JPS62183580A - Silent discharge gas laser device - Google Patents

Silent discharge gas laser device

Info

Publication number
JPS62183580A
JPS62183580A JP2540686A JP2540686A JPS62183580A JP S62183580 A JPS62183580 A JP S62183580A JP 2540686 A JP2540686 A JP 2540686A JP 2540686 A JP2540686 A JP 2540686A JP S62183580 A JPS62183580 A JP S62183580A
Authority
JP
Japan
Prior art keywords
discharge
discharge tube
insulating layer
gas laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2540686A
Other languages
Japanese (ja)
Other versions
JPH0770770B2 (en
Inventor
Masaki Kuzumoto
昌樹 葛本
Masaaki Tanaka
正明 田中
Satoru Hayashi
悟 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61025406A priority Critical patent/JPH0770770B2/en
Publication of JPS62183580A publication Critical patent/JPS62183580A/en
Publication of JPH0770770B2 publication Critical patent/JPH0770770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To realize a high-energy gas laser compact in size by a method wherein an insulating layer of flexible material is provided between electrodes on the outer wall of a discharge tube. CONSTITUTION:A discharge tube (BaTiO3; epsilonB=1,000) 1, electrodes 2, 3, and a flexible insulating layer 12 based on silicon rubber constitute a gas laser device. The silicon rubber of the flexible insulating layer 12 should have been de-foamed in vacuum. A creeping discharge is completely suppressed owing to the flexible insulating layer 12, which ensures a stable, silent discharge at a power more than ten times larger than in case of a conventional device. Further, flexibility insulating layer 12 is equipped with results in reduced thermal stress, which protects the discharge tube 1 and others from destruction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無声放電式ガスレーザ装置、と(にそのコン
パクト化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silent discharge type gas laser device and its compactness.

〔従来の技術〕[Conventional technology]

従来この種の装置として第2図に示すものがあった。 A conventional device of this type is shown in FIG.

第2図(a)(b)は各々従来の無声放電式ガスレーザ
装置を示す正面構成図及び第2図(a)のB−BfMに
沿った断面図である。
FIGS. 2(a) and 2(b) are a front configuration diagram and a sectional view taken along B-BfM in FIG. 2(a), respectively, showing a conventional silent discharge type gas laser device.

図において、 +11は通常パイレックスガラス等より
なる管状の放電管で、内径13 ml!+厚さI Im
+長さ1rIL程度のものである。+21. +31は
放電管(1)の外壁に密着する一対の電極、(4)は高
周波11.源で。
In the figure, +11 is a tubular discharge tube usually made of Pyrex glass, etc., and has an inner diameter of 13 ml! +Thickness I Im
+Length is approximately 1rIL. +21. +31 is a pair of electrodes that are in close contact with the outer wall of the discharge tube (1), and (4) is a high frequency 11. At the source.

電極(2)、(3)に接続される。また、前記放電管(
11の軸方向の両対向端にはそれぞれ全反射鏡(5)及
び部分反射鏡(61が取シ付けられている。そして、こ
の放電管111は内部に送風機(9)及び熱交換器11
1を備えた送気管+71. +81に接続されて循環的
に連通されている。矢印蝶υはレーザ光を示す。
Connected to electrodes (2) and (3). In addition, the discharge tube (
A total reflection mirror (5) and a partial reflection mirror (61) are attached to both axially opposing ends of the discharge tube 111, respectively.The discharge tube 111 has an air blower (9) and a heat exchanger
Air pipe with 1+71. +81 for cyclic communication. The arrow butterfly υ indicates the laser beam.

次に、C02レーザ装置を例にとシ、動作説明する。放
電管(1)内には+”02+Hθ+ N2の混合ガスが
数10〜200 Torr の圧力で充填されている。
Next, the operation will be explained using a C02 laser device as an example. The discharge tube (1) is filled with a mixed gas of +"02+Hθ+N2 at a pressure of several tens to 200 Torr.

この放電管(IIにおいて、を極(2)、(3)に高周
波電源14)より例えば100冊z、8KV程度の電圧
が印加されると第2図(1))に示すように、電極12
1. +31間に無声放電が起シ、その結果、放電によ
5 oo2分子が励起され、全反射鏡(5)と部分反射
鏡(61で構成される光共振器内でレーザ発振が起る。
In this discharge tube (II), when a voltage of about 8 KV is applied to the electrodes (2) and (3) from the high frequency power source 14), the electrodes 12
1. A silent discharge occurs between +31 and 5oo2 molecules are excited by the discharge, causing laser oscillation within an optical resonator composed of a total reflection mirror (5) and a partial reflection mirror (61).

レーザ光の一部は矢印aυで示されるように部分反射鏡
(6)よシ外部に取シ出される。一方、放電によりガス
温度が上昇するとレーザ出力が低下するので、送風機(
9)によりガスを循環させて熱交換器aQで冷却し。
A part of the laser beam is taken out to the outside through the partial reflecting mirror (6) as shown by the arrow aυ. On the other hand, when the gas temperature rises due to discharge, the laser output decreases, so the blower (
9), the gas is circulated and cooled by a heat exchanger aQ.

これにより放電管(11内のガス温度は所定値以下に保
持されている。
As a result, the gas temperature inside the discharge tube (11) is maintained below a predetermined value.

ところで、無声放電における投入電力は大略下式で与え
られることが発明者らの研究によって明らかにされてい
る。
By the way, the inventors' research has revealed that the input power in silent discharge is approximately given by the following formula.

(日中etal  「高周波無声放電の等価回路と放電
特性について」電気学会 放電研究会資料FD−82−
27((1982年6月))) f ;電源周波数         =100刈2ε8
 ;誘電体の比誘電率      〜6ε。;真空or
s電率        =Oj18X1111’−11
Fm−1t ;誘電体の厚さ         〜1×
10  mXD;電極の幅           〜l
0X10  m■*:放電電圧           
〜IKVvoP;印加電圧のゼロ・ピーク値   〜5
KVl ;放電管の長さ         〜1m従っ
て、上に記載の数値の装置においては放電長さが1mで
400W程度の電力が投入され、レーザ出力は約SOW
得られる。
(Chinese etal “About the equivalent circuit and discharge characteristics of high-frequency silent discharge” Institute of Electrical Engineers of Japan Discharge Study Group Material FD-82-
27 ((June 1982))) f ; Power frequency = 100 2ε8
; Relative permittivity of dielectric ~6ε. ;vacuum or
s electric rate = Oj18X1111'-11
Fm-1t ; Dielectric thickness ~1×
10 mXD; electrode width ~l
0X10 m *: Discharge voltage
~IKVvoP; Zero/peak value of applied voltage ~5
KVl; Length of discharge tube ~1m Therefore, in the device with the numerical values listed above, when the discharge length is 1m, approximately 400W of power is input, and the laser output is approximately SOW.
can get.

(発明が解決しようとする間賄点〕 従来の無声放電式ガスレーザ装置は以上のように構成さ
れており、装置をコンパクトにかつ大出力を得るにはm
式よυ比誘電率の大なる放電管を用いるのが有効である
ことがわかる。そこで、パイレックスガラス(εP6 
)の100倍以上の比誘電率をもつ9例えばBaT:t
’3(ε、 = 1000)  を用いて実験を行なっ
た。ところが第3図に示すように放電管1111Aにて
破壊(浴面放電(A))が発生し。
(Points to be solved by the invention) The conventional silent discharge gas laser device is constructed as described above, and in order to make the device compact and obtain high output, m
It can be seen from the equation that it is effective to use a discharge tube with a large relative permittivity. Therefore, Pyrex glass (εP6
) has a relative dielectric constant of 100 times or more than 9, for example, BaT:t
'3(ε, = 1000). However, as shown in FIG. 3, a breakdown (bath surface discharge (A)) occurred in the discharge tube 1111A.

放電管内での無声放電が得られないことが明らかになっ
た。
It became clear that silent discharge could not be obtained within the discharge tube.

第4図は実験より得られた沿面放電の発生電圧を示す特
性図であり1曲!(B)は電源周波数fが60Hzの時
9曲線(0)は100tlzの時のものであり。
Figure 4 is a characteristic diagram showing the generation voltage of creeping discharge obtained from experiments, and it is one song! (B) is when the power supply frequency f is 60 Hz, and curve 9 (0) is when it is 100 tlz.

また斜線領域(D)は沿面放電が発生しない領域を示し
ている。第4図よシ浦面放電は比誘電率ε6が高い程、
又電源周波数fが高い程発生しやさいことがわかる。
Furthermore, the shaded area (D) indicates an area where creeping discharge does not occur. Figure 4 shows that the higher the relative dielectric constant ε6, the higher the surface discharge.
It can also be seen that the higher the power supply frequency f, the more likely it is to occur.

従って従来の無声放電式ガスレーザ装置では沿面放電の
発生のため比誘電率の大なる放電管の使用が不可能であ
り、装置のコンパクト化に大きな障害となっていた。
Therefore, in the conventional silent discharge type gas laser device, it is impossible to use a discharge tube with a large dielectric constant due to the occurrence of creeping discharge, which has been a major obstacle to making the device more compact.

この発明は上記のような問題点を解消するためになされ
たもので、沿面放電の発生を阻止し、コンパクトでかつ
大出力の得られる装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a device that is compact and can provide a large output by preventing creeping discharge from occurring.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る無声放電式ガスレーザ装置は放電管外壁
の各電極間に柔軟性を有する絶縁物層を設けたものであ
る。
The silent discharge type gas laser device according to the present invention is provided with a flexible insulating layer between each electrode on the outer wall of the discharge tube.

〔作用〕[Effect]

この発明における絶縁物層は沿面放電を防止する。また
この絶縁物層は柔軟性を有するので熱応力が発生しに<
<、放電管等の破壊をおこさない。
The insulating layer in this invention prevents creeping discharge. Also, since this insulating layer has flexibility, thermal stress does not occur.
<Does not cause damage to discharge tubes, etc.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例に係る放電管部分を示す断
面図である。この発明における無声放電式ガスレーザ装
置は上記放電管部分以外は第2図と同様であるため、こ
こでは省略する。
FIG. 1 is a sectional view showing a discharge tube portion according to an embodiment of the present invention. The silent discharge type gas laser device according to the present invention is the same as that shown in FIG. 2 except for the above-mentioned discharge tube portion, so a description thereof will be omitted here.

第1図において、(l)は放電管CBaT10s p 
tryI Q G O)、 +21(31は電極、俣2
は柔軟性を有するシリコンゴム系絶縁物層である。
In Fig. 1, (l) is a discharge tube CBaT10s p
tryI Q G O), +21 (31 is the electrode,
is a flexible silicone rubber insulating layer.

ただしこのシリコンゴム系絶縁物層aX6は真空におい
て脱泡されたものを使用している。
However, this silicone rubber-based insulating layer aX6 is one that has been degassed in a vacuum.

このシリコンゴム系絶縁物層r1zにより沿面放電は完
全に抑えられ、実験では電力密度aow/7と従来の1
0倍以上の電力密度でかつ安定な無声放電が得られた。
Creeping discharge is completely suppressed by this silicone rubber insulator layer r1z, and in experiments, the power density was lower than that of aow/7 compared to the conventional one.
A stable silent discharge with a power density of 0 times or more was obtained.

ただし、粘度の萬い材料やあるいは脱泡せずに使用した
場合には放電管の破壊を招いた。
However, if a material with a high viscosity is used or if it is used without defoaming, the discharge tube may be destroyed.

ここで各種絶縁物材質にて沿面放電の抑1IIJを行っ
た結果を示す。
Here, the results of suppressing creeping discharge using various insulating materials are shown.

(11エポキシ系接着剤 絶縁物層Q2に一般的なエポキシ系接着剤を使用した。(11 Epoxy adhesive A common epoxy adhesive was used for the insulator layer Q2.

この場合沿面放電の発生は見られなかったがエポキシ中
のボイド放電により絶縁物層(Izの温度が上昇し、エ
ポキシの熱破壊(黒化→破壊)を招いた。そこで耐熱性
の萬い高温エポキシ(300℃まま使用可)材料音用い
て同様の実験を行なった。ところが放電管〔1)の破壊
を招いた。この原因はエポキシ内での微少なボイド放電
によシ放電管潟度が局所的に上昇し、かつエポキシの接
着強度が強すぎるため熱応力が発生し、放電管の破壊に
つながったものと考えられる。
In this case, no creeping discharge was observed, but the temperature of the insulating layer (Iz) rose due to void discharge in the epoxy, leading to thermal destruction (blackening → destruction) of the epoxy. A similar experiment was conducted using epoxy (can be used at 300°C) material.However, the discharge tube [1] was destroyed. The cause of this is thought to be that the discharge tube's latitude locally increased due to minute void discharges within the epoxy, and the adhesive strength of the epoxy was too strong, which caused thermal stress, which led to the discharge tube's destruction. It will be done.

(2)電界緩和剤 EIIOによる電界緩和は一般的に知られている。(2) Electric field relaxant Electric field relaxation by EIIO is generally known.

そこで我々はEIIOにより電界を緩和し、沿面放電の
抑制を試みた。ところが、S10は赤熱し。
Therefore, we attempted to suppress creeping discharge by relaxing the electric field using EIIO. However, S10 was red hot.

かつ沿面放電の発生は防げなかった。Moreover, the occurrence of creeping discharge could not be prevented.

以上により無声放電式ガスレーザに使用する場合の材料
の具備すべき点が明らかになった。
As a result of the above, the points that the material should have when used in a silent discharge type gas laser have been clarified.

(11放電管(1)と絶縁物層@の熱膨張の差により熱
的応力が発生しないように柔軟性のある絶縁物を使用す
る必要がある。
(11) It is necessary to use a flexible insulator to prevent thermal stress from occurring due to the difference in thermal expansion between the discharge tube (1) and the insulator layer.

(2)絶縁物層内でのボイド放wjLを防止するために
粘度が50P以下の低粘性材料であり、脱泡が容易にで
きること。
(2) The material must be a low-viscosity material with a viscosity of 50P or less to prevent void release wjL within the insulating layer, and can be easily degassed.

上記実施例で扛シリコンゴム系絶縁物の場合のみ示した
が上記111あるいは(11121の項目金満たしてお
れば、他の材料でも使用は可能である。
In the above embodiment, only the case of a silicone rubber insulator was shown, but other materials can be used as long as they meet the requirements of item 111 or (11121).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば放電管外壁の各電極間
に柔軟性を有する絶縁物層を設けたので沿面放電の抑制
が可能になり、放電管に比誘電率の高い材料が使用でき
、その結果コンパクトで大出力のガスレーザ装置が得ら
れる効果がある。
As described above, according to the present invention, since a flexible insulating layer is provided between each electrode on the outer wall of the discharge tube, creeping discharge can be suppressed, and a material with a high dielectric constant can be used for the discharge tube. As a result, a compact and high-output gas laser device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る放電管部分を示す断
面図、第2図(−)(1))は各々従来の無声放電式ガ
スレーザ装置を示す正面構成図及び第2図(a)のB−
B@に沿った断面図、第3図は従来の無声放電式ガスレ
ーザ装置の放電管部分を示す断面図。 並びに第4図は従来の無声放電式ガスレーザ装置におけ
る沿面放電の発生電圧を示す特性図である。 (11は放電管、 +21(31は電極、(4)は電源
、 ttnはレーザ光、 amは絶縁物層 なお図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view showing a discharge tube portion according to an embodiment of the present invention, and FIG. 2 (-) (1)) is a front configuration view and FIG. ) of B-
FIG. 3 is a cross-sectional view along line B@, and FIG. 3 is a cross-sectional view showing the discharge tube portion of a conventional silent discharge gas laser device. FIG. 4 is a characteristic diagram showing the voltage generated by creeping discharge in a conventional silent discharge type gas laser device. (11 is a discharge tube, +21 (31 is an electrode, (4) is a power source, ttn is a laser beam, and am is an insulating layer. In the drawings, the same reference numerals indicate the same - or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)誘電体よりなる管状の放電管の外壁に設けた一対
の電極に交流電圧を印加して上記放電管内に放電を起こ
し、レーザ光を発振させるものにおいて、上記放電管外
壁の、上記各電極間に柔軟性を有する絶縁物層を設けた
ことを特徴とするガスレーザ装置。
(1) In a device that applies an alternating current voltage to a pair of electrodes provided on the outer wall of a tubular discharge tube made of a dielectric material to cause a discharge in the discharge tube and oscillate laser light, each of the above-mentioned components on the outer wall of the discharge tube A gas laser device characterized in that a flexible insulating layer is provided between electrodes.
(2)絶縁物層としてシリコンゴム系絶縁物を使用した
特許請求の範囲第1項記載のガスレーザ装置。
(2) The gas laser device according to claim 1, wherein a silicone rubber-based insulator is used as the insulator layer.
(3)絶縁物層として50P以下の低粘性材料を脱泡し
たものを使用した特許請求の範囲第1項又は第2項記載
のガスレーザ装置。
(3) The gas laser device according to claim 1 or 2, wherein a defoamed low-viscosity material of 50P or less is used as the insulating layer.
JP61025406A 1986-02-07 1986-02-07 Silent discharge gas laser device Expired - Fee Related JPH0770770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025406A JPH0770770B2 (en) 1986-02-07 1986-02-07 Silent discharge gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025406A JPH0770770B2 (en) 1986-02-07 1986-02-07 Silent discharge gas laser device

Publications (2)

Publication Number Publication Date
JPS62183580A true JPS62183580A (en) 1987-08-11
JPH0770770B2 JPH0770770B2 (en) 1995-07-31

Family

ID=12165029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025406A Expired - Fee Related JPH0770770B2 (en) 1986-02-07 1986-02-07 Silent discharge gas laser device

Country Status (1)

Country Link
JP (1) JPH0770770B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172389A (en) * 1989-02-07 1992-12-15 Matsushita Electric Industrial Co., Ltd. Gas laser apparatus
WO2017192285A1 (en) * 2016-05-05 2017-11-09 Access Laser Dielectric electrode assembly and method of manufacture thereof
US10593776B2 (en) 2016-05-05 2020-03-17 Auroma Technologies, Co., Llc. Dielectric electrode assembly and method of manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932185A (en) * 1982-08-17 1984-02-21 Mitsubishi Electric Corp Silent discharge type gas laser device
JPS5932187A (en) * 1982-08-17 1984-02-21 Mitsubishi Electric Corp Silent discharge type gas laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932185A (en) * 1982-08-17 1984-02-21 Mitsubishi Electric Corp Silent discharge type gas laser device
JPS5932187A (en) * 1982-08-17 1984-02-21 Mitsubishi Electric Corp Silent discharge type gas laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172389A (en) * 1989-02-07 1992-12-15 Matsushita Electric Industrial Co., Ltd. Gas laser apparatus
WO2017192285A1 (en) * 2016-05-05 2017-11-09 Access Laser Dielectric electrode assembly and method of manufacture thereof
US10333268B2 (en) 2016-05-05 2019-06-25 Access Laser Dielectric electrode assembly and method of manufacture thereof
US10593776B2 (en) 2016-05-05 2020-03-17 Auroma Technologies, Co., Llc. Dielectric electrode assembly and method of manufacture thereof

Also Published As

Publication number Publication date
JPH0770770B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US6430205B2 (en) Discharge unit for a high repetition rate excimer or molecular fluorine laser
JP2000196168A (en) Laser device
KR20010040954A (en) Large area silent discharge excitation radiator
JPS62183580A (en) Silent discharge gas laser device
JPS6310597B2 (en)
JPS6245717B2 (en)
JP2659730B2 (en) Metal vapor laser device
JP2628313B2 (en) Gas laser device
JPS60178681A (en) Gas laser device
JPH06188492A (en) Laser apparatus
JP2640345B2 (en) Gas laser oscillation device
JP2598009B2 (en) Metal vapor laser oscillation tube
JPH04211184A (en) Discharge excitation excimer laser device
JPH02281671A (en) Gas laser oscillation device
JPS6398162A (en) Gas laser
JPS61269387A (en) Electrode structure for laser oscillator
JP2003264328A (en) Waveguide gas laser oscillator
JPH08293637A (en) Laser
JPS63228685A (en) Discharge-pumped laser device
JP2002176213A (en) Ac discharge gas laser oscillator
JP2971595B2 (en) Metal vapor laser oscillation tube
JPH01283980A (en) Laser oscillator
JPH047110B2 (en)
JPH02116182A (en) Laser fine pipe
JPS6010683A (en) Co2 laser tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees