JPS6026311B2 - gas laser equipment - Google Patents

gas laser equipment

Info

Publication number
JPS6026311B2
JPS6026311B2 JP9018777A JP9018777A JPS6026311B2 JP S6026311 B2 JPS6026311 B2 JP S6026311B2 JP 9018777 A JP9018777 A JP 9018777A JP 9018777 A JP9018777 A JP 9018777A JP S6026311 B2 JPS6026311 B2 JP S6026311B2
Authority
JP
Japan
Prior art keywords
discharge
voltage
metal electrode
electrode
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9018777A
Other languages
Japanese (ja)
Other versions
JPS5424593A (en
Inventor
則一 田畑
重典 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9018777A priority Critical patent/JPS6026311B2/en
Publication of JPS5424593A publication Critical patent/JPS5424593A/en
Publication of JPS6026311B2 publication Critical patent/JPS6026311B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 この発明は、高出力横励起形無声放電式ガスレーザ装置
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a high-output horizontally pumped silent discharge gas laser device.

まず、従釆のガスレーザ装置を横励起形C02レーザを
例にとって説明する。
First, a secondary gas laser device will be explained using a horizontally pumped C02 laser as an example.

第1図はその構成原理図であり、1は接地金属電極、2
は接地金属電極1とで放電極を構成する高電圧金属電極
で、放電面は誘電体3で覆われている。
Figure 1 is a diagram showing the principle of its construction, where 1 is a grounded metal electrode, 2
is a high-voltage metal electrode that forms a discharge electrode together with a grounded metal electrode 1, and the discharge surface is covered with a dielectric 3.

4は放電空間、5は変圧器、6は高周波電源、7は全反
射鏡、8は出力側反射鏡(一部透過)、9は冷却水循環
ポンプ、1川ま冷水器、11はイオン交換純水器である
4 is a discharge space, 5 is a transformer, 6 is a high frequency power supply, 7 is a total reflection mirror, 8 is an output side reflection mirror (partially transparent), 9 is a cooling water circulation pump, 1 is a water cooler, 11 is an ion exchange pure It is a water vessel.

上記の構成において、高電圧金属電極2に、高周波電源
6と変圧器5により交流高電圧が印加されると、放電空
間4に無声放電と呼ばれる安定な放電が起る。
In the above configuration, when an AC high voltage is applied to the high voltage metal electrode 2 by the high frequency power source 6 and the transformer 5, a stable discharge called a silent discharge occurs in the discharge space 4.

この無声放電は、高電圧金属電極2と接地金属電極1間
に誘電体3を介して生じる交流放電であるため、アーク
放電に移行することなく、電子温度のみが高く、分子温
度の上昇しない非平衡放電が安定に実現できる。放電空
間4内で励起された分子による光誘導韓射過程の説明は
省略するが、放電空間4内で無声放電が起ると、全反射
鏡7と出力側反射鏡8により構成される共振器内でレー
ザ発振が起り、出力側反射鏡8よりレーザ光が出る。接
地金属電極1と高電圧金属電極2はともに電気伝導度の
小さい冷却水で冷却されており、冷却水は冷却水循環ポ
ンプ9で冷水器10、イオン交換純水器1 1を通して
循環される。イオン交換純水器11は冷却水の電気伝導
度を4・さくして高電圧金属電極2からの電流漏洩を防
ぐために必要である。なお、図には示してないが、放電
空間4のガスは接地金属電極1と高電圧金属電極2間を
レーザ光と直角で、電極面に平行な方向に高速で流れて
いる。したがって、放電により励起される分子の濃度も
電極中心より少しガス流の下流側で最高となり、レーザ
共振空間も電極中心より少し下流にとろく後述する第2
図Bの破線円内)。第2図A,Bは放電極の拡大図で、
接地金属電極1、高電圧金属電極2ともに放電面は平行
平板であり、放電は両金属電極1,2間でほぼ一様に起
る。
This silent discharge is an alternating current discharge that occurs between the high voltage metal electrode 2 and the ground metal electrode 1 via the dielectric 3, so it does not transition to an arc discharge, and only the electron temperature is high and the molecular temperature does not increase. Balanced discharge can be achieved stably. Although a description of the light-induced Korean radiation process by excited molecules in the discharge space 4 will be omitted, when a silent discharge occurs in the discharge space 4, a resonator formed by the total reflection mirror 7 and the output side reflection mirror 8 Laser oscillation occurs inside, and laser light is emitted from the output side reflecting mirror 8. Both the ground metal electrode 1 and the high voltage metal electrode 2 are cooled with cooling water having low electrical conductivity, and the cooling water is circulated by a cooling water circulation pump 9 through a water cooler 10 and an ion exchange water purifier 11. The ion exchange deionizer 11 is necessary to reduce the electrical conductivity of the cooling water by 4.0 and prevent current leakage from the high voltage metal electrode 2. Although not shown in the figure, gas in the discharge space 4 flows at high speed between the ground metal electrode 1 and the high voltage metal electrode 2 in a direction perpendicular to the laser beam and parallel to the electrode surface. Therefore, the concentration of molecules excited by the discharge is also highest slightly downstream of the electrode center, and the laser resonance space is also located slightly downstream of the electrode center.
(within the dashed circle in Figure B). Figures 2A and B are enlarged views of the discharge electrode.
The discharge surfaces of both the ground metal electrode 1 and the high voltage metal electrode 2 are parallel plates, and discharge occurs almost uniformly between the two metal electrodes 1 and 2.

以上従来のガスレーザ装置として横励起形C02レーザ
について説明したが、このようなしーザにおいて、レー
ザ光の出力を大きくするためには放亀空間4に投入する
放電電力を大きくすればよいが、その時共振器の鏡径も
大きくして鏡面のレーザ光密度をあまり大きくしないよ
うにしないと全反射鏡7および出力側反射鏡8が損傷を
受ける。
The horizontally pumped C02 laser has been described above as a conventional gas laser device.In order to increase the output of laser light in such a laser, it is sufficient to increase the discharge power input into the release space 4. Unless the mirror diameter of the resonator is increased to prevent the laser light density on the mirror surface from becoming too large, the total reflection mirror 7 and the output side reflection mirror 8 will be damaged.

しかし、鏡径を大きくすると放電空間4の光路径も大き
くなるから、放電電極の間隔も大きくなる。したがって
、放電開始電圧が高くなり、高周波電源6など電源の絶
縁などにも問題が生じる。また、電源電圧が高くなると
、誘電体3の絶縁耐力も問題になり、全体として安定運
転の信頼性が著しく低下する。この発明は上記の点に鑑
みなされたもので、電極構造を改良することにより、光
路径を大きくとっても電源電圧を低くすることができる
ガスレ−ザ装置を提供することを目的とする。
However, when the mirror diameter is increased, the optical path diameter of the discharge space 4 is also increased, and therefore the interval between the discharge electrodes is also increased. Therefore, the discharge starting voltage becomes high, and problems arise in the insulation of power sources such as the high frequency power source 6. Further, as the power supply voltage increases, the dielectric strength of the dielectric 3 also becomes a problem, and the reliability of stable operation as a whole is significantly reduced. The present invention has been made in view of the above points, and an object of the present invention is to provide a gas laser device in which the power supply voltage can be lowered even when the optical path diameter is increased by improving the electrode structure.

以下この発明について説明するが、まず無声放電の特性
について簡単に説明する。
This invention will be explained below, but first, the characteristics of silent discharge will be briefly explained.

無声放電は誘電体を介して生じる交流放電であり、電源
電圧の上昇にしたがって放電空間の電圧が上昇し放電開
始電圧に達すると放電が起る。放電が起ると誘電体表面
に電荷が堆積し、放電空間の電圧が低下して放電が消滅
する。電源電圧の上昇により再び放電空間の電圧が放電
開始電圧に達すると放電が起り、交流電源の半サイクル
中に数回の放電を操返すことになるもので、次の半サイ
クルでは逆極性の放電が同様に繰返される。放電が繰返
されている時は先の放電による影響が残っており、放電
開始電圧が、最初に電圧が上昇して放電が開始する電圧
(最初の放電開始電圧)より低い所で一定しているが、
最初に電圧が上昇する時に放電が開始するためには過電
圧が必要となる。また、レーザ励起の場合は放電空間に
高速気流があるため、各半サイクルの最初の放電も、前
の半サイクルの影響がうすれて、続いて起る放電よりも
放電開始電圧が高くなる。したがって各半サイクル毎に
も過電圧が必要となる。この過電圧さげることにより、
電源電圧が低くても安定した放電を実現しようとするの
がこの発明の主旨である。
A silent discharge is an alternating current discharge that occurs through a dielectric, and when the voltage in the discharge space increases as the power supply voltage increases and reaches a discharge start voltage, a discharge occurs. When a discharge occurs, charges are deposited on the dielectric surface, the voltage in the discharge space decreases, and the discharge disappears. When the voltage in the discharge space reaches the discharge starting voltage due to an increase in the power supply voltage, a discharge occurs, and the discharge repeats several times during a half cycle of the AC power supply, and in the next half cycle, a discharge of opposite polarity occurs. is repeated in the same way. When the discharge is repeated, the influence of the previous discharge remains, and the discharge start voltage remains constant at a point lower than the voltage at which the voltage rises for the first time and the discharge starts (first discharge start voltage). but,
An overvoltage is required for discharge to begin when the voltage initially rises. Furthermore, in the case of laser excitation, since there is a high-speed airflow in the discharge space, the influence of the previous half cycle is also diminished in the first discharge of each half cycle, and the discharge starting voltage is higher than that of the subsequent discharge. Therefore, an overvoltage is also required for each half cycle. By reducing this overvoltage,
The gist of this invention is to achieve stable discharge even when the power supply voltage is low.

第3図A,Bはこの発明の一実施例である。FIGS. 3A and 3B show an embodiment of the present invention.

この図において、第2図の従釆と同一部分は同一番号を
付してその説明を省略するが、ここでは接地金属噂極1
と高電圧金属電圧2の放電面を傾斜させるととにより、
放電空間4っまり放電空隙長がガス流の上流側から下流
側に向って大きくなっている。ところで、放電空隙によ
り印加電圧(電源電圧)と単位電極面積当りの放電電力
の関係がどのように変化するかを示したものが第4図で
ある。
In this figure, parts that are the same as the subordinates in Figure 2 are given the same numbers and their explanations are omitted;
and by tilting the discharge surface of the high voltage metal voltage 2,
The discharge gap length increases from the upstream side to the downstream side of the gas flow. By the way, FIG. 4 shows how the relationship between the applied voltage (power supply voltage) and the discharge power per unit electrode area changes depending on the discharge gap.

そして、今たとえば第4図の4・放電空隙aが第3図の
ガス流の上流側にあたる最も小さい放電空隙長に相当し
、大放電空隙bが第3図のガス流の下流側にあたる最も
大きい放電空隙長に相当するとすると、小放電空隙は印
加電圧の低い所で放電が起るが、印加電圧の上昇による
放電電力増加の割合は小さい。したがって、小放電空隙
部を設けると小放電空隙部より放電が始まるので大放電
空隙部が過電圧になることがなく、また小放電空隙部よ
り大放電空隙部に多くの放電電力を投入することが可能
となる。また、レーザ共振空間は第3図Bに破線円で示
すように小放電空隙部を含んでいないが、小放電空隙部
で励起された分子はガス流により寿命内で共振空間内に
運ばれるのでレーザ発振に有効に利用される。このよう
に、上記ガスレーザ装置によれば、放電空隙長を変化さ
せ、ガス流の下流側の放電空隙長を大きくし、そこにレ
ーザ共振空間を設けることによって低い電源電圧で安定
な放電を行い、有効なしーザ発振が可能となるもので、
レーザ共振空間(光路径)が大きい場合にも比較的低い
電源電圧で安定な放電、安定なし−ザ出力が得られるよ
うになる。
Now, for example, 4-discharge gap a in Figure 4 corresponds to the smallest discharge gap length on the upstream side of the gas flow in Figure 3, and large discharge gap b corresponds to the largest length on the downstream side of the gas flow in Figure 3. Assuming that it corresponds to the discharge gap length, discharge occurs in a small discharge gap where the applied voltage is low, but the rate of increase in discharge power due to an increase in the applied voltage is small. Therefore, if a small discharge gap is provided, discharge starts from the small discharge gap, so the large discharge gap does not become overvoltage, and more discharge power can be input to the large discharge gap than to the small discharge gap. It becomes possible. Furthermore, although the laser resonant space does not include a small discharge gap as shown by the dashed circle in Figure 3B, molecules excited in the small discharge gap are carried into the resonant space by the gas flow within its lifetime. Effectively used for laser oscillation. As described above, according to the gas laser device, stable discharge is performed at a low power supply voltage by changing the discharge gap length, increasing the discharge gap length on the downstream side of the gas flow, and providing a laser resonance space there. It enables effective laser oscillation.
Even when the laser resonance space (optical path diameter) is large, stable discharge and stable laser output can be obtained with a relatively low power supply voltage.

なお、上記実施例では・愛寵金属電風と高電圧金属電極
2ともに放電面に傾斜をもたせているが、一方は平坦で
もよく、また形も第3図のものに限らないことはいうま
でもない。
In the above embodiment, the discharge surface of both the beloved metal electric wind and the high voltage metal electrode 2 is sloped, but it goes without saying that one of them may be flat, and the shape is not limited to that shown in FIG. Nor.

以上詳述したように、この発明によれば、非常に大なる
効果を有するガスレーザ装置を提供できる。
As detailed above, according to the present invention, it is possible to provide a gas laser device having very great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガスレーザ装置として横励起形C02レ
ーザを示す構成原理図、第2図は上託しーザの放電極の
拡大図で、Aは縦断面図、Bは横断面図、第3図はこの
発明によるガスレーザ装置の−実施例を説明するための
図で、Aは縦断面図、Bは横断面図、第4図は無声放電
の印加電圧と単位電極面積当りの放電電力の関係を放電
空隙をパラメータとして示す図である。 1・・・・・・接地金属電極、2・・・・・・高電圧金
属電極、4・・・・・・放電空間。 なお、図中同一符号は同一または相当部分を示す。第1
図 第2図 第3図 第4図
Fig. 1 is a configuration principle diagram showing a horizontally pumped C02 laser as a conventional gas laser device, Fig. 2 is an enlarged view of the discharge electrode of the laser laser, A is a longitudinal sectional view, B is a horizontal sectional view, and 3 The figures are diagrams for explaining an embodiment of the gas laser device according to the present invention, where A is a longitudinal cross-sectional view, B is a cross-sectional view, and Fig. 4 is the relationship between the applied voltage of silent discharge and the discharge power per unit electrode area. FIG. 3 is a diagram showing the discharge gap as a parameter. 1... Ground metal electrode, 2... High voltage metal electrode, 4... Discharge space. Note that the same reference numerals in the figures indicate the same or corresponding parts. 1st
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 横励起形無声放電式ガスレーザ装置において、高電
圧金属電極と接地金属電極との間の放電空隙長が、ガス
流の上流側から下流側に向かつて大きくなり、レーザ共
振空間が電極の中心よりガス流の下流側にずれているこ
とを特徴とするガスレーザ装置。
1 In a horizontally pumped silent discharge gas laser device, the discharge gap length between the high-voltage metal electrode and the ground metal electrode increases from the upstream side to the downstream side of the gas flow, and the laser resonance space is closer to the center of the electrode than the center of the electrode. A gas laser device characterized by being shifted to the downstream side of a gas flow.
JP9018777A 1977-07-26 1977-07-26 gas laser equipment Expired JPS6026311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9018777A JPS6026311B2 (en) 1977-07-26 1977-07-26 gas laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9018777A JPS6026311B2 (en) 1977-07-26 1977-07-26 gas laser equipment

Publications (2)

Publication Number Publication Date
JPS5424593A JPS5424593A (en) 1979-02-23
JPS6026311B2 true JPS6026311B2 (en) 1985-06-22

Family

ID=13991477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9018777A Expired JPS6026311B2 (en) 1977-07-26 1977-07-26 gas laser equipment

Country Status (1)

Country Link
JP (1) JPS6026311B2 (en)

Also Published As

Publication number Publication date
JPS5424593A (en) 1979-02-23

Similar Documents

Publication Publication Date Title
JPS637038B2 (en)
JPS6026310B2 (en) gas laser equipment
JPS603170A (en) Silent discharge type gas laser device
JP2002502548A (en) Ultrasonic and subsonic lasers with RF discharge excitation
JPS639393B2 (en)
JPS6037189A (en) Silent discharge exciting coaxial type laser oscillator
JPS6026311B2 (en) gas laser equipment
JPH0234196B2 (en) GASUREEZASOCHI
JPH0225267B2 (en)
JPS60178681A (en) Gas laser device
JP2640345B2 (en) Gas laser oscillation device
JPS6310916B2 (en)
JPS6190481A (en) Pulse laser oscillator
JP2004186310A (en) Corona preionization method and device for gas laser
JPS631086A (en) Gas laser oscillator
JPH02281671A (en) Gas laser oscillation device
JPH01214184A (en) Pulse laser oscillation device
JPS5917871B2 (en) gas laser equipment
Baltog et al. Thermal stabilization of the discharge in a nitrogen laser
JPS6218781A (en) Laser oscillator
JPS5851581A (en) Lateral excitation type gas laser
JPS6339113B2 (en)
JPH01214180A (en) Pulse laser oscillating device
JPS6035836B2 (en) gas laser equipment
JPS5932185A (en) Silent discharge type gas laser device