JPS593073A - Sialon base sintered material for cutting tool and antiabrasive tool - Google Patents

Sialon base sintered material for cutting tool and antiabrasive tool

Info

Publication number
JPS593073A
JPS593073A JP57111349A JP11134982A JPS593073A JP S593073 A JPS593073 A JP S593073A JP 57111349 A JP57111349 A JP 57111349A JP 11134982 A JP11134982 A JP 11134982A JP S593073 A JPS593073 A JP S593073A
Authority
JP
Japan
Prior art keywords
sialon
sintered material
cutting
tool
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57111349A
Other languages
Japanese (ja)
Other versions
JPS6215505B2 (en
Inventor
賢一 西垣
安在 克章
照義 棚瀬
杉澤 泰次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57111349A priority Critical patent/JPS593073A/en
Publication of JPS593073A publication Critical patent/JPS593073A/en
Publication of JPS6215505B2 publication Critical patent/JPS6215505B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、特に切削工具および耐摩耗工具として使用
した場合にすぐれた耐摩耗性を示す高強度サイアロン基
焼結材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to high strength sialon-based sintered materials that exhibit excellent wear resistance, particularly when used as cutting tools and wear-resistant tools.

窒化ケイ素と酸化アルミニウムとの固溶体はサイアロン
と呼ばれており、高温領域までの熱的安定性、耐酸化性
、および耐熱衝撃性が良好なため、エンジニアリングセ
ラミックス関係をはじめ、耐摩耗性部品、耐食性部品、
あるいは切削工具をはじめとする各種工具材として有望
な材料の1つとされているが、極めて難焼結性材料であ
ることが直接の用途に結び付ける上での大きな障害とな
っていた。
A solid solution of silicon nitride and aluminum oxide is called Sialon, and it has good thermal stability, oxidation resistance, and thermal shock resistance up to high temperatures, so it is used in engineering ceramics, wear-resistant parts, and corrosion-resistant parts. parts,
Although it is considered to be one of the promising materials for various tool materials including cutting tools, the fact that it is an extremely difficult-to-sinter material has been a major obstacle in putting it into direct use.

ところが、最近に至って、酸化イツトリウム(以下、Y
2O3で示す)が上記サイアロンに対するすぐれた焼結
助剤として作用することが発見され、該サイアロンを主
成分とし、これに焼結促進成分としてY* Osを0.
2〜10%(以下、%は重量基準として示す)添加含有
させて焼結したサイアロン基焼結材料は、高温領域まで
熱的安定性を有し、かつすぐれた耐酸化性および耐熱衝
撃性をも具備していることがわかり、この材料を切削工
具や耐摩耗工具などとして用いる試みがなされ、すでに
−部市販もなされている。
However, recently, yttrium oxide (hereinafter referred to as Y
2O3) was found to act as an excellent sintering aid for the above-mentioned sialon, and the sialon was used as the main component, and Y*Os was added as a sintering accelerating component in an amount of 0.
Sialon-based sintered materials sintered with 2 to 10% (hereinafter % is expressed on a weight basis) have thermal stability up to high temperature ranges and excellent oxidation resistance and thermal shock resistance. Attempts have been made to use this material as cutting tools, wear-resistant tools, etc., and some are already commercially available.

しかし、上記従来サイアロン基焼結材料においては、こ
れを、例えば切削工具として鋳鉄系材料の高速切削に用
いた場合、従来広く使用されているA7!!Om基セラ
ミックに比して耐熱衝撃性にすぐれているうえ、刃先に
加わる熱および負荷が鋼切削の場合に比して少ないので
湿式切削を可能とし、作業環境の改善や切屑処理等の面
で好ましい結果が得られるようであるが、被剛材が鋼で
ある場合には、熱発生の原因となる切削抵抗が大きくな
るばかりでなく、溶着、拡散が著しくなり、被削材中の
Feとサイアロン基焼結材料の構成成分であるSiとの
化学的親和力が強いことと相まって、刃先の剥離が生じ
やすく、摩耗進行が速いという問題点を有していた。
However, when using the conventional sialon-based sintered material as a cutting tool for high-speed cutting of cast iron materials, A7! ! It has superior thermal shock resistance compared to Om-based ceramics, and the heat and load applied to the cutting edge are lower than when cutting steel, making wet cutting possible, improving the working environment and chip disposal. It seems that favorable results can be obtained, but when the workpiece is steel, not only does the cutting force that causes heat generation increase, but also the welding and diffusion become significant, and the Fe and Fe in the workpiece become large. Coupled with the strong chemical affinity with Si, which is a component of the sialon-based sintered material, this has led to problems in that the cutting edge tends to peel off and wear progresses quickly.

本発明者等は、上述のような観点から、高温領域まで熱
的に安定し、かつすぐれた耐酸化性および耐熱衝撃性を
もつが、例えば鋼の切削に切削工具として使用した場合
、摩耗が著しく実用に供し得ない上記従来サイアロン基
焼結材料に着目し、これくすぐれた耐卑耗性を付与する
とともに、その靭性をより向上させることを目ざして研
究を行なった結果= YtOsを含む前記従来サイアロ
ン基焼結材料に1酸化ゾルコニウム(以下、 ZrO,
で示す)と窒化チタン(以下、TiNで示す)とを共に
して、その適量を添加含有せしめると、サイアロ/の特
性を損なうむとなく靭性並びに耐摩耗性が著しく向上す
るようになるとの知見を得たのである。
From the above-mentioned viewpoints, the present inventors have discovered that although it is thermally stable up to high temperature ranges and has excellent oxidation resistance and thermal shock resistance, when used as a cutting tool for cutting steel, for example, it suffers from wear. Focusing on the above conventional sialon-based sintered material, which is extremely impractical, we conducted research with the aim of imparting it with excellent wear resistance and further improving its toughness = The above conventional sialon-based sintered material containing YtOs Zorconium monoxide (hereinafter referred to as ZrO) is added to the sialon-based sintered material.
It has been discovered that when appropriate amounts of titanium nitride (hereinafter referred to as TiN) are added together, the toughness and wear resistance can be significantly improved without impairing the properties of SIALO/. I got it.

これは、 Zr01が1000℃前後で変態を伴なうた
めに、焼結からの冷却過程においてZr01粒子周辺に
極めて微細なマイクロクラックを発生し、これが外部応
力の吸収作用をなして耐衝撃を著しく向上させるととも
に%Feとの親和性の少ないTiNが焼結材料中に分散
して耐溶着性の向上、ひいては耐摩耗性の向上に寄与す
るためであると推定される。
This is because Zr01 undergoes transformation at around 1000°C, so extremely fine microcracks are generated around the Zr01 particles during the cooling process from sintering, which absorbs external stress and significantly reduces impact resistance. It is presumed that this is because TiN, which has a low affinity with %Fe, is dispersed in the sintered material and contributes to an improvement in welding resistance and, in turn, to an improvement in wear resistance.

そして、添加するTiNはサイアロン粒子間に独立して
分散するので、一般にはサイアロン粒子同士の結合が弱
まって焼結材料の靭性を劣化させ勝ちであるが、ZrO
2と共存させると、TiとZrとが同族元素であるとい
うこともあって、 TiN粒子の表面層K ZrO,の
02 の1部が拡散し、TiNの極く表面層のみTiN
0 の形を作ると考えられ、この表面に酸素が入ったT
iN0とサイアロン粒子とが強い結合力を有することか
ら、むしろ靭性を向上するという結果を示すのである。
Since the added TiN is independently dispersed between the sialon particles, it tends to weaken the bonds between the sialon particles and deteriorate the toughness of the sintered material, but ZrO
When TiN coexists with ZrO, a part of the 02 of the surface layer KZrO of the TiN particles diffuses, partly because Ti and Zr are homologous elements, and only the very surface layer of TiN becomes TiN.
It is thought to form a T shape with oxygen on its surface.
Since iN0 and sialon particles have a strong bonding force, the result shows that the toughness is improved.

この発明は、上記知見に基づいてなされたものであって
、サイアロン基焼結材料を。
This invention was made based on the above findings, and uses a sialon-based sintered material.

Y2O,: 0.2〜10チ、 Zr0t : 0−5〜10 % * TiN : 10〜30チ。Y2O,: 0.2~10chi, Zr0t: 0-5~10% * TiN: 10 to 30 inches.

を含有し、 サイアロンおよび不可避不純物:残シ、から成る組成と
して、切削工具および耐摩耗工具用に供することに特徴
を有するものである。
It is characterized in that it is used for cutting tools and wear-resistant tools as it has a composition consisting of Sialon and unavoidable impurities: residue.

つぎに、この発明の焼結材料において、成分組成範囲を
上記の通りに限定した理由を説明する。
Next, in the sintered material of the present invention, the reason why the component composition range is limited as described above will be explained.

111)  Y、03 Y、0.成分KVi、焼結時にイツトリウムケイ酸塩質
の液相を形成して焼結体の緻密化を促進するという焼結
助剤としての作用と、 1850℃以上の高融点を有す
るメリライト型化合物(SisN4・Y*(h)の結晶
相な粒界に析出させて焼結材料の高温強度を向上させる
作用があるが、その含有量が0.2%未満では前記作用
に所望の効果が得られず、一方10%を越えて含有させ
ると、サイアロンによってもたらされる特性、特に耐熱
衝撃抵抗性及び耐摩耗性を十分に発揮することができな
くなることから、その含有量を0.2〜10%と足めた
111) Y, 03 Y, 0. The component KVi acts as a sintering aid by forming a yttrium silicate liquid phase during sintering to promote the densification of the sintered body, and is a melilite type compound (with a high melting point of 1850°C or higher). SisN4.Y*(h) has the effect of precipitating at grain boundaries in the crystalline phase to improve the high temperature strength of the sintered material, but if its content is less than 0.2%, the desired effect cannot be obtained. On the other hand, if the content exceeds 10%, the properties provided by Sialon, especially thermal shock resistance and abrasion resistance, cannot be fully exhibited, so the content should be set at 0.2 to 10%. I got enough.

(bl  Z r 0x ZrO鵞成分唸、焼結材料組織内に微細に分散し、焼結
の冷却過程における約1000℃付近て変態して該粒子
周辺に微細なりラック場を形成し、応力吸収をなすとい
う作用を有するうえ、TiN粒子とサイアロン粒子間の
結合力を同上し、結果として焼結材料の靭性全改善する
効果を奏するものであるが、その含有量が0.5%未満
では上記作用に所望の効果が得られず、一方10%を越
えて含有すると変態に伴なうクラック場が多くなりすぎ
(bl Z r 0x ZrO solid component is finely dispersed in the sintered material structure, transforms around about 1000℃ during the cooling process of sintering, forms a fine rack field around the particles, and absorbs stress. In addition, it has the effect of increasing the bonding force between TiN particles and SiAlON particles, and as a result, it has the effect of completely improving the toughness of the sintered material, but if its content is less than 0.5%, the above effect will not occur. On the other hand, if the content exceeds 10%, there will be too many crack fields due to transformation.

かえって靭性低下を来たすようになることから、その含
有量を0.5〜10%′と定めた。
The content was set at 0.5 to 10%' since it would actually cause a decrease in toughness.

なお、ZrOx  は、焼結材料中に1゜0μm以下の
粒子で残存させるのが好ましい。
Note that it is preferable that ZrOx remain in the sintered material in the form of particles of 1°0 μm or less.

tel  TiN TiN成分は、焼結材料中に独立した粒子として存在し
、サイアロン粒子の粒成長抑制効果を有するとともに、
鋼切削時の耐溶着性を改善する作用を有するものである
が、その含有量が10%未満では前記作用に所望の効果
が得られず、一方30%を越えて含有させると焼結性が
低下して靭性劣化を招くようになるので、その含有量を
10〜30%と足めた。
tel TiN The TiN component exists as independent particles in the sintered material and has the effect of suppressing grain growth of sialon particles, and
It has the effect of improving the welding resistance during steel cutting, but if the content is less than 10%, the desired effect cannot be obtained, while if the content exceeds 30%, the sinterability will be reduced. Since the content decreases and causes deterioration of toughness, the content was increased to 10 to 30%.

なお、TiNtiNt置換してC−4’0を比較的多く
固溶し得る化合物であるが、その製造工程玉入るC+O
を固溶した、いわゆるTiNC、TiN0あるいはTi
NC0等の化合物彩飾のものをTiN成分に置き換えて
も、同様の効果を得ることができるものである。
It should be noted that this is a compound that can dissolve a relatively large amount of C-4'0 as a solid solution by substituting TiNtiNt.
So-called TiNC, TiN0 or Ti
Even if the compound decoration such as NC0 is replaced with a TiN component, the same effect can be obtained.

tた、Z r Ox  と同様、TtNも焼結材料中に
1.0μm以下の粒子で残存させるのが好ましい。
Similarly to Z r Ox , TtN is also preferably left in the sintered material in the form of particles of 1.0 μm or less.

この発明の焼結材料は、通常の粉末冶金法に従つて、所
望のサイアロン組成に相当するS i s Na、AI
N  およびAl*Osの混合粉末に、Y鵞Os @ 
Z r UsおよびTiNの各粉末を配合し、混合・成
形後焼結して製造することができるが、特に以下に示す
方法で製造するのが好ましい。すなわち、一旦、所望の
サイアロン組成に相当する5isN41AINおよびA
lgosの各粉末を混合後、100Kf/aJ  程度
の加圧力で圧粉体としたものをアルミナ管に入れ、窒素
雰囲気中、温度: 1400〜1500Cの範囲内の所
定温度に1〜10時間保持して拡散固溶させたものをQ
l)出して粉砕し、これにさらにY鵞Os。
The sintered material of the present invention is prepared according to conventional powder metallurgy methods to obtain S i s Na, AI, corresponding to the desired sialon composition.
Into the mixed powder of N and Al*Os,
Although it can be manufactured by blending each powder of Z r Us and TiN, mixing, molding, and sintering, it is particularly preferable to manufacture by the method shown below. That is, once 5isN41AIN and A corresponding to the desired sialon composition are
After mixing the lgos powders, the compacted powder was put into an alumina tube under a pressure of about 100 Kf/aJ, and kept at a predetermined temperature within the range of 1400 to 1500 C for 1 to 10 hours in a nitrogen atmosphere. Q
l) Take out and crush, and add Yen Os to this.

ZrOx bよびTiN  の各粉末を添加して十分に
混合し、これを1〜1.5t/−の圧力で加圧成形後、
再び、窒素雰囲気中、温度: 1700〜1800Cの
範囲内の所定温度で常圧焼結するか、あるiはホットプ
レスすることによって製造するのが好ましい。また、必
要に応じて、この焼結体を、さらに窒素雰囲気中または
アルゴン雰囲気中にて熱間静水圧プレスCHIP)すれ
ば、中心部までより緻密化した良好な焼結体を得ること
ができる。
ZrOx b and TiN powders were added and mixed thoroughly, and after pressure molding at a pressure of 1 to 1.5 t/-,
Again, it is preferable to manufacture by normal pressure sintering at a predetermined temperature within the range of 1700 to 1800 C in a nitrogen atmosphere, or by hot pressing. In addition, if necessary, this sintered body may be further subjected to hot isostatic pressing (CHIP) in a nitrogen atmosphere or an argon atmosphere to obtain a good sintered body that is more dense up to the center. .

また、いわゆるサイアロン固溶体(Sis−1AlzO
zNB−z)は、そのZ値で0〜5tでの広い範囲にわ
たって存在し、その値によって特性が一部変化するもの
であるが、この発明の焼結材料はS i s N4の持
つ耐熱衝撃特性とサイアロンの持つ耐酸化性を生かして
工具用としての特性を具備させた点にも大きな特徴を有
するものであって、Z値が0を越えることは必要である
が、3f:越えると、相対的にAlおよび0の黴が多く
なりすぎて、抗折力、耐摩耗性ともに低下し、さらにS
 i s N4の持つ耐熱衝撃値が生かせないようにな
るため好ましくはない。
In addition, so-called sialon solid solution (Sis-1AlzO
ZNB-z) exists over a wide range of Z values from 0 to 5t, and its properties partially change depending on the Z value, but the sintered material of this invention has the thermal shock resistance of Sis N4. It also has a major feature in that it has properties for tools by taking advantage of the characteristics and oxidation resistance of Sialon, and although it is necessary for the Z value to exceed 0, if it exceeds 3f: Relatively large amounts of Al and 0 molds reduce both transverse rupture strength and abrasion resistance, and furthermore, S
This is not preferable because the thermal shock resistance value of i s N4 cannot be utilized.

つぎに、この発明の焼結材料を実施例により具体的に説
明する。
Next, the sintered material of the present invention will be specifically explained with reference to Examples.

実施例 まず、原料粉末として、いずれも市販の平均粒径: 0
.611mを有する5isN4粉宋、同0.4μmのA
l5Oj粉宋、および同1.2μmのAlN  粉末を
用いて、第1表に示j’z値を有する5ie−zAJz
OzNe−z (サイアロン)になるように各粉末を配
合し、湿式ボールミルにて混合し、乾燥した後、100
に9/−の圧力にて圧粉体に成形し、窒素雰囲気中、温
度:1450Cで5時間反応させた。この反応粉は容易
に粉砕できるので、−60メツシユに粉砕した。
Example First, as raw material powder, commercially available average particle size: 0
.. 5isN4 powder Song with 611m, same 0.4μm A
Using 15Oj powder Song and the same 1.2 μm AlN powder, 5ie-zAJz having the j'z values shown in Table 1
Blend each powder so that it becomes OzNe-z (Sialon), mix it in a wet ball mill, dry it, and then
The mixture was molded into a powder compact under a pressure of 9/-, and reacted in a nitrogen atmosphere at a temperature of 1450C for 5 hours. Since this reaction powder can be easily pulverized, it was pulverized to -60 mesh.

つぎに、この粉末に、粒径が0.6μmのY鵞Os粉末
、同0.3μmの粉末、および同0.8μmのTiN 
粉末を。
Next, this powder was added with a Y-Os powder with a particle size of 0.6 μm, a powder with a particle size of 0.3 μm, and a TiN powder with a particle size of 0.8 μm.
powder.

第1表に示す組成に配合し、湿式ボールミルにて混合し
、乾燥した後、it/−の圧力にて圧粉体に成形し、こ
の圧粉体を魚船型内に上下を窒化ホウ累粉末でザンドイ
ツチにした状態で挿入し、窒素雰囲気中、温度:175
0tl:に1時間保持のホットプレスを行ない、実質的
に配合組成と同一の成分組成をもった本発明焼結材料1
〜16、および従来焼結材料あるいは成分組成範囲が本
発明の範囲から外れた比較材17〜27全それぞれ製造
した。
The composition shown in Table 1 was blended, mixed in a wet ball mill, dried, and then molded into a green compact at a pressure of 1/-. Insert it in a sanderch state and heat it in a nitrogen atmosphere at a temperature of 175.
The sintered material 1 of the present invention was hot-pressed for 1 hour at 0 tl and had substantially the same composition as the blended composition.
- 16, and comparative materials 17 to 27 whose conventional sintered materials or component composition ranges were outside the scope of the present invention were manufactured.

ついで、この結果得られた各種の焼結材料の密度、硬さ
くロックウェル硬さAスケール)、および抗折力を測定
すると共に、これより切削用チップを切り出し、被削材
: SNCM−8(硬さ:HB270) 、切込速度:
 300sn/i、送り: 0.211B/rev。
Next, the density, hardness (Rockwell hardness A scale), and transverse rupture strength of the various sintered materials obtained as a result were measured, and cutting chips were cut from the materials to obtain a workpiece material of SNCM-8 ( Hardness: HB270), Cutting speed:
300sn/i, feed: 0.211B/rev.

切込み:1.5111、切削時間2mvの条件で銅の高
速切削試験を行ない、フランク摩耗幅(切刃の逃げ面摩
耗@:Vi)を測定した。これらの測定結果を第1表に
併せて示した。
A high-speed copper cutting test was conducted under the conditions of depth of cut: 1.5111 and cutting time of 2 mV, and flank wear width (flank wear of the cutting edge @: Vi) was measured. These measurement results are also shown in Table 1.

@1表に示される結果から、本発明焼結材料1〜16は
、いずれも、従来焼結材料あるいは成分組成範囲が本発
明のa囲から外れた比較材17〜27に比して高靭性お
よび高硬度を有し、かつ切削工具として使用した場合に
はすぐれた耐摩耗性を示すことが明らかである。
From the results shown in Table @1, all of the sintered materials 1 to 16 of the present invention have higher toughness than conventional sintered materials or comparative materials 17 to 27 whose component composition range is outside the range a of the present invention. It is clear that it has high hardness and excellent wear resistance when used as a cutting tool.

上述のように、この発明の焼結月料は、特にすぐれた靭
性と耐摩耗性を備え、かつ高温強度、耐酸化性、および
耐熱衝撃性にすぐれ、さらに高温領域まで熱的に安定し
た性質をもつので、これらの特性が要求される切削工具
や、軸受および巌引ダイスなどの耐摩耗工具として使用
した場合に長期にわたってすぐれた性能を発揮、するの
である。
As mentioned above, the sintered material of the present invention has particularly excellent toughness and wear resistance, and has excellent high-temperature strength, oxidation resistance, and thermal shock resistance, and also has properties that are thermally stable even in high-temperature ranges. Therefore, when used as cutting tools that require these characteristics, or as wear-resistant tools such as bearings and rolling dies, they exhibit excellent performance over a long period of time.

出願人  三菱金属株式会社 代理人  富  1) 和  夫Applicant: Mitsubishi Metals Corporation Agent Tomi 1) Kazuo

Claims (1)

【特許請求の範囲】 酸化イットリウム二0.2〜10%。 酸化ジルコニウム二0.5〜10%、 窒化チタン=10〜30%、 を含有し、 サイアロンおよび不可避不純物:残り、(以上重置%)
から成る組成を有することを特徴とする切削工具および
耐摩耗工具用サイアロン基焼結材料。
[Claims] 0.2 to 10% yttrium oxide. Contains 0.5 to 10% of zirconium oxide, 10 to 30% of titanium nitride, and the remainder of sialon and unavoidable impurities (overlapping %)
A sialon-based sintered material for cutting tools and wear-resistant tools, characterized by having a composition consisting of:
JP57111349A 1982-06-28 1982-06-28 Sialon base sintered material for cutting tool and antiabrasive tool Granted JPS593073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111349A JPS593073A (en) 1982-06-28 1982-06-28 Sialon base sintered material for cutting tool and antiabrasive tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111349A JPS593073A (en) 1982-06-28 1982-06-28 Sialon base sintered material for cutting tool and antiabrasive tool

Publications (2)

Publication Number Publication Date
JPS593073A true JPS593073A (en) 1984-01-09
JPS6215505B2 JPS6215505B2 (en) 1987-04-08

Family

ID=14558935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111349A Granted JPS593073A (en) 1982-06-28 1982-06-28 Sialon base sintered material for cutting tool and antiabrasive tool

Country Status (1)

Country Link
JP (1) JPS593073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000588A1 (en) * 1983-07-27 1985-02-14 Hitachi, Ltd. Heat impact-resistant ceramic structure
DE3990082T1 (en) * 1988-01-28 1990-01-11 Hitachi Metals Ltd SINTER BODY FROM CONDUCTIVE SIALON AND A HEATING ELEMENT MADE OF IT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990013525A1 (en) * 1989-04-28 1990-11-15 Nihon Cement Co., Ltd. PROCESS FOR PRODUCING β-SIALON SINTER

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000588A1 (en) * 1983-07-27 1985-02-14 Hitachi, Ltd. Heat impact-resistant ceramic structure
US4705761A (en) * 1983-07-27 1987-11-10 Hitachi, Ltd. Ceramic structure having thermal shock resistance
DE3990082T1 (en) * 1988-01-28 1990-01-11 Hitachi Metals Ltd SINTER BODY FROM CONDUCTIVE SIALON AND A HEATING ELEMENT MADE OF IT

Also Published As

Publication number Publication date
JPS6215505B2 (en) 1987-04-08

Similar Documents

Publication Publication Date Title
WO1990009969A1 (en) Alumina ceramic, production thereof, and throwaway tip made therefrom
JPS59199579A (en) Abrasion resistant sialon base ceramics
JPS58185477A (en) High speed cutting ceramic for cutting tool
JPS59199581A (en) Abrasion resistant sialon base ceramics
JPS59102865A (en) Manufacture of ceramic cutting tool
JPH06298573A (en) Ceramic cutting tool material
JPS61146762A (en) Antiabrasive silicon nitride base product
US6133182A (en) Alumina base ceramic sintered body and its manufacturing method
JPS593073A (en) Sialon base sintered material for cutting tool and antiabrasive tool
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JPS5874585A (en) Surface clad silicon nitride base sintered member for high speed cutting
JPS59232971A (en) Abrasion resistant sialon base ceramics
JPH01122971A (en) Cubic boron nitride sintered product
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPS6389471A (en) Ceramic material for cutting tool
JPS6215504B2 (en)
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JPS6241193B2 (en)
JPS6337075B2 (en)
JPS598670A (en) High tenacity silicon nitride base sintered body
JPS6246513B2 (en)
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JPS59232970A (en) Abrasion resistant sialon base ceramics
JPS6257598B2 (en)