JPS59232904A - Manufacture of electrically conductive thin film - Google Patents

Manufacture of electrically conductive thin film

Info

Publication number
JPS59232904A
JPS59232904A JP58104961A JP10496183A JPS59232904A JP S59232904 A JPS59232904 A JP S59232904A JP 58104961 A JP58104961 A JP 58104961A JP 10496183 A JP10496183 A JP 10496183A JP S59232904 A JPS59232904 A JP S59232904A
Authority
JP
Japan
Prior art keywords
thin film
conductive thin
carrier gas
manufacture
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58104961A
Other languages
Japanese (ja)
Inventor
Masaru Ozaki
勝 尾崎
Yukihiro Ikeda
幸弘 池田
Tatsumi Arakawa
荒川 辰美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58104961A priority Critical patent/JPS59232904A/en
Publication of JPS59232904A publication Critical patent/JPS59232904A/en
Priority to US06/904,823 priority patent/US4701317A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/125Carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/282Carbides, silicides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Abstract

PURPOSE:To manufacture a thin film having high electric conductivity at a relatively low heating temp. by heating diethynylbenzene together with a carrier gas such as a rare gas or nitrogen. CONSTITUTION:O-, m-, p-diethynylbenzene or a mixture thereof is heated to a temp. close to the m.p. or above, and it is introduced into an atmosphere heated to >=500 deg.C, usually 500- about 3,300 deg.C, preferably about 600-1,000 deg.C in an electric furnace or the like together with a carrier gas such as a rare gas, e.g., He or Ar, nitrogen or hydrogen after dilution to about 1-50%, preferably 5- 20% to form an electrically conductive thin film. This film can be used as a surface coating layer for a heat resistant material such as quartz or a crystalline substrate used in th epitaxial polymn. of NaCl or the like.

Description

【発明の詳細な説明】 本発明は、導電性薄膜の製造方法に関する。従来、炭素
系の導電性薄膜を得る方法として、メタン、エタン等の
脂肪族炭化水素またはベンゼン等の芳香族炭化水素の気
相熱分解法が最も重要な方法の一つとして考えられ、こ
れまで多くの製造方法が提案されてきた。しかし、反応
温度は一般にく鋭意検討した結果、ジェチニルベンゼン
を出発原料として用いることにより、比較的低い加熱温
度範囲でも充分高い導電性をもつ薄膜が得られることを
見い出し、本発明を成すに到った。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a conductive thin film. Conventionally, gas phase pyrolysis of aliphatic hydrocarbons such as methane and ethane or aromatic hydrocarbons such as benzene has been considered as one of the most important methods for obtaining carbon-based conductive thin films. Many manufacturing methods have been proposed. However, as a result of careful study of the reaction temperature in general, it was discovered that by using jetynylbenzene as a starting material, a thin film with sufficiently high conductivity could be obtained even at a relatively low heating temperature range, and the present invention was realized. It has arrived.

すなわち本発明は、ジェチニルベンゼンを希ガス又は窒
素のキャリアガスと共に500℃以上に加熱して得るこ
とを特徴とする導電性薄膜の製造方法である。本発明の
製造方法の目的は前述した如く導電性薄膜の製造にある
が、この薄膜は単独使用以外にも多くの耐熱材料、炭素
、セラミックある。また、本発明による導電性薄膜とは
、金属なみの高い電導度は勿論のこと、半導体領域の電
導度をもつ薄膜をも含んでいる。
That is, the present invention is a method for producing a conductive thin film, which is characterized in that it is obtained by heating jetynylbenzene together with a rare gas or a nitrogen carrier gas to 500° C. or higher. As mentioned above, the purpose of the manufacturing method of the present invention is to manufacture a conductive thin film, but this thin film can be made of many heat-resistant materials such as carbon and ceramics in addition to being used alone. Further, the conductive thin film according to the present invention includes not only a thin film having a high conductivity comparable to that of a metal but also a thin film having a conductivity of a semiconductor region.

本発明において使用するジェチニルベンゼンにはオルト
位、メタ位、メタ位の三種類あるが、いづれを用いても
よく、また、単独のほか混合して使用してもよい。さら
に他の脂肪族炭化水素、脂環族炭化水素、芳香族炭化水
素、不飽和炭化水素等と混合して使用することも可能で
ある。ジェチニルベンゼンをキャリアーガスと共に加熱
雰囲気下に導入しやすくするために、ジエテニルペンゼ
ンをその融点近くさらには融点以上に前段階で加熱して
使用することができる。これらのジェチニルベンゼンを
キャリヤーガスで通常/〜jOチ、好ましくはJ−,2
θ係の濃度に希釈して加熱雰囲気下に導入するのが好ま
しい。
There are three types of jetynylbenzene used in the present invention: ortho position, meta position, and meta position, and any of them may be used, and they may be used alone or in a mixture. Furthermore, it is also possible to use it in combination with other aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, unsaturated hydrocarbons, etc. In order to facilitate the introduction of dietynylbenzene together with the carrier gas into the heated atmosphere, diethenylbenzene can be used by heating it in the previous step near its melting point or even above its melting point. These jetynylbenzenes are usually mixed with a carrier gas, preferably J-,2
It is preferable to dilute it to a concentration of θ and introduce it into a heated atmosphere.

本発明に′おいて使用するキャリアーガスとしては、ヘ
リウム、アルゴン等の希ガス又は窒素ガスである。これ
らの不活性ガス以外に水素の使用も可能である。キャリ
アーガスの流量は、例えば円筒の内径がグθ■の場合θ
、θ/〜s t75’l、好ましくは0.05〜70分
である。
The carrier gas used in the present invention is a rare gas such as helium or argon, or nitrogen gas. In addition to these inert gases, hydrogen can also be used. For example, if the inner diameter of the cylinder is θ, the flow rate of the carrier gas is θ.
, θ/~s t75'l, preferably 0.05 to 70 minutes.

以上のジェチニルベンゼンを含むガス状の原料を夕Oθ
℃〜33θO℃(3300℃以上は電気伝導度向上の効
果がない)、好ましくは乙0θ℃〜/ 000℃の電気
炉等の加熱雰囲気下に導入することにより、目的の導電
性薄膜が得られる。膜厚/μm程度の導電性薄膜を得る
には数分〜数7θ分程度で十分である。この膜厚はキャ
リアーガスの流量との関係で決まり、前記の所要時間よ
りさらに短縮することも可能である。
Gaseous raw material containing jetinylbenzene was heated at Oθ
The desired conductive thin film can be obtained by introducing it into a heated atmosphere such as an electric furnace at a temperature of ℃ to 33θ℃ (3300℃ or higher has no effect of improving electrical conductivity), preferably 0℃ to 000℃. . Several minutes to several 7θ minutes are sufficient to obtain a conductive thin film with a film thickness of about 7 μm. This film thickness is determined by the relationship with the flow rate of the carrier gas, and it is also possible to further shorten the required time.

本発明の方法で得られる導電性薄膜を、他の多くの耐熱
性材料の表面被覆層として使用することができる。具体
的には石英、ガラス、窒化ホウ素、窒化ケイ素、酸化ア
ルミ、シリコン、ゲルマニウム、インジウムアンチモン
、ガリウムヒ素等の無機材料#に、銅、アルミニウム、
ニッケル、ステンレス等の金属材料、グラファイト、グ
ラファイト繊維、炭素繊維、カーボン粉末等の炭素材料
等が使用される。基盤としてNaCt、 KBr等のエ
ピタキシャル重合に用いられる結晶性基盤、さらにはグ
レーティング等のグラフオエピタキシャル成長(=用い
られる基盤をも、勿論使用することができる。
The conductive thin film obtained by the method of the invention can be used as a surface coating layer for many other heat-resistant materials. Specifically, inorganic materials such as quartz, glass, boron nitride, silicon nitride, aluminum oxide, silicon, germanium, indium antimony, gallium arsenide, copper, aluminum,
Metal materials such as nickel and stainless steel, carbon materials such as graphite, graphite fibers, carbon fibers, and carbon powder are used. As a substrate, it is of course possible to use a crystalline substrate used for epitaxial polymerization such as NaCt or KBr, or even a substrate used for graphite epitaxial growth such as a grating.

上記の方法は触媒を使用しない製造方法であるが、触媒
を用いる方法もまた可能である。触媒としては鉄、コバ
ルト、ニッケル等の金属及びそれらの塩化物、酸化物、
酸性塩、塩基性塩等をあげることができる。
Although the above method is a production method without using a catalyst, a method using a catalyst is also possible. Catalysts include metals such as iron, cobalt, and nickel, as well as their chlorides and oxides.
Examples include acidic salts and basic salts.

また、本発明の導電性薄膜の電気型導度はドーピング及
びインタカレーション等により向上させ得る。ドーパン
ト及びインフカラントとしては、ポリアセチレンおよび
グラファイトの研究で公知の物質を使用することができ
る。
Furthermore, the electrical type conductivity of the conductive thin film of the present invention can be improved by doping, intercalation, and the like. As dopants and infucalants it is possible to use the substances known from polyacetylene and graphite research.

本発明の製造方法は加熱原料にジェチニルベンゼンを用
いたところに特徴があり、比較的低い加熱温度範囲で十
分高い電導性の薄膜を提供する。
The manufacturing method of the present invention is characterized in that it uses jetynylbenzene as a heating raw material, and provides a thin film with sufficiently high conductivity in a relatively low heating temperature range.

この薄膜は導電性薄膜材料としてエレクトロニクス分野
で広範囲に応用されうるものである。
This thin film can be widely applied in the electronics field as a conductive thin film material.

以下、実施例により本発明をさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例/ 内径グθ■の石英製の反応管内に/♂■角の石英基板を
入れ、その反応管を電気炉で後述温度に加熱する。加熱
された反応管内に!θ℃に前加熱されたp−ジェチニル
ベンゼンをアルゴンキャリアーガスと共に70分間導入
する。そのときのガス流量は0054分、p−ジェチニ
ルベンゼンはキャリアーガスで/θチ程度の濃度に希釈
したものである。その結果、黒輝色の導電性薄膜(膜厚
約θ、!μm)が石英基板上に得られた。四端子法によ
−!− りこの薄膜の電気伝導度を測定した。その測定結果を、
電気炉の加熱温度と対比させて次に示す。
Example/ A quartz substrate with a square /♂■ corner is placed in a quartz reaction tube with an inner diameter of θ■, and the reaction tube is heated to a temperature described later in an electric furnace. Inside the heated reaction tube! p-jethynylbenzene preheated to θ° C. is introduced with argon carrier gas for 70 minutes. The gas flow rate at that time was 0054 minutes, and p-jethynylbenzene was diluted with a carrier gas to a concentration of about /θ. As a result, a bright black conductive thin film (film thickness approximately θ, !μm) was obtained on the quartz substrate. By the four terminal method! - The electrical conductivity of Riko's thin film was measured. The measurement results are
The following is a comparison with the heating temperature of an electric furnace.

加熱温度(C)   電気伝導度(Ω′″IIM−’ 
)j θ θ ℃              θ、乙
りOO″c     、20 9 θ I!7’Cto  θ 実施例コ p−ジェチニルベンゼンの代k) E m−ジェチニル
ベンゼンを用い、ガス流量θ、3々分1m−ジェチニル
ベンゼンのキャリアガス中濃度が/タチである以外は、
実施例/の場合と同じ方法で石英基板上に黒輝色の導電
性薄膜(膜厚約θ、3μm)を得た。その電気伝導度と
電気炉の加熱温度との関係は次に示すとおりである。
Heating temperature (C) Electric conductivity (Ω'''IIM-'
)j θ θ °C θ, OO″c , 20 9 θ I!7′Cto θ Example Co p-jethynylbenzene k) E Using m-jethynylbenzene, gas flow rate θ, 3 except that the concentration of 1m-jethynylbenzene in the carrier gas is /tati.
A bright black conductive thin film (film thickness approximately θ, 3 μm) was obtained on a quartz substrate in the same manner as in Example. The relationship between the electrical conductivity and the heating temperature of the electric furnace is as shown below.

加熱温度cC)   電気伝導度(Ω−1cln−1)
!θ 0℃             θ、lr7 θ
 0℃           /fり00℃     
グOθ 特許出願人 工業技術院長 一乙 −
Heating temperature cC) Electric conductivity (Ω-1cln-1)
! θ 0℃ θ, lr7 θ
0℃ /fri00℃
GuOθ Patent applicant Kazuotsu, Director of the Agency of Industrial Science and Technology −

Claims (1)

【特許請求の範囲】[Claims] ジェチニルベンゼンを希ガス又は窒素のキャリアガスと
共に、500℃以上に加熱して得ることを特徴とする導
電性薄膜の製造方法
A method for producing a conductive thin film, characterized in that it is obtained by heating jetynylbenzene to 500°C or higher together with a rare gas or nitrogen carrier gas.
JP58104961A 1983-06-14 1983-06-14 Manufacture of electrically conductive thin film Pending JPS59232904A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58104961A JPS59232904A (en) 1983-06-14 1983-06-14 Manufacture of electrically conductive thin film
US06/904,823 US4701317A (en) 1983-06-14 1986-09-08 Highly electroconductive films and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104961A JPS59232904A (en) 1983-06-14 1983-06-14 Manufacture of electrically conductive thin film

Publications (1)

Publication Number Publication Date
JPS59232904A true JPS59232904A (en) 1984-12-27

Family

ID=14394692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104961A Pending JPS59232904A (en) 1983-06-14 1983-06-14 Manufacture of electrically conductive thin film

Country Status (1)

Country Link
JP (1) JPS59232904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226405A (en) * 1984-04-24 1985-11-11 Japan Synthetic Rubber Co Ltd Production of electrically conductive material
JPS62202809A (en) * 1986-02-28 1987-09-07 Sharp Corp Production of thermally decomposed graphite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143321A (en) * 1981-03-03 1982-09-04 Japan Synthetic Rubber Co Ltd Conjugated polymer and its preparation
JPS57207329A (en) * 1981-06-15 1982-12-20 Kanebo Ltd Organic type semiconductor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143321A (en) * 1981-03-03 1982-09-04 Japan Synthetic Rubber Co Ltd Conjugated polymer and its preparation
JPS57207329A (en) * 1981-06-15 1982-12-20 Kanebo Ltd Organic type semiconductor and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226405A (en) * 1984-04-24 1985-11-11 Japan Synthetic Rubber Co Ltd Production of electrically conductive material
JPH0347303B2 (en) * 1984-04-24 1991-07-18 Japan Synthetic Rubber Co Ltd
JPS62202809A (en) * 1986-02-28 1987-09-07 Sharp Corp Production of thermally decomposed graphite
JPH048367B2 (en) * 1986-02-28 1992-02-14 Sharp Kk

Similar Documents

Publication Publication Date Title
US4701317A (en) Highly electroconductive films and process for preparing same
JPS6221867B2 (en)
JPS63214342A (en) Preparation of compound
JPS59232904A (en) Manufacture of electrically conductive thin film
JPS61232269A (en) Manufacture of boron-containing silicon carbide powder
JPH0329023B2 (en)
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JP2001257163A (en) Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device
WO1990015776A1 (en) Process for production of graphite flakes and films via low temperature pyrolysis
JPS63225591A (en) Manufacture of silicon carbide-coated graphite material
JPS62190217A (en) Electrically conductive product and production thereof
JPH0426576A (en) Silicon carbide coated carbon product and production thereof
JPH04325681A (en) Method and device for producing ceramic sintered body
CN105274489B (en) Preparation method for forming nano sheet structure network on substrate and substrate
JPH0789776A (en) Production of boron nitride coated carbon material
JPH0363538A (en) Pressure sensor
JPH072508A (en) Method for forming graphite thin film
JP2003183076A (en) Method for manufacturing pyrolytic carbon or graphite- coated carbon material
JP3220730B2 (en) Graphite wafer holding jig for atmospheric pressure CVD equipment
JP2000178751A (en) Production of silicon carbide body
JPH03295880A (en) Silicon carbide member and its production
JPS61170570A (en) Formation of conductive graphite film
JPS627860A (en) Production of thin carbonaceous film
JPH0699144B2 (en) Agglomerate composed of boron, carbon and nitrogen and method for producing the same
JP2001270712A (en) Silicon-containing gadolinium polyboride and method for producing the same