JPH0789776A - Production of boron nitride coated carbon material - Google Patents

Production of boron nitride coated carbon material

Info

Publication number
JPH0789776A
JPH0789776A JP6060831A JP6083194A JPH0789776A JP H0789776 A JPH0789776 A JP H0789776A JP 6060831 A JP6060831 A JP 6060831A JP 6083194 A JP6083194 A JP 6083194A JP H0789776 A JPH0789776 A JP H0789776A
Authority
JP
Japan
Prior art keywords
boron nitride
carbon material
boron
film
coated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6060831A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
孝幸 鈴木
Yoshihiro Kikuchi
好洋 菊池
Yasuo Hyakki
康夫 百鬼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP6060831A priority Critical patent/JPH0789776A/en
Publication of JPH0789776A publication Critical patent/JPH0789776A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride

Abstract

PURPOSE:To produce a boron nitride coated carbon material excellent in adhesion to a carbon material and thermal shock resistance. CONSTITUTION:A boron nitride coating film is formed on the surface of a carbon material by conversion in a nitrogen-contg. atmosphere to produce a boron nitride coated carbon material and a thick boron nitride coating film is further stuck on the boron nitride coating film by a method other than conversion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素材料の表面を窒化
硼素で被覆した窒化硼素被覆炭素材料の製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a boron nitride-coated carbon material in which the surface of a carbon material is coated with boron nitride.

【0002】[0002]

【従来の技術】炭素材料は優れた耐熱性を有し、高温下
で使用される各種の部材として極めて有用である。しか
しながら炭素材料には、高温での耐酸化性、場合によっ
ては化学的安定性に欠けるという問題があり、このよう
な問題点を補うために、各種セラミックスで炭素材料の
表面を被覆することが広く行われている。この被覆材の
うち、窒化硼素(BN)は、耐熱性、化学的安定性に優
れるだけでなく、熱伝導率が高い、潤滑性に優れる、電
気絶縁性、耐電圧に優れる等の特長も有している。この
ため窒化硼素被覆炭素材料は、半導体単結晶引上げ用、
アルミニウム溶融用等のルツボ、ヒーター、ホットプレ
ス用ダイス、ロケットノズルなどに使用されている。
2. Description of the Related Art Carbon materials have excellent heat resistance and are extremely useful as various members used at high temperatures. However, the carbon material has a problem that it lacks oxidation resistance at high temperature and, in some cases, chemical stability, and in order to compensate for such a problem, it is widely used to coat the surface of the carbon material with various ceramics. Has been done. Of these coating materials, boron nitride (BN) not only has excellent heat resistance and chemical stability, but also has features such as high thermal conductivity, excellent lubricity, electrical insulation, and withstand voltage. is doing. Therefore, the boron nitride-coated carbon material is used for pulling a semiconductor single crystal,
It is used for crucibles for melting aluminum, heaters, dies for hot pressing, rocket nozzles, etc.

【0003】窒化硼素を炭素材料の表面に被覆するに
は、これまでにいくつかの方法が提案されている。窒化
硼素は焼結性が悪いため、単に粒子を塗布して焼付けを
行っただけでは良好な被覆を得ることはできない。また
窒化硼素粒子を有機質バインダーに分散させて塗布した
場合は、使用可能な温度が低温に限られてしまう。そこ
で、特公昭52−8326号公報及び特公昭52−83
27号公報においては、窒化硼素粒子とシリカゾル又は
けい酸エチルエーテルとの混合物からなる被膜材料を提
案している。また特開昭60−176983号公報、特
開昭60−255698号公報等においては、CVD法
又はプラズマCVD法で炭素材料の表面に窒化硼素被膜
を形成する方法が提案されている。さらに特開平4−1
75284号公報においては、硼素水溶液又はボラジン
を有機溶媒に溶解した溶液を炭素繊維強化炭素複合材
(C/C複合材)表面に塗布し、乾燥後窒素雰囲気中で
窒化焼成して、窒化硼素被膜を形成する方法が提案され
ている。
Several methods have hitherto been proposed for coating the surface of a carbon material with boron nitride. Since boron nitride has poor sinterability, a good coating cannot be obtained simply by coating particles and baking. Further, when the boron nitride particles are dispersed in an organic binder and applied, the usable temperature is limited to a low temperature. Therefore, Japanese Patent Publication No. 52-8326 and Japanese Patent Publication No. 52-83
In Japanese Patent Publication No. 27, a coating material composed of a mixture of boron nitride particles and silica sol or ethyl ether silicate is proposed. Further, JP-A-60-176983 and JP-A-60-255698 propose methods of forming a boron nitride film on the surface of a carbon material by a CVD method or a plasma CVD method. Further, Japanese Patent Laid-Open No. 4-1
In Japanese Patent No. 75284, a boron aqueous solution or a solution of borazine dissolved in an organic solvent is applied to the surface of a carbon fiber reinforced carbon composite material (C / C composite material), dried, and then nitrided and baked in a nitrogen atmosphere to form a boron nitride film. A method of forming the is proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら特公昭5
2−8326号公報及び特公昭52−8327号公報に
示される方法では、炭素材料の表面上に窒化硼素被膜が
形成されるため、窒化硼素被膜と炭素材料の密着性が十
分とはいえず、熱衝撃を受けた場合剥離する恐れがあ
る。また窒化硼素以外にSiO2を含有することから、
Siが不純物として問題となる用途には使用できない。
また特開昭60−176983号公報、特開昭60−2
55698号公報等に示される方法では、やはり炭素材
料の表面上に窒化硼素被膜が形成されるため、炭素材料
と窒化硼素被膜との熱膨張係数の差により、剥離が生じ
やすい。さらに特開平4−175284号公報に示され
る方法においても、窒化硼素被膜の密着性が十分ではな
い。
[Problems to be Solved by the Invention] However, Japanese Patent Publication Sho 5
In the methods disclosed in JP 2-8326 B and JP 52-8327 B, since the boron nitride coating is formed on the surface of the carbon material, it cannot be said that the adhesion between the boron nitride coating and the carbon material is sufficient. May peel off when subjected to thermal shock. Since it contains SiO 2 in addition to boron nitride,
It cannot be used in applications where Si is a problem as an impurity.
Further, JP-A-60-176983 and JP-A-60-2
According to the method disclosed in Japanese Patent No. 55698, since the boron nitride film is formed on the surface of the carbon material as well, peeling easily occurs due to the difference in thermal expansion coefficient between the carbon material and the boron nitride film. Further, even in the method disclosed in JP-A-4-175284, the adhesion of the boron nitride coating film is not sufficient.

【0005】本発明は炭素材料と窒化硼素被膜との密着
性及び耐熱衝撃性に優れた、窒化硼素被覆炭素材料の製
造法を提供するものである。
The present invention provides a method for producing a boron nitride-coated carbon material which is excellent in the adhesion between the carbon material and the boron nitride coating and in the thermal shock resistance.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前述の目
的を達成するために種々検討を重ねた結果、炭素材料の
表面を転化法で窒化硼素に転化する方法及びその上面に
さらにCVD法等の方法で窒化硼素の被膜を厚付けする
という方法で炭素材料との密着性に優れた、窒化硼素被
覆炭素材料が得られることを見い出し、本発明を完成す
るに到った。
The inventors of the present invention have conducted various studies to achieve the above-mentioned object, and as a result, a method of converting the surface of a carbon material into boron nitride by a conversion method and further CVD on the upper surface thereof. The inventors have found that a boron nitride-coated carbon material having excellent adhesion to a carbon material can be obtained by a method of thickening a boron nitride coating by a method such as a method, and completed the present invention.

【0007】本発明は、窒素を含む雰囲気中で転化法に
より炭素材料の表面に窒化硼素の被膜を形成する窒化硼
素被覆炭素材料の製造法及び窒素を含む雰囲気中で転化
法により炭素材料の表面に窒化硼素の被膜を形成した
後、さらにこの上面に転化法以外の方法で窒化硼素の被
膜を厚付けする窒化硼素被覆炭素材料の製造法に関す
る。
The present invention relates to a method for producing a boron nitride-coated carbon material which forms a film of boron nitride on the surface of a carbon material by a conversion method in an atmosphere containing nitrogen, and a surface of the carbon material by a conversion method in an atmosphere containing nitrogen. The present invention relates to a method for producing a boron nitride-coated carbon material, which comprises forming a film of boron nitride on the substrate and then thickening the film of boron nitride on the upper surface by a method other than the conversion method.

【0008】本発明において用いる炭素材料は、一般に
知られている等方性や異方性の人造黒鉛材、炭素繊維強
化炭素複合材(C/C複合材)等であり、特に制限はな
い。
The carbon material used in the present invention is a generally known isotropic or anisotropic artificial graphite material, carbon fiber reinforced carbon composite material (C / C composite material) or the like, and there is no particular limitation.

【0009】炭素材料の表面を窒化硼素に転化するに
は、炭素材料と硼素化合物を反応させて窒化硼素を生成
する転化法が用いられる。具体的にはB23、B22
2O等の硼素酸化物と炭素材料とを窒素を含む雰囲気
中で反応させ、炭素材料の表面を窒化硼素に転化する方
法が好ましいが、本発明においてはこの方法に制限する
ものではなく、上記の硼素酸化物のガスを炭素材料に供
給し、それを窒素を含む雰囲気中で反応させてもよく、
また硼素酸化物と炭素粉の混合物中に炭素材料を配置
し、そこに窒素を含むガスを導入して反応を行ってもよ
い。
To convert the surface of the carbon material into boron nitride, a conversion method is used in which the carbon material and the boron compound are reacted to produce boron nitride. Specifically, B 2 O 3 , B 2 O 2 ,
A method of reacting a boron oxide such as B 2 O with a carbon material in an atmosphere containing nitrogen to convert the surface of the carbon material into boron nitride is preferable, but the present invention is not limited to this method. The above-mentioned boron oxide gas may be supplied to the carbon material and reacted in an atmosphere containing nitrogen,
Alternatively, the carbon material may be placed in a mixture of boron oxide and carbon powder, and a gas containing nitrogen may be introduced therein to carry out the reaction.

【0010】反応温度は、反応速度及び十分な厚さの窒
化硼素の被膜を形成する点で1600℃以上が好まし
く、1700℃以上であればさらに好ましい。反応雰囲
気は、窒素を含む雰囲気中で反応することが必要であ
る。即ち窒素ガス又はアンモニアなどの窒素化合物のガ
スを用いることが必要である。なお本発明においては、
最初上記の硼素酸化物と炭素材料とを、アルゴン、ヘリ
ウム等の反応に関与しない不活性ガス雰囲気又は減圧な
どの手段で窒素及び酸素を除去した雰囲気で反応させ、
炭素材料の表面を炭化硼素に転化した後、窒素を含む雰
囲気中で反応させ、炭化硼素を窒化硼素に転化しても差
し支えない。またこの場合、炭化硼素の窒化硼素への転
化が完全でなく、窒化硼素と炭素との間に炭化硼素層が
残留しても問題はない。炭化硼素に転化する場合の反応
温度及び炭化硼素を窒化硼素に転化する場合の反応温度
は、1600℃以上が好ましく、1700℃以上であれ
ばさらに好ましい。
The reaction temperature is preferably 1600 ° C. or higher, more preferably 1700 ° C. or higher, from the viewpoint of reaction rate and formation of a boron nitride film having a sufficient thickness. The reaction atmosphere needs to react in an atmosphere containing nitrogen. That is, it is necessary to use nitrogen gas or a gas of a nitrogen compound such as ammonia. In the present invention,
First, the above boron oxide and carbon material are reacted in an atmosphere in which nitrogen and oxygen are removed by an inert gas atmosphere such as argon or helium that does not participate in the reaction or a means such as decompression.
After converting the surface of the carbon material into boron carbide, the reaction may be performed in an atmosphere containing nitrogen to convert the boron carbide into boron nitride. Further, in this case, there is no problem if the conversion of boron carbide to boron nitride is not perfect and a boron carbide layer remains between the boron nitride and carbon. The reaction temperature when converting to boron carbide and the reaction temperature when converting boron carbide to boron nitride are preferably 1600 ° C. or higher, and more preferably 1700 ° C. or higher.

【0011】また本発明においては、転化法により炭素
材料の表面に窒化硼素の被膜を形成した後、さらにこの
上面に転化法以外の方法、例えばCVD法、プラズマC
VD法、窒化硼素粒子を有機バインダーに分散させて塗
布する方法等の方法で窒化硼素の被膜を厚付けしてもよ
い。
Further, in the present invention, after a film of boron nitride is formed on the surface of the carbon material by the conversion method, a method other than the conversion method is further formed on the upper surface of the carbon material, for example, CVD method, plasma C
The boron nitride coating may be thickened by a method such as the VD method or a method in which boron nitride particles are dispersed in an organic binder and applied.

【0012】[0012]

【作用】本発明によって得られる窒化硼素の被膜は、基
材の炭素材料を、窒素を含む雰囲気中で硼素化合物と反
応させることにより、表面が窒化硼素に転化して形成さ
れる。即ち上記の方法によって得られる窒化硼素被覆炭
素材料は、表面から内部に向い未反応の炭素が連続的に
増加する傾斜機能材料的構造を有するため、窒化硼素の
被膜と基材の炭素材料との密着性に優れ、さらに熱膨張
率の相違も緩和されるため、高い耐熱衝撃性を有する。
The boron nitride film obtained by the present invention is formed by converting the surface of the carbon material of the base material into boron nitride by reacting it with a boron compound in an atmosphere containing nitrogen. That is, since the boron nitride-coated carbon material obtained by the above method has a functionally graded material structure in which unreacted carbon continuously increases from the surface toward the inside, the boron nitride coating and the carbon material of the base material Since it has excellent adhesiveness and the difference in thermal expansion coefficient is alleviated, it has high thermal shock resistance.

【0013】また炭素材料の表面に転化法で窒化硼素の
被膜を形成し、さらにその上面に窒化硼素を厚付けする
場合は、最初に形成した窒化硼素の被膜は、上記と同様
に基材の炭素材料との密着性に優れ、また最初に形成し
た窒化硼素の被膜とその上面に厚付けする窒化硼素との
密着性も双方が同物質であるため優れる。さらに上記と
同様に熱膨張率の相違も緩和されるため、高い耐熱衝撃
性を有する。
When a film of boron nitride is formed on the surface of the carbon material by the conversion method and further boron nitride is thickly formed on the upper surface of the film, the film of boron nitride formed first is the same as that of the base material. The adhesion to the carbon material is excellent, and the adhesion between the initially formed film of boron nitride and the boron nitride to be thickly formed on the upper surface thereof is also excellent because they are the same substance. Further, since the difference in the coefficient of thermal expansion is alleviated similarly to the above, it has high thermal shock resistance.

【0014】[0014]

【実施例】【Example】

実施例1 20×20×5mmに加工した等方性黒鉛材(日立化成工
業製、商品名PD−600)を高周波誘導炉内に配置
し、1700℃に加熱し、一方これとは別の加熱炉内
で、酸化硼素粉と黒鉛粉の混合物を1600℃に加熱し
て酸化硼素ガスを発生させ、窒素ガスとともに前述の高
周波誘導炉内に導入し、1時間保持した。冷却後炉内か
ら取り出した試料の表面層は窒化硼素に転化されてお
り、その厚さは500μmであった。この試料を真空中
で1700℃で1時間加熱し、加熱後室温まで冷却する
という耐熱衝撃性試験を10回繰り返し行った。試験後
の試料を観察したが、窒化硼素被膜には剥離、亀裂等は
発生していなかった。
Example 1 An isotropic graphite material (manufactured by Hitachi Chemical Co., Ltd., trade name PD-600) processed to 20 × 20 × 5 mm is placed in a high-frequency induction furnace and heated to 1700 ° C., while heating different from this. In the furnace, a mixture of boron oxide powder and graphite powder was heated to 1600 ° C. to generate boron oxide gas, which was introduced into the above high frequency induction furnace together with nitrogen gas and kept for 1 hour. After cooling, the surface layer of the sample taken out of the furnace was converted to boron nitride and had a thickness of 500 μm. This sample was heated at 1700 ° C. in vacuum for 1 hour, and then the thermal shock resistance test of cooling to room temperature after heating was repeated 10 times. Observation of the sample after the test revealed that the boron nitride coating did not show peeling or cracking.

【0015】実施例2 20×20×5mmに加工したC/C複合材(日立化成工
業製、商品名PCC−2S)を高周波誘導炉内に配置
し、1750℃に加熱し、一方これとは別の加熱炉内
で、酸化硼素粉と黒鉛粉の混合物を1600℃に加熱し
て酸化硼素ガスを発生させ、アルゴンガスとともに前述
の高周波誘導炉内に導入し、30分保持した後、炉内に
窒素ガスを導入し1800℃の温度で1時間保持した。
冷却後炉内から取り出した試料の表面層は窒化硼素に転
化されており、その厚さは700μmであった。この試
料の耐熱衝撃性試験を実施例1と同様の方法で行い、試
験後の試料を観察したが、窒化硼素被膜には剥離、亀裂
等は発生していなかった。
Example 2 A C / C composite material (manufactured by Hitachi Chemical Co., Ltd., trade name PCC-2S) processed to 20 × 20 × 5 mm was placed in a high frequency induction furnace and heated to 1750 ° C. In a separate heating furnace, a mixture of boron oxide powder and graphite powder was heated to 1600 ° C. to generate boron oxide gas, which was introduced into the above-mentioned high frequency induction furnace together with argon gas, which was held for 30 minutes and then in the furnace. Nitrogen gas was introduced into the reactor and the temperature was maintained at 1800 ° C. for 1 hour.
The surface layer of the sample taken out from the furnace after cooling was converted into boron nitride and had a thickness of 700 μm. The thermal shock resistance test of this sample was performed in the same manner as in Example 1 and the sample after the test was observed, but no peeling, cracking, or the like occurred in the boron nitride coating.

【0016】実施例3 実施例1で得られた表面層が窒化硼素に転化した炭素材
料を真空加熱炉内に配置し、三塩化硼素ガスとアンモニ
アガスを炉内に導入し、温度1850℃、圧力10Torr
の状態で2時間保持した。冷却後炉内から取り出した試
料の表面には熱分解窒化硼素が析出しており、その厚さ
は200μmであった。この試料の耐熱衝撃性試験を実
施例1と同様の方法で行い、試験後の試料を観察した
が、窒化硼素被膜には剥離、亀裂等は発生していなかっ
た。
Example 3 The carbon material having the surface layer converted to boron nitride obtained in Example 1 was placed in a vacuum heating furnace, and boron trichloride gas and ammonia gas were introduced into the furnace at a temperature of 1850 ° C. Pressure 10 Torr
Was held for 2 hours. After cooling, the pyrolytic boron nitride was deposited on the surface of the sample taken out of the furnace and its thickness was 200 μm. The thermal shock resistance test of this sample was performed in the same manner as in Example 1 and the sample after the test was observed, but no peeling, cracking, or the like occurred in the boron nitride coating.

【0017】実施例4 高周波誘導炉内に黒鉛ルツボを配置し、黒鉛ルツボの内
部に酸化硼素粉を入れ、その上部に20×20×5mmに
加工したC/C複合材(日立化成工業製、商品名PCC
−2S)を配置し、アルゴンガスを炉内に導入し、17
00℃の温度で30分間保持した。次に、炉内に窒素と
アンモニアの混合ガスを導入し1700℃の温度で1時
間保持した。冷却後炉内から取り出した試料の表面層は
窒化硼素に転化されており、その厚さは600μmであ
った。この試料の耐熱衝撃性試験を実施例1と同様に行
い、試験後の試料を観察したが、窒化硼素被膜には剥
離、亀裂等は発生していなかった。
Example 4 A graphite crucible was placed in a high-frequency induction furnace, boron oxide powder was put inside the graphite crucible, and a C / C composite material (manufactured by Hitachi Chemical Co., Ltd.) processed into 20 × 20 × 5 mm was formed on the upper portion. Product name PCC
-2S) is placed and argon gas is introduced into the furnace,
Hold at a temperature of 00 ° C. for 30 minutes. Next, a mixed gas of nitrogen and ammonia was introduced into the furnace and the temperature was maintained at 1700 ° C. for 1 hour. The surface layer of the sample taken out from the furnace after cooling was converted to boron nitride and had a thickness of 600 μm. The thermal shock resistance test of this sample was performed in the same manner as in Example 1 and the sample after the test was observed, but no peeling, cracking or the like occurred in the boron nitride coating.

【0018】比較例1 20×20×5mmに加工した等方性黒鉛材(日立化成工
業製、商品名PD−600)及びC/C複合材(日立化
成工業製、PCC−2S)を真空加熱炉内に配置し、以
下実施例3と同様の方法で200μmの厚さの熱分解窒
化硼素の被膜を形成した。この試料の耐熱衝撃性試験を
実施例1と同じ条件で行おうとしたが、加熱、冷却が3
回の時点で窒化硼素被膜の剥離が発生した。
Comparative Example 1 An isotropic graphite material (manufactured by Hitachi Chemical Co., Ltd., trade name PD-600) and a C / C composite material (manufactured by Hitachi Chemical Co., Ltd., PCC-2S) processed to 20 × 20 × 5 mm were vacuum heated. The film was placed in a furnace, and a 200 μm-thick film of pyrolytic boron nitride was formed in the same manner as in Example 3 below. An attempt was made to perform a thermal shock resistance test on this sample under the same conditions as in Example 1, but heating and cooling were carried out for 3 times.
The boron nitride film peeled off at the point of time.

【0019】[0019]

【発明の効果】本発明によれば、被膜と基材の密着性が
良く、被膜と基材の熱膨張率の差が緩和されるので、耐
熱衝撃性に優れた窒化硼素被覆炭素材料を得ることがで
きる。
According to the present invention, the adhesion between the coating and the substrate is good, and the difference in the coefficient of thermal expansion between the coating and the substrate is alleviated, so that a boron nitride-coated carbon material having excellent thermal shock resistance is obtained. be able to.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒素を含む雰囲気中で転化法により炭素
材料の表面に窒化硼素の被膜を形成することを特徴とす
る窒化硼素被覆炭素材料の製造法。
1. A method for producing a boron nitride-coated carbon material, which comprises forming a film of boron nitride on the surface of the carbon material by an inversion method in an atmosphere containing nitrogen.
【請求項2】 窒素を含む雰囲気中で転化法により炭素
材料の表面に窒化硼素の被膜を形成した後、さらにこの
上面に転化法以外の方法で窒化硼素の被膜を厚付けする
ことを特徴とする窒化硼素被覆炭素材料の製造法。
2. A boron nitride film is formed on the surface of a carbon material by a conversion method in an atmosphere containing nitrogen, and then a boron nitride film is thickly formed on the upper surface by a method other than the conversion method. Method for producing boron nitride-coated carbon material.
JP6060831A 1993-07-27 1994-03-30 Production of boron nitride coated carbon material Pending JPH0789776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6060831A JPH0789776A (en) 1993-07-27 1994-03-30 Production of boron nitride coated carbon material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18429493 1993-07-27
JP5-184294 1993-07-27
JP6060831A JPH0789776A (en) 1993-07-27 1994-03-30 Production of boron nitride coated carbon material

Publications (1)

Publication Number Publication Date
JPH0789776A true JPH0789776A (en) 1995-04-04

Family

ID=26401886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6060831A Pending JPH0789776A (en) 1993-07-27 1994-03-30 Production of boron nitride coated carbon material

Country Status (1)

Country Link
JP (1) JPH0789776A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000325A1 (en) * 1997-06-30 1999-01-07 Nippon Steel Corporation Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material
JP2002235279A (en) * 2001-02-08 2002-08-23 Showa Denko Kk Vapor-grown carbon fiber coated with electrical insulator, method for producing the same, and use thereof
JP2011506248A (en) * 2007-12-13 2011-03-03 スネクマ・プロピュルシオン・ソリド How to make a refractory carbide layer on a C / C composite part
JP2015107888A (en) * 2013-12-04 2015-06-11 信越化学工業株式会社 Carbon fiber-reinforced carbon composite material
WO2022050238A1 (en) * 2020-09-01 2022-03-10 信越化学工業株式会社 Heat-resistant coat member packaged body, and method for packaging heat-resistant coat member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000325A1 (en) * 1997-06-30 1999-01-07 Nippon Steel Corporation Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material
US6194067B1 (en) * 1997-06-30 2001-02-27 Nippon Steel Corporation Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material
JP2002235279A (en) * 2001-02-08 2002-08-23 Showa Denko Kk Vapor-grown carbon fiber coated with electrical insulator, method for producing the same, and use thereof
JP2011506248A (en) * 2007-12-13 2011-03-03 スネクマ・プロピュルシオン・ソリド How to make a refractory carbide layer on a C / C composite part
JP2015107888A (en) * 2013-12-04 2015-06-11 信越化学工業株式会社 Carbon fiber-reinforced carbon composite material
WO2022050238A1 (en) * 2020-09-01 2022-03-10 信越化学工業株式会社 Heat-resistant coat member packaged body, and method for packaging heat-resistant coat member
KR20230058629A (en) 2020-09-01 2023-05-03 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-resistant coating member packaging body and heat-resistant coating member packaging method

Similar Documents

Publication Publication Date Title
JP2749759B2 (en) Ceramic heater with electrostatic chuck
US4717693A (en) Process for producing beta silicon nitride fibers
JPH0789776A (en) Production of boron nitride coated carbon material
JP3638345B2 (en) Pyrolytic boron nitride container
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
US6054187A (en) Method of manufacturing a boron carbide film on a substrate
JPS62153189A (en) Boron nitride coated crucible and production thereof
JPS61251593A (en) Crucible for production of high-purity semiconductor single crystal
JPH01104879A (en) Composite carbon fiber and its production
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JP3617676B2 (en) Method for producing silicon carbide molded body
JPS61291484A (en) Graphite crucible
JP3146737B2 (en) Plasma facing material for fusion devices
JPH03100160A (en) Production of perforated body of molybdenum silicide
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JP4105776B2 (en) Method for forming silicon carbide coating
JPS61219787A (en) Crucible for producing single crystal for high-purity semiconductor
JPH05124864A (en) Production of high purity silicon carbide body
JPH11171669A (en) Production of boron carbide film
JPH1135391A (en) Silicon carbide-coated susceptor
JPS5916969A (en) Boron nitride coated parts
JP2622609B2 (en) Sic ceramic products for semiconductor manufacturing
JPH05139870A (en) Boron carbide-coated carbon material
JPH03295880A (en) Silicon carbide member and its production
JPH0578977A (en) Production of surface-coated carbon fiber