JP2712737B2 - Silicon nitride based sintered material with high toughness and high strength - Google Patents

Silicon nitride based sintered material with high toughness and high strength

Info

Publication number
JP2712737B2
JP2712737B2 JP2076349A JP7634990A JP2712737B2 JP 2712737 B2 JP2712737 B2 JP 2712737B2 JP 2076349 A JP2076349 A JP 2076349A JP 7634990 A JP7634990 A JP 7634990A JP 2712737 B2 JP2712737 B2 JP 2712737B2
Authority
JP
Japan
Prior art keywords
powder
sintered material
zrn
based sintered
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2076349A
Other languages
Japanese (ja)
Other versions
JPH03275565A (en
Inventor
孝 小山
秀夫 大島
安孝 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2076349A priority Critical patent/JP2712737B2/en
Priority to US07/649,482 priority patent/US5130279A/en
Priority to DE69102892T priority patent/DE69102892T2/en
Priority to EP91101513A priority patent/EP0441316B1/en
Publication of JPH03275565A publication Critical patent/JPH03275565A/en
Application granted granted Critical
Publication of JP2712737B2 publication Critical patent/JP2712737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高靭性および高強度を有し、特にこれら
の特性が要求される、例えば鋳鉄のフライス切削などに
切削工具として適用した場合にすぐれた切削性能を発揮
する窒化けい素(以下Si34で示す)基焼結材料に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention has high toughness and high strength, and particularly when these properties are required, for example, when applied as a cutting tool to milling of cast iron. The present invention relates to a silicon nitride (hereinafter, referred to as Si 3 N 4 ) -based sintered material exhibiting excellent cutting performance.

〔従来の技術〕 従来、Si34基焼結材料の1つとして、例えば特公昭
60-20346号公報に記載されるSi34基焼結材料が知られ
ている。
[Prior Art] Conventionally, as one of the Si 3 N 4 based sintered materials, for example,
Japanese Patent Application Laid-Open No. 60-20346 discloses a Si 3 N 4 based sintered material.

このSi34基焼結材料は、原料粉末として、Si34
末、酸化ジルコニウム(以下ZrO2で示す)粉末、および
酸化マグネシウム(以下MgOで示す)粉末を用い、これ
ら原料粉末を、所定の配合組成に配合し、通常の条件で
混合し、圧粉体に成形した後、この圧粉体に、 窒素または窒素+不活性ガスの雰囲気中、温度:1600
〜2100℃、圧力:1.5〜130気圧、 の条件で焼結することにより製造されるものである。
This Si 3 N 4 based sintered material uses Si 3 N 4 powder, zirconium oxide (hereinafter referred to as ZrO 2 ) powder, and magnesium oxide (hereinafter referred to as MgO) powder as raw material powders. After being blended in a prescribed composition, mixed under ordinary conditions, and molded into a green compact, the green compact is heated in an atmosphere of nitrogen or nitrogen + inert gas at a temperature of 1600.
It is manufactured by sintering under the conditions of 2100 ° C., pressure: 1.5-130 atm.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

一方、近年の各種産業分野における省力化および高性
能化、さらに高速化に対する要求は厳しく、例えば切削
機械の分野においても同様であって、これに伴い切削工
具の使用条件も増々苛酷とならざるを得ず、このため切
削工具にはより一層の靭性と強度が要求される傾向にあ
るが、上記の従来Si34基焼結材料はじめ、その他多く
の材料の中にも、これに十分対応できる靭性と強度を具
備するものが存在しないのが現状である。
On the other hand, demands for labor saving and high performance in various industrial fields in recent years, and further high speed are severe, for example, the same is true in the field of cutting machines, and accordingly the use conditions of cutting tools are becoming increasingly severe. Therefore, cutting tools tend to be required to have higher toughness and strength. However, the above-mentioned conventional Si 3 N 4 based sintered materials and many other materials are sufficient. At present, there is no material having the required toughness and strength.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、上述のような観点から、高靭
性と高強度を合せもったSi34基焼結材料を開発すべく
研究を行なった結果、 原料粉末として、Si34(α−Si34を主成分とする
ものが望ましい)粉末、窒化ジルコニウム(以下ZrNで
示す)粉末、酸化けい素(以下SiO2で示す)粉末、およ
びMgO粉末を用い、これら原料粉末を、重量%で、 ZrN:1〜27%、SiO2:0.5〜5%、 MgO:1〜10%、Si34:残り、 からなる配合組成に配合し、通常の条件で、混合し、圧
粉体に成形した後、この圧粉体に、 窒素雰囲気中、温度:1500〜2000℃、圧力:1〜50気
圧、 の相対的に低い圧力の条件で1次焼結を施すと、この1
次焼結では、α−Si34がやや針状化したβ−Si34
変化し、結合相として粘性が低く、ぬれ性の良好なMg-S
i-Zr−O−N系の液相が形成されるために良好な焼結性
が確保され、引続いて、 同じく窒素雰囲気中、温度:1700〜2000℃、圧力:100
〜2000気圧、 の相対的に高い圧力の条件で1回または2回以上の2次
焼結を連続的または断続的に施すと、この2次焼結で、
分散相形成成分としてのZrNの一部が、 ZrN+SiO2+N2→ ZrO2+Si34 ……(1) ZrN+結合相(1次焼結)+N2→ ZrO2+結合相(2次焼結) ……(2) 以上(1)および(2)の反応によってZrO2となり、
このZrNからZrO2の生成時に、内在するマイクロポアが
吸収されて緻密化されると共に、β−Si34の針状化が
一段と進行し、さらに1次焼結時に形成された結合相に
比して酸素含有量が減少し、窒素含有量が増加した結合
相が形成されるようになり、この結果製造されたSi34
基焼結材料は、容量%で、 ZrO2:0.1〜20%、ZrN:0.1〜14%、 Mg-Si-Zr−O−N系の結合相:3〜15%、を含有し、残
りが針状晶のβSi34と不可避不純物からなる組成を有
するものとなり、このSi34基焼結材料においては、熱
伝導率が高く、硬さの高いZrNによって、すぐれた耐熱
衝撃性と耐摩耗性が確保され、また化学的に安定で、耐
酸化性の向上に寄与し、かつクラックが進展してきた時
にマルテンサイト変態により破壊エネルギーを吸収する
作用を有するZrO2と、著しく針状化したSi34によって
高靭性が確保され、かつ高緻密化と合まって高強度も有
するようになり、この場合ZrO2はMgを固溶(SiやNを固
溶する場合もある)して、立方晶あるいは正方晶を呈す
るものであり、さらに相対的に窒素が多く、酸素が少な
い結合相が耐熱性向上に寄与し、さらにこの結合相は、
ガラス相、フォルステライト相、およびエンステタイト
相のいずれか、あるいは2種以上の混合相からなるなど
の研究結果を得たのである。
In view of the above, the present inventors have conducted research to develop a Si 3 N 4 based sintered material having both high toughness and high strength. As a result, Si 3 N 4 (Preferably α-Si 3 N 4 as a main component) powder, zirconium nitride (hereinafter referred to as ZrN) powder, silicon oxide (hereinafter referred to as SiO 2 ) powder, and MgO powder. , by weight%, ZrN: 1~27%, SiO 2: 0.5~5%, MgO: 1~10%, Si 3 N 4: blended rest, the blend composition consisting of, in normal conditions, is mixed, After being formed into a green compact, this green compact is subjected to primary sintering in a nitrogen atmosphere at a temperature of 1500 to 2000 ° C. and a pressure of 1 to 50 atm. 1
In the next sintering, α-Si 3 N 4 changes to β-Si 3 N 4 which has become slightly acicular, and Mg-S with low viscosity and good wettability as a binder phase.
Good sinterability is ensured due to the formation of an i-Zr-ON-based liquid phase, and subsequently, also in a nitrogen atmosphere, at a temperature of 1700 to 2000 ° C and a pressure of 100.
When the secondary sintering is performed one or more times continuously or intermittently under the condition of relatively high pressure of ~ 2000 atm,
A part of ZrN as a dispersed phase forming component is ZrN + SiO 2 + N 2 → ZrO 2 + Si 3 N 4 ... (1) ZrN + bonded phase (primary sintering) + N 2 → ZrO 2 + bonded phase (secondary sintering) ) (2) The above reactions (1) and (2) give ZrO 2 ,
When ZrO 2 is generated from ZrN, the internal micropores are absorbed and densified, and at the same time, the needle-like formation of β-Si 3 N 4 progresses further. As a result, a bonded phase having a reduced oxygen content and an increased nitrogen content is formed, and the resulting Si 3 N 4
The base sintered material contains, by volume, ZrO 2 : 0.1 to 20%, ZrN: 0.1 to 14%, and Mg-Si-Zr-ON-based binder phase: 3 to 15%. It has a composition consisting of acicular βSi 3 N 4 and unavoidable impurities. In this Si 3 N 4 based sintered material, ZrN with high thermal conductivity and high hardness provides excellent thermal shock resistance and wear resistance is ensured, also chemically stable, and ZrO 2 having a function of absorbing the fracture energy by martensite transformation when contributing to the improvement of the oxidation resistance, and cracks have developed significantly needles of The high toughness is ensured by the improved Si 3 N 4 , and together with the high densification, it also has high strength. In this case, ZrO 2 dissolves Mg (in some cases, solid solution of Si and N). And a cubic or tetragonal structure, and a binder phase containing relatively more nitrogen and less oxygen contributes to improvement of heat resistance. And further the binder phase,
Research results were obtained such as one of a glass phase, a forsterite phase, and an enstatite phase, or a mixture of two or more types.

この発明は、上記研究結果にもとづいてなされたもの
であって、容量%で、 ZrO2:0.1〜20%、ZrN:0.1〜14%、 Mg-Si-Zr−O−N系の結合相:3〜15%、を含有し、残
りが針状晶のβ−Si34および不可避不純物からなる組
成を有する靭性および強度にすぐれたSi34基焼結材料
に特徴を有するものである。
The present invention was made based on the above research results, in volume%, ZrO 2: 0.1~20%, ZrN: 0.1~14%, Mg-Si-ZrO-N based bonded phases: 3 to 15%, the balance being characterized by a toughness and strength Si 3 N 4 based sintered material having a composition comprising β-Si 3 N 4 of acicular crystals and unavoidable impurities. .

つぎに、この発明のSi34基焼結材料において、成分
組成を上記の通りに限定した理由を説明する。
Next, the reason why the component composition of the Si 3 N 4 based sintered material of the present invention is limited as described above will be described.

(a) ZrO2 ZrO2成分は、2次焼結時に形成された結合相中に固溶
するZrが、その冷却過程で大部分(一部残留)が上記の
通りMgを固溶し、さらに場合によってはSiやNを固溶し
た状態でZrO2として析出することにより形成されるもの
であって、クラックが進展してきた時にマルテンサイト
変態を起こすことにより破壊エネルギーを吸収し、もっ
て材料が割れるのを抑制する作用をもつが、その含有量
が0.1容量%未満では前記作用に所望の効果が得られ
ず、一方その含有量が20容量%を越えると、硬さが低下
し、すぐれた耐摩耗性を確保するのが困難になることか
ら、その含有量を1〜20容量%と定めた。
(A) ZrO 2 As for the ZrO 2 component, Zr which forms a solid solution in the binder phase formed during the secondary sintering, most (partially remains) dissolves Mg as described above during the cooling process. In some cases, it is formed by precipitating as ZrO 2 in a state of solid solution of Si and N. When cracks develop, they cause martensitic transformation to absorb the breaking energy and break the material. However, if the content is less than 0.1% by volume, the desired effect cannot be obtained, whereas if the content exceeds 20% by volume, the hardness is reduced, and the excellent resistance is obtained. Since it becomes difficult to ensure abrasion, the content is set to 1 to 20% by volume.

(b) ZrN ZrNには、原料粉末からのものと、ZrNの一部が一端2
次焼結時に形成された結合相中に固溶し、これが冷却過
程でZrNとして析出することにより形成されるものとが
あり、これらのZrNは高い熱伝導率と硬さを有するの
で、これの含有によって耐熱衝撃性と耐摩耗性が向上す
るようになるが、その含有量が0.1容量%未満では前記
作用に所望の効果が得られず、一方その含有量が14容量
%を越えると靭性および強度が低下するようになること
から、その含有量を0.1〜14容量%と定めた。
(B) ZrN ZrN has two ends, one from raw material powder and one from ZrN.
There is a solid solution in the binder phase formed during the next sintering, which is formed by precipitation as ZrN in the cooling process, these ZrN has a high thermal conductivity and hardness, The content improves thermal shock resistance and abrasion resistance. However, if the content is less than 0.1% by volume, the desired effect cannot be obtained in the above-mentioned action, while if the content exceeds 14% by volume, toughness and Since the strength is reduced, the content is determined to be 0.1 to 14% by volume.

(c) 結合相 結合相は、1次焼結時に、原料粉末として用いたSiO2
粉末およびMgO粉末、さらにSi34粉末の表面に存在す
るSiO2およびZrN粉末の一部と反応して形成され、相対
的に酸素含有量が高く、窒素含有量が低い状態になって
おり、したがって焼結時には前記酸素および窒素濃度分
布によって粘性の低い液相で存在し、良好ナ焼結を進行
させ、もって強度を向上させる作用をもつが、その含有
量が3容量%未満で前記作用が不十分で、所望の高強度
を確保することができず、一方その含有量が15容量%を
越えると、硬さおよび耐熱性が低下するようになること
から、その含有量を3〜15容量%と定めた。
(C) Binder phase The binder phase is SiO 2 used as the raw material powder during the primary sintering.
It is formed by reacting with powder and MgO powder, and part of SiO 2 and ZrN powder present on the surface of Si 3 N 4 powder, and has a relatively high oxygen content and low nitrogen content. Therefore, at the time of sintering, due to the oxygen and nitrogen concentration distribution, it exists in a liquid phase having a low viscosity, has a function of promoting good sintering and thereby improving strength. Is insufficient, and the desired high strength cannot be ensured. On the other hand, if the content exceeds 15% by volume, the hardness and heat resistance decrease, so that the content is 3 to 15%. It was determined as volume%.

(d) β−Si34 β−Si34は、1次焼結で、原料粉末として用いたα
−Si34を主成分とするSi34粉末の表面に存在するSi
O2と他の助剤であるMgO粉末およびSiO2粉末、さらにZrN
粉末から生成する液相への溶解−析出によって形成され
るものであり、このSi34粒子の成長は、1次焼結では
僅かであるが、2次焼結では上記(1)の反応により針
状に粒成長し、この時焼結材料中に内在するマイクロポ
アも吸収されて緻密化することと合まって、材料の強度
が著しく向上するようになる。
(D) β-Si 3 N 4 β-Si 3 N 4 was obtained by primary sintering and using α as a raw material powder.
-Si present on the surface of Si 3 N 4 powder containing Si 3 N 4 as a main component
O 2 and other MgO powder and SiO 2 powder as the additive, further ZrN
The Si 3 N 4 particles are formed by dissolution-precipitation into a liquid phase generated from the powder, and the growth of the Si 3 N 4 particles is slight in the first sintering, but the reaction of the above (1) in the second sintering. As a result, the grains grow into needles, and at this time, the micropores present in the sintered material are also absorbed and densified, and the strength of the material is remarkably improved.

〔実施例〕〔Example〕

つぎに、この発明のSi34基焼結材料を実施例により
具体的に説明する。
Next, the Si 3 N 4 based sintered material of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.1〜0.5μmの範囲内の平
均粒径を有するSi34(容量比でα/β=97/3、酸素:2
重量%含有)粉末、ZrN(酸素:3重量%含有)粉末、SiO
2粉末、MgO粉末、およびZrO2粉末を用意し、これら原料
粉末をそれぞれ第1表に示される配合組成に配合し、ボ
ールミルにて72時間の湿式混合を行ない、乾燥した後、
平面:30mm×30mm、厚さ:10mmの寸法をもった圧粉体、並
びにJIS・SNGN432の切削チップ形状の圧粉体にプレス成
形し、ついでこれらの圧粉体を同じく第1表に示される
条件で焼結することにより本発明焼結材料1〜14、比較
焼結材料1〜8、および従来焼結材料をそれぞれ製造し
た。
As raw material powders, Si 3 N 4 (α / β = 97/3 by volume ratio, oxygen: 2 in all cases) having an average particle size in the range of 0.1 to 0.5 μm
Weight%) powder, ZrN (oxygen: 3 weight% content) powder, SiO
2 powder, MgO powder, and ZrO 2 powder were prepared, and these raw material powders were respectively blended into the blending compositions shown in Table 1, and wet-mixed for 72 hours in a ball mill, and dried.
A green compact having dimensions of 30 mm x 30 mm and a thickness of 10 mm, as well as a green compact in the form of a cutting tip of JIS / SNGN432, is press-formed, and these compacts are also shown in Table 1. By sintering under the conditions, sintered materials 1 to 14 of the present invention, comparative sintered materials 1 to 8 and a conventional sintered material were produced, respectively.

つぎに、この結果得られた各種の焼結材料について、
成分組成を測定し、この場合ZrO2およびZrNの割合は、
X線回折によりβ−Si34,ZrO2,およびZrNの回折ピー
クの強度を測定し、その測定結果にもとづいて計算によ
り求め、またMg-Si-Zr−O−N系の結合相の割合は、鏡
面研磨面をX線マイクロアナライザーにより観察して求
め、さらに理論密度比、ロックウェル硬さ(Aスケー
ル)、抗折力、およびインデンテーション法による破壊
靭性値を測定した。
Next, regarding the various sintered materials obtained as a result,
The component composition is measured, in which case the proportions of ZrO 2 and ZrN are
The intensity of the diffraction peaks of β-Si 3 N 4 , ZrO 2 , and ZrN was measured by X-ray diffraction, and calculated based on the measurement results. The ratio was determined by observing the mirror-polished surface with an X-ray microanalyzer, and further, the theoretical density ratio, Rockwell hardness (A scale), bending strength, and fracture toughness value by an indentation method were measured.

また、縦型フライス盤を用い、 被削材:幅150mm×長さ300mmの寸法をもった FC25製穴あき角材、 切削速度:200m/min、 切込み :2mm、 送 り:0.25mm/rev、 刃 先:0.15mm×−25°、 の条件で鋳鉄の湿式フライス(断続)切削試験を行な
い、切刃に欠損が発生するまでの切削時間を測定した。
これらの結果を第2表にまとめて示した。
In addition, using a vertical milling machine, the work material has dimensions of 150 mm wide x 300 mm long. Wet milling (intermittent) cutting test of cast iron under conditions of FC25 perforated square bar, cutting speed: 200m / min, depth of cut: 2mm, feed: 0.25mm / rev, cutting edge: 0.15mm x -25 ° The cutting time until the cutting edge was broken was measured.
These results are summarized in Table 2.

なお、比較焼結材料1〜8は、構成成分のうちのいず
れかの成分含有輛(第2表に※印で示す)がこの発明の
範囲から外れたものである。
The comparative sintered materials 1 to 8 are those in which one of the constituent components (indicated by asterisks in Table 2) is out of the scope of the present invention.

〔発明の効果〕〔The invention's effect〕

第1表および第2表に示される結果から、本発明焼結
材料1〜14は、いずれも99%以上の理論密度比をもち、
緻密で、マイクロポアの形成もきわめて少なく、従来焼
結材料に比して一段とすぐれた靭性と強度を有し、かつ
これと同等の高硬度を有するので、これらの特性が要求
される条件での切削に切削工具として用いた場合には、
すぐれた性能を長期に亘って発揮するのに対して、比較
焼結材料1〜8に見られるように、構成成分のうちのい
ずれかの成分含有量でもこの発明の範囲から外れると、
上記特性のうちの少なくともいずれかの特性が劣るよう
になり、また切削工具として用いた場合にも短かい使用
寿命しか示さないことが明らかである。
From the results shown in Tables 1 and 2, each of the sintered materials 1 to 14 of the present invention has a theoretical density ratio of 99% or more,
It is dense, has very few micropores, has much higher toughness and strength than conventional sintered materials, and has the same high hardness, so under these conditions where these properties are required When used as a cutting tool for cutting,
While excellent performance is exhibited over a long period of time, as seen in Comparative Sintered Materials 1 to 8, even if the content of any one of the constituents is out of the scope of the present invention,
It is evident that at least one of the above properties becomes inferior and also shows a short service life when used as a cutting tool.

上述のように、この発明のSi34基焼結材料は、高靭
性および高強度を有し、さらに耐熱衝撃性および耐摩耗
性にもすぐれているので、特にこれらの特性が要求され
る苛酷な条件下での切削に切削工具として用いた場合に
すぐれた性能を発揮し、切削機械の省力化および高性能
化に十分対応することができるなど工業上有用な特性を
有するのである。
As described above, the Si 3 N 4 based sintered material of the present invention has high toughness and high strength, and is also excellent in thermal shock resistance and abrasion resistance. It exhibits excellent performance when used as a cutting tool for cutting under severe conditions, and has industrially useful characteristics such as being able to sufficiently cope with labor saving and high performance of a cutting machine.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−41771(JP,A) 特開 昭62−70263(JP,A) 特開 昭55−109275(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-41771 (JP, A) JP-A-62-70263 (JP, A) JP-A-55-109275 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化ジルコニウム:0.1〜20%、 窒化ジルコニウム:0.1〜14%、 Mg-Si-Zr−O−N系の結合相:3〜15%、 を含有し、残りが針状晶のβ−窒化けい素と不可避不純
物からなる組成(以上容量%)を有することを特徴とす
る高靭性および高強度を有する窒化けい素基焼結材料。
(1) Zirconium oxide: 0.1 to 20%, zirconium nitride: 0.1 to 14%, Mg-Si-Zr-ON-based binder phase: 3 to 15%, and the remainder is acicular. A high-toughness and high-strength silicon nitride-based sintered material characterized by having a composition of β-silicon nitride and unavoidable impurities (at least volume%).
JP2076349A 1990-02-07 1990-03-26 Silicon nitride based sintered material with high toughness and high strength Expired - Lifetime JP2712737B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2076349A JP2712737B2 (en) 1990-03-26 1990-03-26 Silicon nitride based sintered material with high toughness and high strength
US07/649,482 US5130279A (en) 1990-02-07 1991-02-01 Silicon nitride based sintered material and process of manufacturing same
DE69102892T DE69102892T2 (en) 1990-02-07 1991-02-05 Sintered material based on silicon nitride and method for producing the same.
EP91101513A EP0441316B1 (en) 1990-02-07 1991-02-05 Silicon nitride based sintered material and process of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076349A JP2712737B2 (en) 1990-03-26 1990-03-26 Silicon nitride based sintered material with high toughness and high strength

Publications (2)

Publication Number Publication Date
JPH03275565A JPH03275565A (en) 1991-12-06
JP2712737B2 true JP2712737B2 (en) 1998-02-16

Family

ID=13602881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076349A Expired - Lifetime JP2712737B2 (en) 1990-02-07 1990-03-26 Silicon nitride based sintered material with high toughness and high strength

Country Status (1)

Country Link
JP (1) JP2712737B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300205A (en) 1995-05-09 1996-11-19 Mitsubishi Materials Corp Cutting tool made of silicon nitride sintered material excellent in chipping resisting property
JP6240034B2 (en) * 2014-06-27 2017-11-29 京セラ株式会社 Silicon nitride substrate, circuit board including the same, and electronic device

Also Published As

Publication number Publication date
JPH03275565A (en) 1991-12-06

Similar Documents

Publication Publication Date Title
JPS6227033B2 (en)
JPS58185477A (en) High speed cutting ceramic for cutting tool
JPS638075B2 (en)
JPH05155662A (en) Silicon nitride sintered body excellent in wear resistance
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JP2778179B2 (en) Manufacturing method of silicon nitride based sintered material with high toughness and high strength
JPS5918157A (en) Aluminum oxide ceramic for cutting tool
JP2778189B2 (en) Fracture resistant silicon nitride based sintered material with high toughness and high strength
JPS6041020B2 (en) Alumina ceramic with high strength and hardness
JPH05301762A (en) Production of cutting tool with high toughness made of aluminum oxide-based ceramic
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JPS6257597B2 (en)
JPH07267738A (en) Wear resistant silicon nitride sintered compact and its production
JP4383225B2 (en) Ceramic sintered body, cutting insert, cutting tool and manufacturing method thereof
JP3082432B2 (en) Manufacturing method of aluminum oxide based ceramic cutting tool with excellent toughness
JPS6257598B2 (en)
JPS6257596B2 (en)
JPS593073A (en) Sialon base sintered material for cutting tool and antiabrasive tool
JPS6253474B2 (en)
JPS61295271A (en) Titanium compound base high hardness sintered body
JPS6251228B2 (en)
JP3082434B2 (en) Manufacturing method of aluminum oxide based ceramic cutting tool with excellent toughness
JPS6366796B2 (en)
JPH05116006A (en) Carbon-nitride titanium group cermet cutting tool excellent in heat resistant plastic deformability
JPS6241194B2 (en)