電体の前記接地
金属電極と対向する部分以外の表面に柔軟性を有する絶
縁物層を設けたことを特徴と−する無声放電式カスレー
ザ装置N0゜(2)  柔軟性を有する絶縁物層とし又
、シリコンゴム系絶縁物層を用いることを特徴とする特
許請求の範囲第(])項記載の無声放電式カスレーザ装
置。 (3)柔軟性を有する絶縁物層として、無機質粉体無機
智繊維の1−を用いることを特徴とする特許請求の範囲
第(1)頃記載の11101s放電式ガスレーザ装置。 (4)柔軟性を有する絶縁物層として、無に4質繊維の
層を用いることを特徴とする特許請求の範囲第(31項
記載の無声放電式ガスレーザ装置。
[Claims] (+l) An AC high voltage is applied between the ground metal electrode and the dielectric material t11. In a silent discharge gas laser device d using a laser excitation source as a laser excitation source, a flexible insulating layer is provided on a surface of a dielectric covering a metal electrode constituting the dielectric electrode other than a portion facing the ground metal electrode. A silent discharge type Kaslaser device N0° (2) characterized in that the insulating layer has flexibility and a silicone rubber insulating layer is used. (3) A 11101S discharge gas laser according to claim 1, characterized in that an inorganic powder inorganic fiber 1- is used as the flexible insulating layer. Apparatus. (4) A silent discharge gas laser apparatus according to claim 31, characterized in that a layer of quaternary fiber is used as the flexible insulating layer.
JP14240982A 1982-08-17 1982-08-17 Silent discharge type gas laser device Granted JPS5932187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14240982A JPS5932187A (en) 1982-08-17 1982-08-17 Silent discharge type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14240982A JPS5932187A (en) 1982-08-17 1982-08-17 Silent discharge type gas laser device

Publications (2)

Publication Number Publication Date
JPS5932187A true JPS5932187A (en) 1984-02-21
JPS6245717B2 JPS6245717B2 (en) 1987-09-28

Family

ID=15314665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14240982A Granted JPS5932187A (en) 1982-08-17 1982-08-17 Silent discharge type gas laser device

Country Status (1)

Country Link
JP (1) JPS5932187A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197047A (en) * 1984-10-18 1986-05-15 日本酸素株式会社 Attritor
JPS62183580A (en) * 1986-02-07 1987-08-11 Mitsubishi Electric Corp Silent discharge gas laser device
JPS63502068A (en) * 1985-11-12 1988-08-11 ヒユ−ズ・エアクラフト・カンパニ− Suppression of high frequency discharge in low pressure gas equipment
JPS6466983A (en) * 1987-09-07 1989-03-13 Komatsu Mfg Co Ltd Gas laser device
JP2007075104A (en) * 2005-08-16 2007-03-29 Yamamoto Co Ltd Method and apparatus for producing pregelatinized grain flour

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197047A (en) * 1984-10-18 1986-05-15 日本酸素株式会社 Attritor
JPS63502068A (en) * 1985-11-12 1988-08-11 ヒユ−ズ・エアクラフト・カンパニ− Suppression of high frequency discharge in low pressure gas equipment
JPS62183580A (en) * 1986-02-07 1987-08-11 Mitsubishi Electric Corp Silent discharge gas laser device
JPS6466983A (en) * 1987-09-07 1989-03-13 Komatsu Mfg Co Ltd Gas laser device
JP2007075104A (en) * 2005-08-16 2007-03-29 Yamamoto Co Ltd Method and apparatus for producing pregelatinized grain flour

Also Published As

Publication number Publication date
JPS6245717B2 (en) 1987-09-28

Similar Documents

Publication Publication Date Title
JPS637038B2 (en)
JPS5932187A (en) Silent discharge type gas laser device
JPS639393B2 (en)
JPS6026310B2 (en) gas laser equipment
JPS5890791A (en) Device for forming laser active state in high speed subsonic flow
JPS60178681A (en) Gas laser device
JPS62183580A (en) Silent discharge gas laser device
JPS61137381A (en) Silent discharge gas laser
JPS60115280A (en) Gas laser oscillator
JPS62130576A (en) Carbon dioxide gas laser oscillator
JPH0225267B2 (en)
JPS6239555B2 (en)
JPH0234196B2 (en) GASUREEZASOCHI
JPS6026311B2 (en) gas laser equipment
JPS5848487A (en) Gas laser oscillator
JP4450980B2 (en) AC discharge gas laser oscillator
JP2980381B2 (en) Laser equipment
JPS5851581A (en) Lateral excitation type gas laser
JPS6314875B2 (en)
JPH01214184A (en) Pulse laser oscillation device
JP2001257397A (en) Phase-controlled multi-electrode type ac discharge excitation laser device
JPS5917871B2 (en) gas laser equipment
JPH02281671A (en) Gas laser oscillation device
JPS58115876A (en) Silent discharge type gas laser device
JPS5932185A (en) Silent discharge type gas laser device