JPS62202809A - Production of thermally decomposed graphite - Google Patents

Production of thermally decomposed graphite

Info

Publication number
JPS62202809A
JPS62202809A JP61045755A JP4575586A JPS62202809A JP S62202809 A JPS62202809 A JP S62202809A JP 61045755 A JP61045755 A JP 61045755A JP 4575586 A JP4575586 A JP 4575586A JP S62202809 A JPS62202809 A JP S62202809A
Authority
JP
Japan
Prior art keywords
graphite
argon gas
benzene
substrate
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61045755A
Other languages
Japanese (ja)
Other versions
JPH048367B2 (en
Inventor
Yoshikazu Yoshimoto
好本 芳和
Tomonari Suzuki
鈴木 友成
Yoshiyuki Tougaki
良之 東垣
Shigeo Nakajima
中島 重夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61045755A priority Critical patent/JPS62202809A/en
Publication of JPS62202809A publication Critical patent/JPS62202809A/en
Publication of JPH048367B2 publication Critical patent/JPH048367B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain thermally decomposed graphite having desired, improved anisotropy and high orientation at low temperature, by feeding a fixed amount per hour of an aromatic or unsaturated hydrocarbon to a reaction system, thermally decomposing it at low temperature and piling graphite on a substrate while controlling piling rate. CONSTITUTION:An argon gas is fed from an argon gas control system 2 to a bubble container 1 charged with an aromatic hydrocarbon such as benzene or an unsaturated hydrocarbon purified by vacuum distillation, benzene molecule is sent through a Pyrex glass tube 3 to a quartz reaction tube 4 in such a way that a flow rate of the argon gas is regulated by a valve 5 to make several mmol/hr benzene molecule, an argon gas is sent from a dilution line 6 to make number density of the benzene molecule and flow rate optimum, a growth substrate such as silicon, etc., is placed on a test specimen stand 7 and a carbon thin film 11 is attached to the inner wall. The benzene molecule is fed to the reaction tube 4. The growth substrate is kept about 1,000 deg.C or lower than it by a furnace 8 set on the outer periphery of the tube. The benzene molecule is thermally decomposed and thermally decomposed graphite having improved anisotropy is grown and formed on the substrate in a reaction atmosphere to which effects of the carbon thin film is introduced.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は、1000℃前i後またはそれ以下の比較的低
温で、熱分解CVD(化学気相堆積)法により、異方性
の優れた高配向熱分解黒鉛を製造する方法及び該熱分解
黒鉛の異方性の制御技術に関するものであり、新規な機
能素子を創作するだめの極めて有用な基本材料技術を確
立した点で技術的意義を有する。
Detailed Description of the Invention <Technical Field of the Invention> The present invention is directed to the production of highly anisotropic materials using a pyrolytic CVD (chemical vapor deposition) method at a relatively low temperature of around 1000°C or lower. This invention relates to a method for producing oriented pyrolytic graphite and a technology for controlling the anisotropy of the pyrolytic graphite, and has technical significance in that it establishes an extremely useful basic material technology for creating new functional devices. .

〈従来の技術とその問題点〉 化学的に安定で、3000℃以上の高温まで相変態せず
、熱と電気の伝導性に関して著しい異方性を有する黒鉛
の人工合成には、通常長期間に亘る高温高圧の製造プロ
セスが必要とされてきた。例えば、メタンを出発物質と
する場合には高温(約2000℃以上)で熱分解しさら
に高配向化する目的で高温高圧下での熱処理が用いられ
ている。また、高分子繊維を高温処理することによシ、
繊維状炭素を得る方法も古くから知られている。しかし
ながら、これらの方法は高温で処理するために、画一化
された構造材料としては利用できるが、異方性を制御し
た機能電子材料への応用は困難である。他方、比較的低
温で熱分解黒鉛を得る方法として、出発物質に特殊な有
機化合物を用い、脱水素反応、脱ハロゲン化水素反応、
脱炭酸反応または脱水反応等を利用した形成法も度々用
いられているが1、炭素堆積物の高配向化が達成された
例は皆無であり、従って結晶性(異方性)の制御を達成
した例も存在しない。黒鉛の異方性を利用した機能材料
または機能素子を実現するためには、低温における熱分
解黒鉛の高配向化及び異方性の制御等の新技術の確立が
必要である。
<Conventional technology and its problems> Artificial synthesis of graphite, which is chemically stable, does not undergo phase transformation even at high temperatures of 3000°C or higher, and has significant anisotropy in terms of thermal and electrical conductivity, usually requires a long period of time. A wide range of high-temperature, high-pressure manufacturing processes have been required. For example, when methane is used as a starting material, heat treatment at high temperature and high pressure is used to thermally decompose it at a high temperature (approximately 2000° C. or higher) and further improve orientation. In addition, by high-temperature treatment of polymer fibers,
Methods for obtaining fibrous carbon have also been known for a long time. However, since these methods are processed at high temperatures, although they can be used as standardized structural materials, it is difficult to apply them to functional electronic materials with controlled anisotropy. On the other hand, as a method for obtaining pyrolytic graphite at relatively low temperatures, special organic compounds are used as starting materials, and dehydrogenation, dehydrohalogenation,
Formation methods that utilize decarboxylation or dehydration reactions are often used, but there are no examples of achieving highly oriented carbon deposits, and therefore controlling crystallinity (anisotropy). There are no examples of this. In order to realize functional materials or functional devices that utilize the anisotropy of graphite, it is necessary to establish new technologies such as increasing the orientation of pyrolytic graphite at low temperatures and controlling the anisotropy.

〈発明の目的〉 本発明は、上記従来の現状に鑑みてなされたもので、1
000℃前後またはそれ以下の比較的低温で優れた異方
性を有する熱分解黒鉛を基板上に形成するとともに得ら
れた熱分解黒鉛の異方性の制御も可能とする技術を確立
したものであり、その異方性を利用した機能材料または
機能素子の実現を可能とする熱分解墨鉛の製造技術及び
該熱分解黒鉛の異方性の制御技術を提供することを目的
とする。
<Object of the invention> The present invention has been made in view of the above-mentioned conventional situation, and has the following features:
We have established a technology that allows us to form pyrolytic graphite with excellent anisotropy on a substrate at a relatively low temperature of around 000°C or lower, and also to control the anisotropy of the obtained pyrolytic graphite. The purpose of the present invention is to provide a technology for producing pyrolytic black lead and a technology for controlling the anisotropy of the pyrolytic graphite, which makes it possible to realize functional materials or functional devices utilizing its anisotropy.

〈発明の概要〉 本発明の熱分解黒鉛形成法は、芳香族炭化水素または不
飽和炭化水素を原料とし、基板上へ熱分解黒鉛を形成す
るに際して、熱分解雰囲気中に、反応管壁に付着させた
炭素薄膜の効果を導入することにより、tooo℃前後
またはそれ以下の低温で、異方性の優れた熱分解黒鉛を
堆積させるとともに基板上への該熱分解黒鉛の堆積速度
を制御することで、熱分解黒鉛の結晶性及び異方性を制
御することを特徴とする。
<Summary of the Invention> The method for forming pyrolytic graphite of the present invention uses aromatic hydrocarbons or unsaturated hydrocarbons as raw materials, and when forming pyrolytic graphite on a substrate, it adheres to the wall of a reaction tube in a pyrolysis atmosphere. By introducing the effect of a thin carbon film, it is possible to deposit pyrolytic graphite with excellent anisotropy at a low temperature of around 100°C or lower, and to control the deposition rate of the pyrolytic graphite on the substrate. This method is characterized by controlling the crystallinity and anisotropy of pyrolytic graphite.

〈実施例〉 図面は本発明の!実施例に用いられる熱分解黒鉛生成装
置のブロック構成図である。
<Example> The drawings are of the present invention! FIG. 1 is a block diagram of a pyrolytic graphite production device used in Examples.

出発物質として使用される炭化水素としては、芳香族炭
化水素または不飽和炭化水素が望ましく、これらは10
00℃前後またはそれ以下の温度で熱分解される。熱分
解黒鉛が形成される基板としては、シリコン、サファイ
ア、炭化珪素(α形及びβ形)、窒化硼素、キッシュ黒
鉛、高配向黒鉛等の単結晶または石英ガラスを用いる。
The hydrocarbon used as a starting material is preferably an aromatic hydrocarbon or an unsaturated hydrocarbon;
It is thermally decomposed at temperatures around 00°C or lower. As a substrate on which pyrolytic graphite is formed, single crystals such as silicon, sapphire, silicon carbide (α-type and β-type), boron nitride, Quiche graphite, highly oriented graphite, or quartz glass are used.

これらは約1000℃の反応温度でも変質しない条件を
満足するものでなければならない。
These must satisfy the condition that they do not deteriorate even at a reaction temperature of about 1000°C.

反応管への原料供給方法は常圧バブラー法または減圧法
を用いる。いずれの方法でも、後述する様に、原料の供
給量及び黒鉛の堆積速度を制御することにより高配向熱
分解黒鉛が得られ、異方性の制御も可能である。常圧バ
ブラー法ではキアリアガスとしてアルゴンガスを使用す
る。図面は常圧バブラー法を利用した装置構成を示して
いるが、この装置で減圧CVD法を利用することもでき
る。
A normal pressure bubbler method or a reduced pressure method is used to supply raw materials to the reaction tube. In either method, highly oriented pyrolytic graphite can be obtained by controlling the supply amount of raw materials and the deposition rate of graphite, as will be described later, and it is also possible to control anisotropy. In the normal pressure bubbler method, argon gas is used as Chiaria gas. Although the drawing shows an apparatus configuration using the normal pressure bubbler method, it is also possible to use the low pressure CVD method with this apparatus.

この場合には黒鉛の膜厚を常圧バブラー法に比べてより
均一に実現することが可能である。
In this case, it is possible to achieve a more uniform graphite film thickness than in the normal pressure bubbler method.

以下製造工程に従って説明する。The manufacturing process will be explained below.

真空蒸留による精製操作を行ったベンゼンが収納された
バブル容器l内にアルゴンガス制御系2よりアルゴンガ
スを供給してベンゼンをバブルさせ、パイレックスガラ
ス管8を介して石英反応管4ヘベンゼン分子を給送する
。この際パズル容器1内の液体ベンゼンの温度を一定に
保持してアルゴンガス流量をバルブ5で調節し、ベンゼ
ン分子の反応管4内への供給量を毎時数ミリモルに一定
制御する。一方、希釈ライン6よりアルゴンを流し、反
応管4へ給送されるベンゼン分子数密度及び流速を最適
化する。反応管4には、前述したシリコン等の成長用基
板の載置された試料台7が設置されており、その周囲の
反応管内壁には炭素薄膜を付着させている。反応管4の
外周囲には加熱炉8が友けられてお9、この加熱炉8に
よって反応管4内の成長用基板は1000℃前後または
それ以下の温度に保持されている。
Argon gas is supplied from the argon gas control system 2 into a bubble container l containing benzene purified by vacuum distillation to bubble the benzene, and benzene molecules are supplied to the quartz reaction tube 4 through the Pyrex glass tube 8. send At this time, the temperature of the liquid benzene in the puzzle container 1 is kept constant, the argon gas flow rate is adjusted by the valve 5, and the amount of benzene molecules supplied into the reaction tube 4 is controlled to be constant at several mmol per hour. On the other hand, argon is flowed through the dilution line 6 to optimize the benzene molecule number density and flow rate fed to the reaction tube 4. The reaction tube 4 is equipped with a sample stage 7 on which the aforementioned growth substrate of silicon or the like is placed, and a thin carbon film is attached to the inner wall of the reaction tube around the sample stage 7. A heating furnace 8 is provided around the outer periphery of the reaction tube 4, and the growth substrate inside the reaction tube 4 is maintained at a temperature of about 1000° C. or lower by this heating furnace 8.

反応管4内に導入されたベンゼン分子は1000℃前後
またはそれ以下の温度に加熱されて熱分解し、順次成長
用基板上に成長形成される0この際、成長形成される熱
分解黒鉛は、反応雰囲気中で反応管4に付着された炭素
薄膜の効果が導入されて異方性の優れた黒鉛となり、従
来に比べて低い温度で高配向化が達成される。また、反
応管4内に導入されるベンゼン分子の流速及び濃度を変
化させると、堆積速度が変化し、それに応じて結晶性も
変化するので異方性の制御も容易に可能となる。
The benzene molecules introduced into the reaction tube 4 are heated to a temperature of around 1000°C or lower and thermally decomposed, and are sequentially grown and formed on the growth substrate.At this time, the pyrolytic graphite that is grown and formed is In the reaction atmosphere, the effect of the carbon thin film attached to the reaction tube 4 is introduced, resulting in graphite with excellent anisotropy, and highly oriented graphite can be achieved at a lower temperature than in the past. Furthermore, by changing the flow rate and concentration of benzene molecules introduced into the reaction tube 4, the deposition rate changes and the crystallinity changes accordingly, making it possible to easily control the anisotropy.

熱分解黒鉛の結晶性または異方性は、得られた熱分解黒
鉛のC軸方向及びC軸に垂直な面内の比抵抗測定により
評価した。表1によれば、従来の低温熱分解黒鉛の面内
比抵抗の値(1〜2×l0−3Ω・、)に比べて、上記
実施例で得られた熱分解黒鉛の比抵抗値が1桁程度低く
なっており、明らかに結晶性が向上したことを示してい
る。また、熱分解黒鉛の結晶性は堆積速度に顕著に依存
し、遅い堆積速度で高配向熱分解黒鉛が得られる。
The crystallinity or anisotropy of the pyrolytic graphite was evaluated by measuring the specific resistance of the obtained pyrolytic graphite in the C-axis direction and in a plane perpendicular to the C-axis. According to Table 1, compared to the in-plane resistivity value of conventional low-temperature pyrolytic graphite (1 to 2×l0-3Ω・,), the resistivity value of pyrolytic graphite obtained in the above example is 1 It is several orders of magnitude lower, clearly indicating that the crystallinity has improved. Furthermore, the crystallinity of pyrolytic graphite is significantly dependent on the deposition rate, and highly oriented pyrolytic graphite can be obtained at slow deposition rates.

尚表1は本発明の1実施例の結果であり、本発明は何ら
これのみに限定されるものでない。
Table 1 shows the results of one example of the present invention, and the present invention is not limited to this in any way.

表1 〈発明の効果〉 本発明の熱分解黒鉛形成法によれば、熱分解雰囲気の効
果を取り込んで、異方性の優れた高配向熱分解黒鉛が、
従来より低い1000℃前後またはそれ以下の低温で得
られる。また、堆積速度を制御することにより、異方性
の制御も可能となるため、これを利用した機能電子材料
への応用を促准させることができると期待される。
Table 1 <Effects of the Invention> According to the method for forming pyrolytic graphite of the present invention, highly oriented pyrolytic graphite with excellent anisotropy can be produced by incorporating the effect of the pyrolysis atmosphere.
It can be obtained at a low temperature of around 1000°C or lower than conventionally. Furthermore, by controlling the deposition rate, it is also possible to control anisotropy, so it is expected that this will be used to promote application to functional electronic materials.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の!実施例の説明に供する熱分解黒鉛
製造装置のブロック構成図である。 l・・・バブル容器  2・・・アルゴンガス制御系3
・・・ガラス管   4・・・反応管6・・・希釈ライ
ン  7・・・試料台8・・・加熱炉
The attached drawings are of the invention! FIG. 1 is a block configuration diagram of a pyrolytic graphite manufacturing apparatus for explaining an example. l... Bubble container 2... Argon gas control system 3
... Glass tube 4 ... Reaction tube 6 ... Dilution line 7 ... Sample stage 8 ... Heating furnace

Claims (1)

【特許請求の範囲】 1、芳香族炭化水素または不飽和炭化水素を出発物質と
し、該炭化水素を毎時一定量反応系へ供給して、100
0℃前後またはそれ以下の低温熱分解により、基板上へ
異方性を有する高配向化黒鉛を形成することを特徴とす
る熱分解黒鉛の製造方法。 2、反応系として透光性中空内壁に炭素薄膜を付着させ
た反応管を用いた特許請求の範囲第1項記載の熱分解黒
鉛の製造方法。 3、炭化水素の供給量及び基板上への黒鉛の堆積速度を
制御することで、熱分解黒鉛の結晶性(異方性)を制御
する特許請求の範囲第1項又は第2項記載の熱分解黒鉛
の製造方法。
[Claims] 1. An aromatic hydrocarbon or an unsaturated hydrocarbon is used as a starting material, and a certain amount of the hydrocarbon is supplied to the reaction system every hour,
A method for producing pyrolytic graphite, which comprises forming highly oriented graphite having anisotropy on a substrate by low-temperature pyrolysis at around 0°C or lower. 2. The method for producing pyrolytic graphite according to claim 1, which uses a reaction tube having a transparent hollow inner wall with a thin carbon film attached as the reaction system. 3. The heat treatment according to claim 1 or 2, which controls the crystallinity (anisotropy) of pyrolytic graphite by controlling the amount of hydrocarbon supplied and the rate of graphite deposition on the substrate. A method for producing decomposed graphite.
JP61045755A 1986-02-28 1986-02-28 Production of thermally decomposed graphite Granted JPS62202809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045755A JPS62202809A (en) 1986-02-28 1986-02-28 Production of thermally decomposed graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045755A JPS62202809A (en) 1986-02-28 1986-02-28 Production of thermally decomposed graphite

Publications (2)

Publication Number Publication Date
JPS62202809A true JPS62202809A (en) 1987-09-07
JPH048367B2 JPH048367B2 (en) 1992-02-14

Family

ID=12728112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045755A Granted JPS62202809A (en) 1986-02-28 1986-02-28 Production of thermally decomposed graphite

Country Status (1)

Country Link
JP (1) JPS62202809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540316A (en) * 2005-05-13 2008-11-20 クリー インコーポレイテッド Method and apparatus for producing silicon carbide crystal
JP2011187675A (en) * 2010-03-09 2011-09-22 Mitsubishi Electric Corp Method for manufacturing silicon carbide semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232904A (en) * 1983-06-14 1984-12-27 Agency Of Ind Science & Technol Manufacture of electrically conductive thin film
JPS6037045A (en) * 1983-08-09 1985-02-26 Ricoh Co Ltd Information memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232904A (en) * 1983-06-14 1984-12-27 Agency Of Ind Science & Technol Manufacture of electrically conductive thin film
JPS6037045A (en) * 1983-08-09 1985-02-26 Ricoh Co Ltd Information memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540316A (en) * 2005-05-13 2008-11-20 クリー インコーポレイテッド Method and apparatus for producing silicon carbide crystal
JP2011187675A (en) * 2010-03-09 2011-09-22 Mitsubishi Electric Corp Method for manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JPH048367B2 (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US3900540A (en) Method for making a film of refractory material having bi-directional reinforcing properties
EP0201696B1 (en) Production of carbon films
Liu et al. Morphologies and growth mechanisms of zirconium carbide films by chemical vapor deposition
JPS62202809A (en) Production of thermally decomposed graphite
Figueras et al. Growth and properties of CVD-SiC layers using tetramethylsilane
JPS634069A (en) Production of thermally decomposed graphite
JPS61222989A (en) Production of carbon thin film
Wang et al. Synthesis of diamond from polymer seeded with nanometer-sized diamond particles
US3398013A (en) Preparation of films of boron carbide
JPH06115913A (en) Synthesis of boron carbonitride
JPH0510425B2 (en)
JPH072508A (en) Method for forming graphite thin film
RU2149215C1 (en) Method of preparing pyrolytic carbon
WO1992019791A1 (en) Halogen-assisted chemical vapor deposition of diamond
JPS63476A (en) Production of thermally decomposed isotropic carbon
JPH01313393A (en) Method for synthesizing diamond in vapor phase
JPH03141199A (en) Production of single crystal cvd diamond
JPS61223179A (en) Method for synthesizing inter-carbon layer compound
JPS62226808A (en) Method for synthesizing graphite interlayer compound
Butler et al. In-Situ Diagnostics of Diamond CVD
JPH01301586A (en) Vapor synthesis of diamond
JPS6390833A (en) Manufacture of compound thin film of group ii and vi elements
Narasimhan et al. Effect of chemical vapor deposition process parameters on the growth aspects of titanium carbide whiskers
JPH03233943A (en) Vapor epitaxial growth apparatus
JPS62171988A (en) Crystal production apparatus