JPH01122971A - Cubic boron nitride sintered product - Google Patents

Cubic boron nitride sintered product

Info

Publication number
JPH01122971A
JPH01122971A JP62279626A JP27962687A JPH01122971A JP H01122971 A JPH01122971 A JP H01122971A JP 62279626 A JP62279626 A JP 62279626A JP 27962687 A JP27962687 A JP 27962687A JP H01122971 A JPH01122971 A JP H01122971A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
sintered body
vol
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62279626A
Other languages
Japanese (ja)
Other versions
JPH0742170B2 (en
Inventor
Yoshiyuki Uchiumi
義之 内海
Ryo Yamaya
山家 菱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP62279626A priority Critical patent/JPH0742170B2/en
Publication of JPH01122971A publication Critical patent/JPH01122971A/en
Publication of JPH0742170B2 publication Critical patent/JPH0742170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the above sintered product which is used as a cutting tool, because of its high abrasion resistance and high resistance to breaking-off, by combining cubic BN, AlN, AlB2, metal or alloy of Co and/or Ni as major components, a rare earth metal compound and a metal compound of high melting point and calcining the mixture. CONSTITUTION:Starting materials corresponding to 10-80vol.% of cubic BN of less than 15mu average particle size; 3-20vol.% of AlN, 1-5vol.% of AlB2 and/or AlB12; 1-5vol.% of TiB2; 0.5-5vol.% of a rare earth metal compound mainly containing oxides and nitrides of Y and Yb, and their mutual solid solution, 0.1-2vol.% of metal or its alloy mainly containing Co and/or Ni; 7.5-80vol.% of Al2O3 of less than 1.0mu average particle size in an amount corresponding to (0.5-0.956)/(0.5-0.044) volume ratio of Al2O3/the high melting metallic compound; and 3.75-40vol.% of high melting point metallic compound which is composed of at least one selected from carbides and nitrides of Ti, Zr, Hf, At, Nb or V, carbides of W and a solid solution containing the same, are mixed, crushed, formed, then sintered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ドリル、フライス工具又は旋削工具などに用
いる切削工具用材料、もしくはスリッター、ダイスなど
の耐摩耗工具用材料として適するq方晶窒化ホウ素基焼
結体に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a q-gonal nitrided material suitable as a material for cutting tools used in drills, milling tools, turning tools, etc., or materials for wear-resistant tools such as slitters and dies. This invention relates to a boron-based sintered body.

(従来の技術) 1′L方品窒化ホウ素は、ダイヤモンドに次いで高硬度
であり、しかもダイヤモンドが鉄との親和性に高いとい
う短所をイfするのに対し、鉄との親和性に低いという
長所を有している。このことからq方晶窒化ホウ素に結
合相を加えてなる立方晶窒化ホウ素基焼結体が主として
鉄系材料を加工する工具材料の1つとして実用化されて
いる。
(Prior art) Boron nitride has the second highest hardness after diamond, and while diamond has a disadvantage of having a high affinity for iron, it has a low affinity for iron. It has its advantages. For this reason, a cubic boron nitride-based sintered body made by adding a binder phase to q-gonal boron nitride has been put into practical use as one of the tool materials for machining mainly iron-based materials.

1γ方品窒化ホウ素基焼結体を結合相成分で大別すると
、第1に結合相が金属又は合金からなる、所謂金属系結
合相と、第2に結合相がセラミックスと金属又は合金と
からなる、所謂サーメット系結合相と、第3に結合相が
セラミックスのみからなる、所謂セラミックス系結合相
とがある。この内、第1の金属系結合相からなる立方晶
窒化ホウ素基焼結体は、高温にさらされるような条件下
では結合相の軟化が生じて耐摩耗性を著しく低下させる
という問題がある。この金属系結合相における問題点を
解決したものに第3のセラミックス系結合相からなる立
方晶窒化ホウ素基焼結体がある。このセラミックス系結
合相からなる立方晶窒化ホウ素基焼結体は、高温におけ
る結合相の耐軟化性に対しては著しくすぐれるようにな
ったけれども、衝撃の加わるような用途に用いるとチッ
ピング又は欠損して短寿命になるという問題がある。こ
の第1の結合相と第3の結合相との両者の長所を有する
結合相を目的としたものに第2のサーメット系結合相か
らなる立方晶窒化ホウ素基焼結体がある。
The 1γ type boron nitride-based sintered bodies can be roughly divided into binder phase components: firstly, there are so-called metal-based binders in which the binder phase is made of metal or alloy, and secondly, there are so-called metal-based binders in which the binder phase is made of ceramic and metal or alloy. The third type is the so-called cermet-based bonding phase, and the third type is the so-called ceramic-based bonding phase, in which the bonding phase is made only of ceramics. Among these, the cubic boron nitride-based sintered body consisting of the first metal-based binder phase has a problem in that the binder phase softens under conditions where it is exposed to high temperatures, resulting in a significant decrease in wear resistance. A cubic boron nitride-based sintered body consisting of a third ceramic-based binder phase has been developed to solve this problem with the metal-based binder phase. Although this cubic boron nitride-based sintered body consisting of a ceramic binder phase has achieved remarkable resistance to softening of the binder phase at high temperatures, it may chip or break when used in applications where impact is applied. The problem is that the lifespan is shortened. A cubic boron nitride-based sintered body comprising a second cermet-based binder phase is intended to be a binder phase that has the advantages of both the first binder phase and the third binder phase.

このサーメット系結合相からなる立方晶窒化ホウ素基焼
結体の代表的なものとしては、特公昭57−49621
号公報及び特開昭56− +3o4s+弓公報がある。
A representative example of the cubic boron nitride-based sintered body made of this cermet-based binder phase is
There are Japanese Patent Publications No. 56-+3o4s+Yumi.

(発明が解決しようとする問題点) 特公昭57−49621号公報は、立方晶窒化ホウ素を
体積で80〜20%含右し残部が周期律表4a。
(Problems to be Solved by the Invention) Japanese Patent Publication No. 57-49621 contains cubic boron nitride in an amount of 80 to 20% by volume, and the remainder is in Periodic Table 4a.

5a、 6a族遷移金属の炭化物、窒化物、ホウ化物。Carbides, nitrides, and borides of group 5a and 6a transition metals.

ケイ化物もしくはこれらの混合物または相互固溶体化合
物を第1の結合相とし、A12. Si、 Ni、 C
o。
a silicide or a mixture thereof or a mutual solid solution compound as the first bonding phase; A12. Si, Ni, C
o.

Fcまたは、これらを含む合金、化合物を第2の結合相
として、該第1、第2の結合相が焼結体組織中で連続し
た結合相をなし、1iii記4a、 5a、 6a族金
属の化合物が結合相中の体積で5θ%以上99.9%以
下であることを特徴とする立方晶窒化ホウ素基焼結体で
ある。この特公昭57−49621号公報の立方晶窒化
ホウ素基焼結体は、従来の立方晶窒化ホウ素基焼結体が
金属又は合金でなる結合相であるために、高温で軟化し
て耐摩耗性及び耐溶着性に劣ることから工具用材料とし
て用いると損傷しゃすいという欠点があるのに対し、周
期律表4a、 5a、 6a族遷移金属の化合物と/’
A、 Si、 Ni、 Co、 Fe又はこれらの合金
、化合物とでなる結合相にすることにより解決したもの
であるけれども、結合相の組成によっては金属又は金属
間化合物が多量に残存するためにセラミックス系結合相
の立方晶窒化ホウ素基焼結体と比較すると耐摩耗性の低
下が著しく、逆に金属又は金属間化合物を微■にすると
強度の低下が著しくなるという問題がある。また、特公
昭57− 49621号公報の焼結体は、鳩を含有した
金属間化合物を多L1に含有させる場合に、立方晶窒化
ホウ素と結合相との密着性が低下して欠損しやすくなる
という問題がある。
Fc or an alloy or compound containing these is used as a second binder phase, and the first and second binder phases form a continuous binder phase in the sintered body structure, and The present invention is a cubic boron nitride-based sintered body characterized in that the volume of the compound in the binder phase is 5θ% or more and 99.9% or less. The cubic boron nitride-based sintered body of Japanese Patent Publication No. 57-49621 has a binder phase made of metal or alloy, so the conventional cubic boron nitride-based sintered body softens at high temperatures and exhibits wear resistance. Compounds of transition metals from Groups 4a, 5a, and 6a of the periodic table and/'
A, Si, Ni, Co, Fe, or their alloys or compounds were used as a bonding phase. However, depending on the composition of the bonding phase, a large amount of metal or intermetallic compound may remain, making it Compared to a cubic boron nitride-based sintered body having a system binder phase, the wear resistance is significantly lowered, and conversely, when the amount of metal or intermetallic compound is reduced, the strength is significantly lowered. In addition, in the sintered body of Japanese Patent Publication No. 57-49621, when poly-L1 contains an intermetallic compound containing pigeon oxide, the adhesion between the cubic boron nitride and the binder phase decreases, making it easy to chip. There is a problem.

特開昭56−130451号公報は5平均−次粒径が2
0μm以下の立方晶窒化ホウ素粉末10〜80wt%と
、残部りがTi、 Zr、 Ill Taの炭化物、窒
化物、ホウ化物の内の単体粉末、又は2種以上の混合粉
末及び相互固溶体粉末と、N2. Zr、 Mg、 Y
の酸化物の内の単体粉末、又は2種以上の混合粉末を8
9〜5wL%と、N;t、 Fc、 Ni、 Co、 
Siの単体粉末又は2種以「の混合粉末及び相rj化合
物粉末を添加して焼結した)γ方晶窒化ホウ索端焼結体
である。この特開昭56−130451号公報は、i4
摩耗性、耐熱性及び耐欠損性にすぐれるような焼結体を
目的にしたものであるけれども、高温になると1i−1
摩耗性及び耐欠損性の低下となること、シ?圧昇温時に
立方晶窒化ホウ素のへ方晶窒化ホウ素への逆変換が生じ
て1γ方品窒化ホウ素と結合相との結合強度の低下とな
ること、又は結合相中の金属又は合金が立方晶窒化ホウ
素と接触する比率が高くなって結合相と1γ方品窒化ホ
ウ素との結合強度の低下をもたらすことなどの問題があ
る。
JP-A No. 56-130451 has a 5-average particle size of 2
10 to 80 wt% of cubic boron nitride powder of 0 μm or less, the balance being a single powder of carbides, nitrides, and borides of Ti, Zr, and IllTa, or a mixed powder of two or more types and mutual solid solution powder; N2. Zr, Mg, Y
Single powder or mixed powder of two or more of the oxides of 8
9-5wL%, N;t, Fc, Ni, Co,
This is a γ-gonal nitride boron cable end sintered body (sintered by adding Si single powder or mixed powder of two or more kinds and phase rj compound powder).
Although it is intended to be a sintered body with excellent wear resistance, heat resistance, and chipping resistance, it becomes 1i-1 at high temperatures.
Will it cause a decrease in wear resistance and chipping resistance? When the pressure is increased, cubic boron nitride is converted back to hexagonal boron nitride, resulting in a decrease in the bonding strength between the 1γ square boron nitride and the binder phase, or the metal or alloy in the binder phase is cubic boron nitride. There is a problem that the contact ratio with boron nitride increases, resulting in a decrease in the bonding strength between the binder phase and the 1γ boron nitride.

本発明は、」二連のような問題点を解決したもので、具
体的には、)γ方晶窒化ホウ素とサーメット系結合相と
でなる焼結体であって、この焼結体の結合相を構成して
いるセラミックス組成と金属又は合金と、それぞれの含
イ1゛量を制御することにより、結合相組成の相互間及
び結合相とq方晶窒化ホウ素との相−rI間における結
合強度を高め、その結果強度、耐摩耗性、耐酸化性、耐
溶着性、 l[l−1熱衝撃性、熱伝導性及び化学的安
定性にすぐれるようにした立方晶窒化ホウ素基焼結体の
提供を目的とするものである。
The present invention solves the problems such as "double series", and specifically, it is a sintered body made of gamma-gonal boron nitride and a cermet-based binder phase, and the bond of this sintered body is By controlling the ceramic composition, the metal or alloy constituting the phase, and the content of each, it is possible to improve the bonding between the bonding phase compositions and between the bonding phase and q-gonal boron nitride. Cubic boron nitride-based sintering that increases strength, resulting in superior strength, abrasion resistance, oxidation resistance, welding resistance, l[l-1 thermal shock resistance, thermal conductivity, and chemical stability. The purpose is to donate the body.

(問題点を解決するための手段) 本発明者らは、立方晶窒化ホウ素基焼結体の靭性及び耐
摩耗性の両方を高めることについて検討していた所、従
来のサーメット系結合相では。
(Means for Solving the Problems) The present inventors were studying how to improve both the toughness and wear resistance of a cubic boron nitride-based sintered body, and found that the conventional cermet-based binder phase.

強度を高めることを重要視すると耐摩耗性の低下が生じ
、逆に耐摩耗性を高めることを重要視すると強度の低下
が生じる傾向にあること、これを解決するためには、サ
ーメット系結合相を形成するためのセラミックスの組成
と金属又は合金の組成と、さらにこれらのそれぞれの含
有比率を制御することにより達成できるという第1の知
見と、セラミックスの組成として、酸化アルミニウムと
窒化アルミニウムとホウ化アルミニウムとを含有してい
ると強度を高める効果・があること、さらに酸化アルミ
ニウムと高融点金属化合物、特にTiの含有した化合物
でなる高融点金属化合物との両方が一定比率内で含まれ
ていると耐摩耗性及び強度にすぐれるという第2の知見
と、ホウ化アルミニウムとホウ化チタンとの両方を含有
させて組合わせると高温における強度及び耐摩耗性が著
しくすぐれるという第3の知見と、Y、Dy、 Ybを
主成分とする酸化物、窒化物、酸窒化物の希土類金属化
合物が\γ方方晶化ホウ素の粒界又はセラミックス組成
の粒界に侵入して緻密化を促進し、その結果強度を高め
るという第4の知見と、立方晶窒化ホウ素との親和性が
低いCo及び/又はN1を立方晶窒化ホウ素と相互接触
させない程度に含有させて、セラミックス組成の結合相
中に介在させると結合相の緻密化及び高強度化にするこ
とができるという第5の知見を得たものである。この第
1の知見から第5の知見に基づいて本発明を完成するに
至ったものである。
Placing emphasis on increasing strength tends to result in a decrease in wear resistance, and conversely, placing importance on increasing wear resistance tends to decrease strength.To solve this problem, cermet-based binder phase The first finding is that this can be achieved by controlling the composition of ceramics, the composition of metals or alloys, and the content ratio of each of these, and the composition of aluminum oxide, aluminum nitride, and boride. Containing aluminum has the effect of increasing strength, and furthermore, it contains both aluminum oxide and a high melting point metal compound, especially a high melting point metal compound consisting of a compound containing Ti, within a certain ratio. The second finding is that aluminum boride has excellent wear resistance and strength, and the third finding is that combining both aluminum boride and titanium boride significantly improves strength and wear resistance at high temperatures. , Y, Dy, Yb-based rare earth metal compounds such as oxides, nitrides, and oxynitrides invade the grain boundaries of the γ-gonal boron or the grain boundaries of the ceramic composition to promote densification. The fourth finding is that the strength is increased as a result, and by incorporating Co and/or N1, which has a low affinity with cubic boron nitride, to the extent that they do not come into contact with cubic boron nitride, it is possible to increase the strength of the ceramic composition by incorporating Co and/or N1 into the binder phase of the ceramic composition. The fifth finding is that by intervening, the binder phase can be made denser and stronger. The present invention has been completed based on the first finding to the fifth finding.

すなわち、本発明の立方晶窒化ホウ素基焼結体は、立方
晶窒化ホウ素10〜80vol%と、酸化アルミニウム
7.5〜80vol%と、窒化アルミニウム3〜20v
ol%と、ホウ化アルミニウム1〜5vol%と、ホウ
化チタン1〜5vop、%と、Ti、 Zr、 llr
That is, the cubic boron nitride-based sintered body of the present invention contains 10 to 80 vol% of cubic boron nitride, 7.5 to 80 vol% of aluminum oxide, and 3 to 20 vol% of aluminum nitride.
ol%, aluminum boride 1-5 vol%, titanium boride 1-5 vop,%, Ti, Zr, llr
.

Ta、 Nb、 Vの炭化物、窒化物、Wの炭化物及び
これらの相互固溶体の中の少なくとも1種の高融点金属
化合物3.75〜40voA%と、 Y、 Dy、 Y
bの酸化物、窒化物及びこれらの相互固溶体の中の少な
くとも1種を主成分とする希土類金属化合物0.5〜5
vof1%と、Co及び/又はNiを主成分とする金属
又は合金0.1〜2voI2%と、不可避不純物とから
なることを特徴とするものである。
3.75 to 40 voA% of at least one high melting point metal compound among Ta, Nb, V carbides, nitrides, W carbides, and mutual solid solutions thereof, and Y, Dy, Y
0.5 to 5 rare earth metal compounds containing at least one of the oxides, nitrides, and mutual solid solutions of these as a main component;
It is characterized by consisting of 1% vof, 0.1 to 2% voI of a metal or alloy whose main component is Co and/or Ni, and unavoidable impurities.

本発明の立方晶窒化ホウふ基焼結体における立方晶窒化
ホウ素は、平均粒径が15μm以下、特に強度及び耐摩
耗性の両方を高めるために平均粒径が1μm〜5μmに
あることが好ましいことである。この立方晶窒化ホウ素
の含有量は、 lovofi%未満では耐摩耗性の低下
が著しく、逆に80voA%を超えて多くなると強度の
低下が著しく欠損しやすくなる。また、立方晶窒化ホウ
素の含有量が10〜43vo 12%の場合には、ゞト
均粒径0.5μm〜2μmの微細な立方晶窒化ホウ素に
すると、特に軟式切削における切削工具材料として適し
、立方晶窒化ホウ素の含イ丁作が43〜80vol%の
場合は、平均粒径2〜5μmの立方晶窒化ホウ素にする
と、特に湿式切削における切削工具材料として適するも
のである。
The cubic boron nitride in the cubic boron nitride-based sintered body of the present invention preferably has an average grain size of 15 μm or less, and in particular, preferably has an average grain size of 1 μm to 5 μm in order to improve both strength and wear resistance. That's true. If the content of cubic boron nitride is less than lovofi%, the wear resistance will be significantly lowered, and if it exceeds 80voA%, the strength will be significantly lowered and defects will occur. In addition, when the content of cubic boron nitride is 10 to 43vo 12%, fine cubic boron nitride with an average grain size of 0.5 μm to 2 μm is particularly suitable as a cutting tool material for soft cutting. When the content of cubic boron nitride is 43 to 80 vol%, cubic boron nitride with an average particle size of 2 to 5 μm is particularly suitable as a cutting tool material for wet cutting.

本発明の立方晶窒化ホウ素基焼結体における酸化アルミ
ニウムは、平均粒径が1.0μm以下、特に平均粒径が
0.5μm以下にすると一層緻密な焼結体になることか
ら好ましいことである。この酸化アルミニウムの含有量
ilは、7.5 vojB%未満では耐摩耗性の低下が
著しく、逆に80vo1%を超えて多くなると立方晶窒
化ホウ素及び他の結合相の含有;11が相対的に少なく
なり、そのために耐摩耗性及び耐欠損性の低下が著しく
短寿命になる。
It is preferable that the aluminum oxide in the cubic boron nitride-based sintered body of the present invention has an average grain size of 1.0 μm or less, particularly 0.5 μm or less, since this results in a more dense sintered body. . If the aluminum oxide content il is less than 7.5 vojB%, the wear resistance will be significantly reduced, and on the contrary, if it exceeds 80 vojB%, the content of cubic boron nitride and other binder phases will be relatively high. As a result, the wear resistance and chipping resistance deteriorate significantly, resulting in a significantly shortened service life.

本発明の立方晶窒化ホウ素基焼結体における窒化アルミ
ニウムは、シを圧界温時に立方晶窒化ホウ素の六方晶窒
化ホウ素への逆変換を防1]−シ、ホウ化アルミニウム
と共に立方晶窒化ホウ素と他の結合相との結合の媒介的
役割をし、この量が3 voA%未満ではその効果が弱
く、逆に20voI2%を超えると焼結し難くなる。
Aluminum nitride in the cubic boron nitride-based sintered body of the present invention prevents the back conversion of cubic boron nitride to hexagonal boron nitride at marginal temperature. If the amount is less than 3 voA%, the effect is weak, and if it exceeds 20 voI2%, sintering becomes difficult.

本発明の立方晶窒化ホウ素基焼結体におけるホウ化アル
ミニウムは、N28a、 MB+*の中の少なくとも1
種からなるもので、この含有Mが1voi!、%未満で
は立方晶窒化ホウ素と結合相との結合強度を低下し、そ
の結果焼結体の強度を低下する。逆に、ホウ化アルミニ
ウムの含有量が5vol%を超えて多くなると焼結性を
阻害して緻密な焼結体になり難くなる。 、 本発明の立方晶窒化ホウ素基焼結体におけるホウ化チタ
ンは、上述のホウ化アルミニウムと共に適量に組合わせ
ることにより高温における耐摩耗性及び強度が著しくす
ぐれるもので、特にNIBxと組合わせると強度を高め
る傾向が強<、A12B+gと組合わせると耐摩耗性を
高める傾向が強いものである。このホウ化チタンが1v
ofi%未満では高温における耐摩耗性の低下が著しく
、逆にSvol%を超えて多くなると強度の低下が著し
くなる。
The aluminum boride in the cubic boron nitride-based sintered body of the present invention contains at least one of N28a and MB++.
It consists of seeds, and the M content is 1voi! , %, the bonding strength between the cubic boron nitride and the binder phase decreases, resulting in a decrease in the strength of the sintered body. On the other hand, if the content of aluminum boride exceeds 5 vol %, the sinterability will be inhibited and it will be difficult to form a dense sintered body. When titanium boride in the cubic boron nitride-based sintered body of the present invention is combined with the above-mentioned aluminum boride in an appropriate amount, wear resistance and strength at high temperatures are significantly improved.Especially when combined with NIBx, There is a strong tendency to increase the strength, and when combined with A12B+g, there is a strong tendency to increase the wear resistance. This titanium boride is 1v
If it is less than ofi%, the wear resistance at high temperatures will be significantly lowered, and if it exceeds Svol%, the strength will be significantly lowered.

本発明の立方晶窒化ホウ素基焼結体における高融点金属
化合物は、TiC,ZrC,11fC,TaC,NbC
The high melting point metal compounds in the cubic boron nitride-based sintered body of the present invention include TiC, ZrC, 11fC, TaC, and NbC.
.

VC,WC,TiN、 ZrN、 Ti(C,N1. 
 (Ti、Zr1(C,N)。
VC, WC, TiN, ZrN, Ti(C, N1.
(Ti, Zr1(C,N).

(Ti、W)C1(Ti、Ta1c、  (Ti、Ta
) (C1N)、 (Ti、1111 (C,N)。
(Ti,W)C1(Ti,Ta1c, (Ti,Ta
) (C1N), (Ti, 1111 (C,N).

(Ti、 Ta、 Wl (C,Nlなどを具体的な例
として挙げることができる。この高融点金属化合物は、
特にTiの含有した化合物、例えばTiC,TiN、 
Ti (C,Nl 。
Specific examples include (Ti, Ta, Wl (C, Nl, etc.). This high melting point metal compound is
In particular, compounds containing Ti, such as TiC, TiN,
Ti(C,Nl.

(TiJIC,(TiJl (C1N)、  fTi、
Ta) (C,N)などを主成分とすると耐摩耗性及び
耐欠損性にすぐれるもので好ましいことである。この高
融点金属化合物が3.75vol%未満になると結合相
中の酸化アルミニウムとの相互作用により耐摩耗性を高
めるという効果が弱くなり、逆に4QvoQ%を超えて
多くなると強度が低下して短寿命になる。
(TiJIC, (TiJl (C1N), fTi,
It is preferable to use Ta) (C, N) as the main component because it has excellent wear resistance and chipping resistance. If this high melting point metal compound is less than 3.75 vol%, the effect of increasing wear resistance will be weakened due to interaction with aluminum oxide in the binder phase, and conversely, if the content exceeds 4QvoQ%, the strength will decrease and the It becomes the lifespan.

本発明の立方晶窒化ホウ素基焼結体における金属又は合
金は、Co及び/又はN1でなる場合、又はCO及び/
又はNiを主成分として他に1例えばSb。
When the metal or alloy in the cubic boron nitride-based sintered body of the present invention consists of Co and/or N1, or CO and/
Or Ni as a main component and one other component, for example, Sb.

Sn、 I’b、 Sc、 Y、 Mg、Cuなどの立
方晶窒化ホウ素の触媒となる元素もしくは曲のセラミッ
クス結合相との反応性にすぐれている元素の含有した場
合でもよく、この金属又は合金が0.1voI2%未満
では結合相の強化作用が弱く、逆に2vol%を超えて
多くなると立方晶窒化ホウ素と結合相との結合強度を低
下する。
The metal or alloy may contain an element that acts as a catalyst for cubic boron nitride, such as Sn, I'b, Sc, Y, Mg, or Cu, or an element that has excellent reactivity with the curved ceramic bonding phase. If the amount is less than 2% by 0.1 vol, the reinforcing effect of the binder phase is weak, and if it exceeds 2 vol%, the bonding strength between the cubic boron nitride and the binder phase decreases.

本発明の立方晶窒化ホウ素基焼結体における希土類金属
化合物は、 Y、 Dy、 Ybの酸化物、窒化物及び
これらの相互固溶体からなる1例えばYmO,。
The rare earth metal compound in the cubic boron nitride-based sintered body of the present invention includes oxides and nitrides of Y, Dy, and Yb, and mutual solid solutions thereof, such as YmO.

DyxOa、 Yb1Os、 YN、 DyN、 Yb
N、 Y(N、O)、0y(N、Ol。
DyxOa, Yb1Os, YN, DyN, Yb
N, Y (N, O), 0y (N, Ol.

Yb IN、0)、   (Y、Dy)ioi+  (
Y、ybl 20!、  (Dy、Yb)Js  など
を挙げることができる。また、 Y、 Dy、 Yhに
他の希土類金属である Sc、 La、 Ce、 Pr
、 Nd、 Pm。
Yb IN, 0), (Y, Dy)ioi+ (
Y,ybl 20! , (Dy, Yb)Js, etc. In addition, other rare earth metals Sc, La, Ce, Pr are added to Y, Dy, and Yh.
, Nd, Pm.

Sm、 Eu、 Gd、 Tb、 llo、 Er、 
Tm、 Luが含有している希土類金属化合物でもよく
、特にY、 oy、 Ybと同一グループに分類される
Tb、 llo、 Er、 Tm、 Luのm希土類金
属がY、 Dy、 Ybに含有している、例えばfY、
Er1Js、 (Dy、1IolaO+、 (Yb、T
b)、Oaなども次のような効果を発揮するものである
。この希土類金属化合物は、焼結の促進作用をし、ホウ
化アルミニウム及びホウ化チタンと共に立方晶窒化ホウ
素の粒界や他のセラミックス成分の結合相粒界に侵入し
て焼結体の緻密化及び高強度化に寄与するものである。
Sm, Eu, Gd, Tb, llo, Er,
It may be a rare earth metal compound containing Tm and Lu, and in particular, a rare earth metal compound containing Tb, llo, Er, Tm, and Lu, which is classified in the same group as Y, oy, and Yb, may be a rare earth metal compound containing Y, Dy, and Yb. For example, fY,
Er1Js, (Dy, 1IolaO+, (Yb, T
b), Oa, etc. also exhibit the following effects. This rare earth metal compound acts to promote sintering and invades the grain boundaries of cubic boron nitride and the binder phase grain boundaries of other ceramic components together with aluminum boride and titanium boride, resulting in densification and densification of the sintered body. This contributes to high strength.

この希土類金属化合物が0.5vol%未満では一ヒ述
の効果を著しく低下し、逆に5vol%を超えて多くな
ると耐摩耗性の低下が著しくなる。
If the amount of this rare earth metal compound is less than 0.5 vol%, the above-mentioned effect will be significantly reduced, and conversely, if it exceeds 5 vol%, the wear resistance will be significantly reduced.

本発明の立方晶窒化ホウ素基焼結体における立方晶窒化
ホウ素を除いた他成分からなる結合相は、結合相の相互
間及び結合相と立方晶窒化ホウ素との相互間の結合強度
を最適にするだめのもので、この結合相の組成の他に組
成比率も耐摩耗性及び強度に及ばずHgが大きく、特に
酸化アルミニウムと高融点金属化合物との体積比が酸化
アルミニウム:高融点金属化合物=0.5〜0.956
 :0.5〜0.044の範囲にあることが好ましいこ
とである。
The bonding phase consisting of other components other than cubic boron nitride in the cubic boron nitride-based sintered body of the present invention optimizes the bonding strength between the bonding phases and between the bonding phase and cubic boron nitride. In addition to the composition of this binder phase, the composition ratio is also inferior to wear resistance and strength, and Hg is large, and in particular, the volume ratio of aluminum oxide to high melting point metal compound is such that aluminum oxide: high melting point metal compound = 0.5-0.956
: It is preferable that it is in the range of 0.5 to 0.044.

この本発明の立方晶窒化ホウ素基焼結体を構成している
立方晶窒化ホウ素及び結合相は、後述する出発物を含め
た製造条件により、化学:a論的化合物や昇化′?量論
的化合物でなっているものである。
The cubic boron nitride and the binder phase constituting the cubic boron nitride-based sintered body of the present invention can be chemically: a theoretical compound, a chemical compound, an elevated compound, etc., depending on the manufacturing conditions including the starting materials described below. It is made up of stoichiometric compounds.

本発明の立方晶窒化ホウ素基焼結体は、従来から行われ
ているη方晶窒化ホウ素基焼結体の製造方法により作成
することができる。例えば、出発物としての立方晶窒化
ホウ素は、平均粒径15LLm以下の粉末、好ましくは
平均粒径5μm以下の粉末を用い、他の結合相となるも
のはてきるだけ微細なサブミクロンの粉末を用いること
が好ましく、特に^氾、0.は焼結性の促進から微細粉
末を用いることが必要である。
The cubic boron nitride-based sintered body of the present invention can be produced by a conventional method for producing an η-gonal boron nitride-based sintered body. For example, for cubic boron nitride as a starting material, use a powder with an average particle size of 15 LLm or less, preferably a powder with an average particle size of 5 μm or less, and use as fine a submicron powder as possible for other binder phases. It is preferable to use, especially ^flood, 0. It is necessary to use fine powder to promote sinterability.

焼結体中に含有する窒化アルミニウムは、焼結工程の昇
温時における立方晶窒化ホウ素の逆変換を防止するため
に出発物中に窒化アルミニウムの粉末として混在してお
く必要があるけれども、窒化アルミニウム粉末の他にM
粉末を出発物中に含有しておいて、焼結工程において鳩
と立方晶窒化ホウ素との相互反応から窒化アルミニウム
の1部を析出させるという方法でもよい。また、焼結体
中に含有するホウ化アルミニウムは、ホウ化アルミニウ
ム粉末を出発物とする方法、ホウ化アルミニウム粉末と
M粉末とを出発物とする方法又はN粉末のみを出発物と
する方法がある。ここで、M粉末を出発物として用いて
焼結体中にホウ化アルミニウムを形成させるのは、焼結
工程でのMと立方晶窒化ホウ素との相互反応、例えば 31M!+28N→2N2N +A9B、の反応により
形成されるものである。出発物としてM粉末を用いる場
合は、焼結を促進させるという効果があるけれども、特
にM粉末の表面に付着又は結合している酸素を除去する
ために還元処理するなど前処理をして、N2粉末とT1
の含有した化合物との反応が起らないようにすることが
重要である。
Aluminum nitride contained in the sintered body must be mixed as aluminum nitride powder in the starting material to prevent the reverse conversion of cubic boron nitride during temperature rise in the sintering process. In addition to aluminum powder, M
It is also possible to include the powder in the starting material and precipitate a portion of the aluminum nitride from the interaction between the powder and the cubic boron nitride during the sintering process. In addition, the aluminum boride contained in the sintered body can be obtained by a method using aluminum boride powder as a starting material, a method using an aluminum boride powder and M powder as a starting material, or a method using only N powder as a starting material. be. Here, forming aluminum boride in the sintered body using M powder as a starting material is due to the interaction between M and cubic boron nitride during the sintering process, for example, 31M! It is formed by the reaction of +28N→2N2N +A9B. When M powder is used as a starting material, it has the effect of accelerating sintering, but it is necessary to perform pretreatment such as reduction treatment to remove oxygen attached or bonded to the surface of M powder. Powder and T1
It is important to prevent any reaction from occurring with the compounds contained.

さらに、焼結体中に含有するCo及び/又はNiを主成
分とする金属又は合金、希土類金属化合物。
Furthermore, a metal, alloy, or rare earth metal compound containing Co and/or Ni as a main component contained in the sintered body.

ホウ化チタン及び高融点金属化合物は、それぞれとも焼
結体中に含有させる化合物からなる粉末を出発物として
用いるのが焼結体の組成及び焼結体の7特性の安定性か
ら好ましいことである。
For titanium boride and high melting point metal compounds, it is preferable to use powders of the compounds to be contained in the sintered body as a starting material from the viewpoint of the composition of the sintered body and the stability of the seven properties of the sintered body. .

これらの出発物を所定量に配合した後、従来の粉末冶金
法による混合、乾燥、18別及び成形を行い、次いで従
来の高圧高温装置でもって立方畠窒化ホウ素ノ、(焼結
体を作製するという製造方法により行うことができる。
After blending these starting materials in predetermined amounts, they are mixed, dried, separated and molded using conventional powder metallurgy methods, and then cubic boron nitride (sintered bodies) are prepared using conventional high-pressure and high-temperature equipment. This can be done by the manufacturing method.

(作用) 本発明の立方晶窒化ホウ素基焼結体は、結合相中の、特
に窒化アルミニウムが立方晶窒化ホウ素のへ方晶窒化ホ
ウ素への逆変換を防止する作用をし、ホウ化アルミニウ
ムとホウ化チタンとを適量に組合わせたことにより結合
相の相互間並びに結合相と立方晶窒化ホウ素との相互間
における結合強度を高める作用をし、酸化アルミニウム
と高融点金属化合物とを最適比率にしたことにより耐摩
耗性及び強度を高める作用となり、希土類金属化合物が
立方晶窒化ホウ素及び他結合相の粒界に侵入して緻密化
の促進作用をし、さらにCO及び/又はNiを主成分と
する金属又は合金により結合相の強度を高め、その結果
として焼結体の強度を高める作用をしているものである
(Function) In the cubic boron nitride-based sintered body of the present invention, aluminum nitride in the binder phase acts to prevent the reverse conversion of cubic boron nitride to hexagonal boron nitride, and By combining an appropriate amount of titanium boride, it works to increase the bonding strength between the bonding phases and between the bonding phase and cubic boron nitride, and the aluminum oxide and high melting point metal compound are adjusted to an optimal ratio. This has the effect of increasing wear resistance and strength, and the rare earth metal compound penetrates into the grain boundaries of cubic boron nitride and other binder phases to promote densification. The strength of the binder phase is increased by the metal or alloy, and as a result, the strength of the sintered body is increased.

(実施例) 実施例1 モ均粒径1μmのCBN粉末と平均粒径0,5μmのA
J!ins粉末と平均粒径1〜1.5μmの/WN粉末
、A9B、粉末、 TiBz粉末9M粉末、各種の高融
点金属化合物の粉末、平均粒径0.5μmの希土類金属
化合物の粉末、 Co粉末及びNi粉末を出発物として
、それぞれを所定hlに配合し、この配合粉末と超硬合
金製ボールとヘキサンを超硬合金で内張りした混合容器
に入れて混合粉砕した。混合粉砕時間は、 C[IN粉
末を短時間粉砕にし、l□03粉末と希土類金属の粉末
を最も長時間粉砕するような方法で行った。こうして得
た混合粉末を従来の粉末冶金の方法でもって乾燥、篩別
及び成形した後、従来から用いられている高圧高温装置
にセットし、圧力40〜60kb、温度1300〜16
00℃、保持時間5〜!5分の条件で焼結体を作製した
。こうして得た焼結体をX線回折法とX線マイクロアナ
リシス法と配合組成により確認して各試料の焼結体組成
として第1表に示した。この第1表の内1本発明品No
3と本発明から外れた比較品No2は、出発物として1
部M粉末を使用し、他は第1表に示した成分を出発物と
したものである。
(Example) Example 1 CBN powder with an average particle size of 1 μm and A with an average particle size of 0.5 μm
J! ins powder, /WN powder with an average particle size of 1 to 1.5 μm, A9B powder, TiBz powder 9M powder, powder of various high melting point metal compounds, powder of rare earth metal compounds with an average particle size of 0.5 μm, Co powder, and Using Ni powder as a starting material, each was blended to a predetermined hl, and the blended powder, cemented carbide balls, and hexane were placed in a mixing container lined with cemented carbide and pulverized. The mixing and pulverization time was such that the C[IN powder was pulverized for the shortest time, and the 1□03 powder and the rare earth metal powder were pulverized for the longest time. After drying, sieving, and molding the thus obtained mixed powder using conventional powder metallurgy methods, it is placed in a conventionally used high-pressure and high-temperature device at a pressure of 40 to 60 kb and a temperature of 1300 to 1600 kb.
00℃, holding time 5~! A sintered body was produced under conditions of 5 minutes. The sintered bodies thus obtained were confirmed by X-ray diffraction method, X-ray microanalysis method, and composition, and the sintered body compositions of each sample are shown in Table 1. One of the invention products in this table 1 No.
3 and comparative product No. 2, which is out of the scope of the present invention, uses 1 as a starting material.
Part M powder was used, and the other components were those shown in Table 1 as starting materials.

また、 40vofi%C13N−セラミックス系結合
相でなる市販の焼結体と、L述の方法でもって作製した
各焼結体をそれぞれ切断して超硬合金の刃先部になるよ
うにロー付けし、端面200φmmの面に10mm幅の
溝を2本人れたSCM435 (IIRC59〜61)
を被削材として、切削速度100m/min 、切込み
go、25mm、送り速度0.15mm/rev、乾式
による外周断続旋削試験を行い、10分ごとに送り速度
な0.025n+m/revずつ上げて欠損するまでの
時間を寿命時間とし、その5回の平均値を第1表に併記
した。
In addition, a commercially available sintered body made of a 40vofi% C13N-ceramic binder phase and each sintered body produced by the method described in L were cut and brazed to form the cutting edge of the cemented carbide. SCM435 with two 10mm wide grooves on the 200φmm end face (IIRC59-61)
A dry peripheral interrupted turning test was performed using the workpiece at a cutting speed of 100 m/min, depth of cut of 25 mm, and feed rate of 0.15 mm/rev. The time required for this to occur is defined as the life time, and the average value of the five times is also listed in Table 1.

以下余白 実施例2 平均粒径4μmのCBN粉末と実施例1で用いた出発物
により所定量配合した後、実施例1と同様にして焼結体
を作製した。この焼結体及び60von%C[lN−セ
ラミックス系結合相の市販品、80vol%CBN−セ
ラミックス系結合相の市販品、90vof1%CBN−
金属系結合相の市販品をそれぞれ実施例1と同様にして
超硬合金にロー付けして、被削材、切削速度、切り込み
量、送り速度は実施例1と同条件で切削油を用いる湿式
による外周断続旋削試験を行い、実施例1と同様にして
寿命比の切削時間を求めた。ここで作成した焼結体の組
成及び切削試験結果を第2表に示した。
Example 2 A predetermined amount of CBN powder having an average particle size of 4 μm and the starting materials used in Example 1 were blended, and then a sintered body was produced in the same manner as in Example 1. This sintered body and 60 vol% C[lN-commercial product of ceramic binder phase, 80 vol% CBN-commercial product of ceramic binder phase, 90 vof1% CBN-
Commercially available metallic binder phase products were brazed to cemented carbide in the same manner as in Example 1, and the wet method using cutting oil was performed using the same work material, cutting speed, depth of cut, and feed rate as in Example 1. A circumferential interrupted turning test was conducted, and the cutting time of the life ratio was determined in the same manner as in Example 1. Table 2 shows the composition of the sintered body prepared here and the cutting test results.

以下余白 (9!明の効果) 以上の結果から1本発明の立方晶窒化ホウ素基焼結体は
、本発明の焼結体組成から外れた比較品及び従来の立方
晶窒化ホウ素基焼結体に比較して耐摩耗性及び耐欠損性
にすぐれていることにより約2倍〜11倍も長寿命にな
るという効果がある。このことから、本発明の立方晶窒
化ホウ素基焼結体は5例えばNC機械用の切削工具材料
又は自動加工機用の加工工具材料として適応できる産業
−[−有用な材料である。
The following margins (9! Light effect) From the above results, 1. The cubic boron nitride-based sintered body of the present invention is different from the comparative product deviating from the sintered body composition of the present invention and the conventional cubic boron nitride-based sintered body. It has an effect of extending the life by about 2 times to 11 times due to its excellent wear resistance and chipping resistance compared to that of . From this, the cubic boron nitride-based sintered body of the present invention is an industrially useful material that can be applied, for example, as a cutting tool material for NC machines or a processing tool material for automatic processing machines.

特許出願人 東芝タンガロイ株式会社Patent applicant: Toshiba Tungaloy Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)立方晶窒化ホウ素10〜80vol%と、酸化ア
ルミニウム7.5〜80vol%と、窒化アルミニウム
3〜20vol%と、ホウ化アルミニウム1〜5vol
%と、ホウ化チタン1〜5vol%と、Ti、Zr、H
f、Ta、Nb、Vの炭化物、窒化物、Wの炭化物及び
これらの相互固溶体の中の少なくとも1種の高融点金属
化合物3.75〜40vol%と、Y、Dy、Ybの酸
化物、窒化物及びこれらの相互固溶体の中の少なくとも
1種を主成分とする希土類金属化合物0.5〜5vol
%と、Co及び/又はNiを主成分とする金属又は合金
0.1〜2vol%と、不可避不純物とからなることを
特徴とする立方晶窒化ホウ素基焼結体。
(1) 10 to 80 vol% cubic boron nitride, 7.5 to 80 vol% aluminum oxide, 3 to 20 vol% aluminum nitride, and 1 to 5 vol% aluminum boride
%, titanium boride 1 to 5 vol%, Ti, Zr, H
3.75 to 40 vol% of at least one high-melting point metal compound among f, Ta, Nb, V carbides, nitrides, W carbides, and mutual solid solutions thereof, and oxides and nitrides of Y, Dy, and Yb. 0.5 to 5 vol of a rare earth metal compound whose main component is at least one of these compounds and their mutual solid solution
%, 0.1 to 2 vol. % of a metal or alloy mainly composed of Co and/or Ni, and unavoidable impurities.
(2)上記酸化アルミニウムと上記高融点金属化合物は
、酸化アルミニウム:高融点金属化合物=0.5〜0.
956:0.5〜0.044の体積比であることを特徴
とする立方晶窒化ホウ素基焼結体。
(2) The aluminum oxide and the high melting point metal compound have a ratio of aluminum oxide:high melting point metal compound=0.5 to 0.
A cubic boron nitride-based sintered body having a volume ratio of 956:0.5 to 0.044.
(3)上記酸化アルミニウムは、平均粒径が1.0μm
以下であることを特徴とする特許請求の範囲第1項又は
第2項記載の立方晶窒化ホウ素基焼結体。
(3) The above aluminum oxide has an average particle size of 1.0 μm
A cubic boron nitride-based sintered body according to claim 1 or 2, characterized in that:
JP62279626A 1987-11-05 1987-11-05 Cubic boron nitride based sintered body Expired - Lifetime JPH0742170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62279626A JPH0742170B2 (en) 1987-11-05 1987-11-05 Cubic boron nitride based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279626A JPH0742170B2 (en) 1987-11-05 1987-11-05 Cubic boron nitride based sintered body

Publications (2)

Publication Number Publication Date
JPH01122971A true JPH01122971A (en) 1989-05-16
JPH0742170B2 JPH0742170B2 (en) 1995-05-10

Family

ID=17613601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279626A Expired - Lifetime JPH0742170B2 (en) 1987-11-05 1987-11-05 Cubic boron nitride based sintered body

Country Status (1)

Country Link
JP (1) JPH0742170B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310334A (en) * 1989-05-25 1990-12-26 Mitsubishi Materials Corp Sintered body for cutting tool
WO2005056495A1 (en) 2003-12-03 2005-06-23 Diamond Innovations, Inc. Cubic boron nitride sintered body and method for making the same
US7914886B2 (en) 2003-08-21 2011-03-29 Saint-Gobain Ceramics & Plastics, Inc. Structural component comprising boron nitride agglomerated powder
GB2514690A (en) * 2013-05-31 2014-12-03 Element Six Ltd PCBN Material, tool elements comprising same and method for using same
CN108675813A (en) * 2018-07-07 2018-10-19 郑州万创智造科技有限公司 A kind of high intensity polycrystalline cubic boron nitride and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310334A (en) * 1989-05-25 1990-12-26 Mitsubishi Materials Corp Sintered body for cutting tool
US7914886B2 (en) 2003-08-21 2011-03-29 Saint-Gobain Ceramics & Plastics, Inc. Structural component comprising boron nitride agglomerated powder
US8169767B2 (en) 2003-08-21 2012-05-01 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder and devices comprising the powder
WO2005056495A1 (en) 2003-12-03 2005-06-23 Diamond Innovations, Inc. Cubic boron nitride sintered body and method for making the same
GB2514690A (en) * 2013-05-31 2014-12-03 Element Six Ltd PCBN Material, tool elements comprising same and method for using same
GB2514690B (en) * 2013-05-31 2015-06-10 Element Six Ltd PCBN material, tool elements comprising same and method for using same
JP2016528132A (en) * 2013-05-31 2016-09-15 エレメント シックス リミテッド PCBN material, tool element comprising the same, and method for using the same
CN108675813A (en) * 2018-07-07 2018-10-19 郑州万创智造科技有限公司 A kind of high intensity polycrystalline cubic boron nitride and its manufacturing method

Also Published As

Publication number Publication date
JPH0742170B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JPH01172270A (en) Sintered body of cubic boron nitride having high strength
JPH01122971A (en) Cubic boron nitride sintered product
JPH0292868A (en) High-strength sintered material of boron nitride-base of cubic system
JPS644988B2 (en)
EP0963962A1 (en) Alumina-base ceramic sinter and process for producing the same
JPS644989B2 (en)
JPH075384B2 (en) Cubic boron nitride based sintered body
JPH01115873A (en) Sintered form containing boron nitride of cubic system
JP3010774B2 (en) Alumina-based ceramics
JPS60187659A (en) Cubic boron nitride-base ultrahigh-pressure sintered material for cutting tool
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPH01119564A (en) Sintered compact containing cubic boron nitride
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JPS58113349A (en) Cubic system boron nitride-base material to be sintered under superhigh pressure for wear resistant cutting tool
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPS644986B2 (en)
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPH03107441A (en) High hardness sintered body for tool
JPS644987B2 (en)
JPS593073A (en) Sialon base sintered material for cutting tool and antiabrasive tool
JP3178244B2 (en) Cutting tool made of diamond-based ultra-high pressure sintered material with excellent wear resistance
JPH0463607A (en) Cutting tool having cutting edge part formed of cubic boron nitride sintered substance
JPH07172906A (en) Ceramic sintered compact
JPH05194032A (en) Production of diamond-based ultra-high pressure sintered material for highly heat-resistant machining tool