JPS63225591A - Manufacture of silicon carbide-coated graphite material - Google Patents

Manufacture of silicon carbide-coated graphite material

Info

Publication number
JPS63225591A
JPS63225591A JP5778987A JP5778987A JPS63225591A JP S63225591 A JPS63225591 A JP S63225591A JP 5778987 A JP5778987 A JP 5778987A JP 5778987 A JP5778987 A JP 5778987A JP S63225591 A JPS63225591 A JP S63225591A
Authority
JP
Japan
Prior art keywords
silicon carbide
graphite
base material
silicon
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5778987A
Other languages
Japanese (ja)
Inventor
杉本 行廣
角南 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5778987A priority Critical patent/JPS63225591A/en
Publication of JPS63225591A publication Critical patent/JPS63225591A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭化珪素被覆黒鉛材料、特にエピタキシャル
成長ウェハーを製造する際ウェハー固定治具として使用
する炭化珪素被覆黒鉛材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a silicon carbide-coated graphite material, particularly a silicon carbide-coated graphite material used as a wafer fixing jig when producing an epitaxially grown wafer.

(従来の技術とその間II) 半導体素子を製造する場合、エピタキシャル工程は重要
な工程の1つである。近年はシリコンのエピタキシャル
のみならず数多(の化合物半導体σエピタキシャルが実
用化されているが、量的にはシリコン半導体素子が格段
に多い、したがって、以下シリコンのエピタキシャルを
例にとって説明する。
(Prior Art and Interval II) When manufacturing semiconductor devices, an epitaxial process is one of the important processes. In recent years, not only silicon epitaxial devices but also a large number of (compound semiconductor σ epitaxial devices) have been put into practical use, but silicon semiconductor devices are far more numerous in terms of quantity. Therefore, silicon epitaxial devices will be explained below as an example.

シリコンのエピタキシャル成長法には四塩化珪素(st
(L)の水素還元法やモノシラン(SiHオ)の熱分解
法などがあり、一方、そのためのエピタキシャル成長装
置としては縦型、シリンダー型、水平型の加熱炉が多く
使用されている。これらの加熱炉内にあってシリコンウ
ェハーなどのウェハーはう二へ−面定治具の上に水平に
置かれ、高周波誘導加熱もしくは赤外線加熱により例え
ば1000℃以上に加熱が行われる。
The silicon epitaxial growth method uses silicon tetrachloride (st
There are hydrogen reduction methods for (L) and thermal decomposition methods for monosilane (SiH2), and on the other hand, vertical, cylindrical, and horizontal heating furnaces are often used as epitaxial growth apparatuses for this purpose. In these heating furnaces, a wafer such as a silicon wafer is placed horizontally on a surface fixing jig and heated to, for example, 1000° C. or higher by high-frequency induction heating or infrared heating.

したがって、エピタキシャル成長装置で使用されるウェ
ハー固定治具は熱的および化学的に安定な材料から作ら
れることが要求されており、通常黒鉛材料を基材として
、その表面に熱的、化学的に安定な炭化珪素膜を化学蒸
着法により形成したものが用いられている。ここで、基
材として黒鉛材料を用いるのは高周波誘導加熱ができる
こと、熱伝導性が良く均一加熱できること、耐熱衝撃性
に優れていること、超高純度化が可能であることなどに
よる。また、炭化珪素膜で被覆するのは、エピタキシャ
ル処理中に多孔質体である黒鉛材料から吸蔵ガスが放出
されウェハーが汚染されることを防止するためである。
Therefore, the wafer fixing jig used in epitaxial growth equipment is required to be made of thermally and chemically stable materials, and is usually made of graphite material with a thermally and chemically stable surface. A silicon carbide film formed by chemical vapor deposition is used. Here, the reason why graphite material is used as the base material is that it can be heated by high frequency induction, has good thermal conductivity and can be heated uniformly, has excellent thermal shock resistance, and can be made into ultrahigh purity. Further, the purpose of covering the wafer with a silicon carbide film is to prevent the wafer from being contaminated due to release of occluded gas from the porous graphite material during epitaxial processing.

ところで、エビタキシャル工程では、室温から1000
〜1200℃の温度範囲で急熱急冷が繰り返されるため
、使用されるウェハー固定治具にはこのような急激な熱
サイクルに対して優れた耐久性を有することが要求され
る。しかるに、従来の炭化珪素被覆黒鉛材料治具では急
激な熱サイクルを受けると黒鉛材料である基材と炭化珪
素膜の眉間が剥離しやすい欠点があり、ウェハー固定治
具の耐久寿命が短かかった。
By the way, in the epitaxial process, the temperature from room temperature to 1000
Since rapid heating and cooling are repeated in the temperature range of ~1200°C, the wafer fixing jig used is required to have excellent durability against such rapid thermal cycles. However, with conventional silicon carbide-coated graphite material jigs, the graphite material base material and the silicon carbide film tend to separate between the eyebrows when subjected to rapid thermal cycles, resulting in a short durable life of the wafer fixing jig. .

(発明の目的) 本発明の目的は、エピタキシャル成長ウェハーを製造す
る際にウェハー固定治具として使用する炭化珪素被覆黒
鉛材料における従来の前記問題点を解決すべく、急熱急
冷が繰り返えされても黒鉛材料の基材と炭化珪素膜の眉
間の剥離が起こりにくく、したがって、ウェハー固定治
具として耐久寿命の長い炭化珪素被覆黒鉛材料の製造方
法を提供することである。
(Object of the Invention) The object of the present invention is to solve the above-mentioned problems with the conventional silicon carbide-coated graphite material used as a wafer fixing jig when manufacturing epitaxially grown wafers. Another object of the present invention is to provide a method for manufacturing a silicon carbide-coated graphite material that is less likely to cause separation between the graphite material base material and the silicon carbide film, and therefore has a long durable life as a wafer fixing jig.

(発明の構成) 本発明者らがかかる目的を達成すべく、種々検討をした
ところ、炭化珪素膜の化学蒸着に先立って、黒鉛材料か
ら成る基材表面を珪化することによってその表面を密着
性の良い炭化珪素基地とすることにより眉間剥離が効果
的に防止できることを知り、本発明を完成した。
(Structure of the Invention) In order to achieve this object, the present inventors conducted various studies and found that, prior to chemical vapor deposition of a silicon carbide film, the surface of a base material made of graphite material is silicified to make the surface adhesive. The present invention was completed based on the knowledge that glabellar peeling can be effectively prevented by using a silicon carbide base with good compatibility.

ここに、本発明は、黒鉛材料から成る基材を不活性雰囲
気下1400〜1800℃の温度で2〜10時間二酸化
珪素と反応させて表層部を珪化して炭化珪素基地とした
後、該炭化珪素基地上に化学蒸着法により炭化珪素膜を
形成することを特徴とする炭化珪素被覆黒鉛材料の製造
方法である。
Here, the present invention involves reacting a base material made of graphite material with silicon dioxide at a temperature of 1400 to 1800°C for 2 to 10 hours in an inert atmosphere to silicify the surface layer to form a silicon carbide base, and then This is a method for producing a silicon carbide-coated graphite material, which is characterized by forming a silicon carbide film on a silicon base by a chemical vapor deposition method.

すなわち、本発明は、黒鉛材料から成る基材と炭化珪素
膜の眉間の剥離を起こりにくクシて炭化珪素被覆黒鉛材
料の熱サイクルに対する耐久性を向上させウェハー固定
治具の耐久寿命を延長することを目的として、化学蒸着
法による炭化珪素膜形成を行う前に予め黒鉛材料の基材
の表層部を不活・性雰囲気下1400〜1800℃の温
度で2〜10時間二酸化珪素との反応により珪化せんと
するものである。珪化した基材の表層部の構造の詳細は
正確には分からないが、前述の処理条件によって得られ
た基材表層部を「炭化珪素基地」と称する。
That is, the present invention prevents peeling between the graphite material base material and the silicon carbide film, improves the durability of the silicon carbide-coated graphite material against thermal cycles, and extends the durable life of the wafer fixing jig. For this purpose, before forming a silicon carbide film by chemical vapor deposition, the surface layer of the graphite material base material is reacted with silicon dioxide at a temperature of 1400 to 1800°C for 2 to 10 hours in an inert atmosphere. It is intended to prevent silicification. Although the details of the structure of the surface layer portion of the silicified base material are not precisely known, the surface layer portion of the base material obtained under the above-mentioned processing conditions is referred to as a "silicon carbide base."

(作用) 以下、本発明をさらに具体的に説明する。(effect) The present invention will be explained in more detail below.

一般に、通常の化学蒸着法においては、適宜加熱炉内に
おかれた黒鉛材料から成る基材(以下、単に「黒鉛基材
」という)に炭化水素などの炭素源とハロゲン化珪素化
合物などの珪素源を還元性気流中で導入し、減圧下で加
熱して両者の熱分解により生成した炭化珪素を加熱状態
の黒鉛基材面に直接沈着させて炭化珪素膜を形成する方
法が行われている。したがって、黒鉛基材と炭化珪素膜
との結合性が悪く両者の密着強度が低いため、急。
Generally, in the normal chemical vapor deposition method, a carbon source such as a hydrocarbon and a silicon such as a silicon halide compound are added to a base material made of graphite material (hereinafter simply referred to as "graphite base material") placed in an appropriate heating furnace. A method is being used in which a silicon carbide film is formed by introducing a source into a reducing air stream, heating it under reduced pressure, and directly depositing silicon carbide produced by thermal decomposition of both onto the heated graphite substrate surface. . Therefore, the bond between the graphite base material and the silicon carbide film is poor, and the adhesion strength between the two is low.

激な熱サイクルを受けた場合にこの黒鉛基材と炭化珪素
膜の眉間で剥離が起こりやすい。
When exposed to severe heat cycles, separation between the graphite base material and the silicon carbide film tends to occur between the eyebrows.

本発明者らは炭化珪素被覆黒鉛材料の前記のような基材
と膜の眉間am現象を低減してウェハー固定治具の耐久
寿命を延長する方法について種々検討した結果、化学蒸
着法による炭化珪素膜形成を行う前に予め黒鉛基材の表
層部を二酸化珪素との反応により珪化すれば、黒鉛基材
と炭化珪素膜の結合性が改善され基材と膜の眉間剥離低
減に有効であることを見出したものである。
The present inventors investigated various methods for reducing the above-mentioned glabellar am phenomenon between the base material and film of silicon carbide-coated graphite material and extending the durable life of the wafer fixing jig. If the surface layer of the graphite base material is silicified by reaction with silicon dioxide before film formation, the bond between the graphite base material and the silicon carbide film will be improved and it will be effective in reducing the separation between the eyebrows of the base material and the film. This is what we discovered.

ここで、二酸化珪素との反応により黒鉛基材の表層部が
珪化されるのは、まず黒鉛基材と二酸化珪素の接触部で
下記0式の反応が進行し、生成した一酸化珪素が黒鉛基
材の表層部を拡散する際、下記0式の反応が進行するか
らである。
Here, the reason why the surface layer of the graphite base material is silicified due to the reaction with silicon dioxide is that the reaction of formula 0 below first proceeds at the contact area between the graphite base material and silicon dioxide, and the generated silicon monoxide becomes a graphite group. This is because the reaction of the following formula 0 proceeds when diffusing the surface layer of the material.

Sing + C−3iO軸)十CO軸) ・・ ・■
2C+SIO(g)→Si C十〇O(g)  ・ ・
 ・■二酸化珪素と黒鉛基材の反応温度を1400〜1
800℃と限定したのは、1400℃未満の温度では0
式の一酸化珪素生成反応がほとんど起こらず、したがっ
て、■式による珪化が進行しないからである。
Sing + C-3iO axis) 10CO axis) ・・■
2C + SIO (g) → Si C 〇O (g) ・ ・
・■ The reaction temperature of silicon dioxide and graphite base material is 1400-1
The reason for limiting it to 800℃ is that it is 0 at temperatures below 1400℃.
This is because the silicon monoxide production reaction of the formula (2) hardly occurs, and therefore the silicification according to the formula (2) does not proceed.

一方、1800℃を越える温度では0式の反応が著しく
進行して黒鉛基材の表層部を多孔質化するため、後で化
学蒸着法により形成される炭化珪素膜と黒鉛基材の密着
強度が低くなり逆に基材と膜の眉間剥離が起こりやすく
なるからである。
On the other hand, at temperatures exceeding 1800°C, the reaction of equation 0 proceeds significantly and makes the surface layer of the graphite base material porous, which reduces the adhesion strength between the silicon carbide film and the graphite base material that will be formed later by chemical vapor deposition. This is because if the temperature decreases, peeling between the base material and the membrane becomes more likely to occur.

また、二酸化珪素と黒鉛基材の反応時間を2〜10時間
と限定したのは、2時間未満の反応時間では黒鉛基材表
層部の珪化が不十分で基材と膜の眉間剥離低減効果が現
れないためであり、一方、10時間を越える反応時間で
は黒鉛基材表層部の多孔質化による悪影響が起こり始め
るからである。
In addition, the reason why the reaction time between silicon dioxide and the graphite base material was limited to 2 to 10 hours is because if the reaction time is less than 2 hours, the surface layer of the graphite base material will not be sufficiently silicified, and the effect of reducing the peeling between the base material and the membrane will be insufficient. On the other hand, if the reaction time exceeds 10 hours, an adverse effect due to the porosity of the surface layer of the graphite base material begins to occur.

また、二酸化珪素と黒鉛基材の反応雰囲気を不活性雰囲
気と限定したのは、黒鉛基材の酸化消耗を防止するため
である。不活性雰囲気としてはAr雰囲気、He雰囲気
等が挙げられる0反応圧力については特に限定するもの
ではなし1が、減圧下では■弐の反応が促進されるので
減圧下で二酸化珪素と黒鉛基材の反応を行うことが好ま
しい。
Furthermore, the reason why the reaction atmosphere between silicon dioxide and the graphite base material is limited to an inert atmosphere is to prevent oxidative consumption of the graphite base material. Examples of the inert atmosphere include Ar atmosphere, He atmosphere, etc. 0 There is no particular limitation on the reaction pressure 1, but the reaction of Preferably, the reaction is carried out.

本発明で使用する二酸化珪素の供給源、供給形。Source and form of silicon dioxide used in the present invention.

態については特に限定するものではないが、板状、粒状
等の石英ガラスなどを用いることができる。
There are no particular limitations on the form, but plate-like, granular, etc. quartz glass can be used.

したがって、二酸化珪素と黒鉛基材との反応形態につい
ても、二酸化珪素が粉末の場合には黒鉛基材表面に散布
することにより、同じ(板材の場合には単に黒鉛基材表
面上に載置するだけでよい。
Therefore, regarding the reaction form between silicon dioxide and graphite substrate, if silicon dioxide is a powder, it can be applied to the surface of the graphite substrate in the same manner (in the case of a plate, it can be simply placed on the surface of the graphite substrate). Just that is enough.

また、本発明における黒鉛基材については特に限定する
ものではなく、あらゆる種類の黒鉛素材を使用すること
ができる。
Further, the graphite base material in the present invention is not particularly limited, and all kinds of graphite materials can be used.

このようにして珪化処理された黒鉛基材、つまり炭化珪
素基地には化学蒸着法によって炭化珪素膜が形成される
が、本発明において化学蒸着法による炭化珪素膜の形成
については何ら制限されず、例えば慣用の手段であって
もよい。
A silicon carbide film is formed by chemical vapor deposition on the graphite base material, that is, the silicon carbide base, which has been silicified in this way, but the present invention is not limited in any way to the formation of a silicon carbide film by chemical vapor deposition. For example, conventional means may be used.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

実施例1 大きさ30X30X10mm(7)黒鉛基材(2500
℃黒鉛化量)の上部にこれと同サイズの石英ガラスを載
荷して横型電気炉内にセットし、1500℃、1700
℃の各温度でそれぞれ5時間加熱処理を行った。処理時
のAr流量は5ONcc/分で一定とした。加熱処理後
の各黒鉛基材を温度1350℃に加熱して5ic2オと
CH#をモル比で1.1の割合で含む■、を流通し、圧
力50torrで2時間化学蒸着を行った。形成さ熟た
炭化珪素膜の厚さは30μmであった。
Example 1 Size 30X30X10mm (7) Graphite base material (2500
A piece of quartz glass of the same size was loaded on top of the graphitized glass, set in a horizontal electric furnace, and heated at 1500°C and 1700°C.
Heat treatment was performed for 5 hours at each temperature of .degree. The Ar flow rate during the treatment was kept constant at 5ONcc/min. After the heat treatment, each graphite substrate was heated to a temperature of 1350° C., and chemical vapor deposition was performed at a pressure of 50 torr for 2 hours by passing through 2 containing 5ic2O and CH# at a molar ratio of 1.1. The thickness of the fully formed silicon carbide film was 30 μm.

このようにして得られた炭化珪素被覆黒鉛材料をAr雰
囲気下で1200℃の温度まで加熱した後、温度20℃
の水中に投下して急′冷するという熱サイクルを繰返し
与えて、黒鉛基材と炭化珪素膜の眉間剥離が起こるまで
のサイクル数を測定した。得られた結果を第1表に示す
、なお、このような熱サイクル試験は1種の加速試験で
あり、実用上の耐用寿命を相対的に比較評価することが
可能である。
The silicon carbide-coated graphite material thus obtained was heated to a temperature of 1200°C in an Ar atmosphere, and then heated to a temperature of 20°C.
The graphite substrate was repeatedly subjected to a thermal cycle of being dropped into water and rapidly cooled, and the number of cycles until the graphite base material and silicon carbide film peeled off between the eyebrows was measured. The obtained results are shown in Table 1. Note that such a thermal cycle test is a type of accelerated test, and it is possible to comparatively evaluate the practical service life.

第1表には石英ガラスとの反応を起こなわない黒鉛基材
、および石英ガラスとの反応温度が本発明の範囲外にあ
る温度1300℃、1900℃で5時間加熱処理を行っ
た黒鉛基材について前記と同様な化学蒸着法により炭化
珪素膜を形成し、前記と同様な方法により熱サイクル実
験を行った。結果を比較例として併せて示す。
Table 1 lists graphite base materials that do not react with quartz glass, and graphite base materials that have been heat-treated for 5 hours at temperatures of 1300°C and 1900°C, where the reaction temperature with quartz glass is outside the range of the present invention. A silicon carbide film was formed using the same chemical vapor deposition method as described above, and a thermal cycle experiment was conducted using the same method as described above. The results are also shown as a comparative example.

第1表より明らかなごとく、化学蒸着法による炭化珪素
膜形成前に1400℃以上の温度で石英ガラスとの反応
により黒鉛基材の表層部を珪化した炭化珪素被覆黒鉛材
料の炭化珪素膜の耐剥離性は、かかる前処理を全〈実施
しない比較例の試験磁5や1400℃に達しない温度で
石英ガラスとの反応を行った比較例の試験胤4と比べて
いずれも向上していることがわかる。しかしながら、石
英ガラスとの反応温度が1800℃を越える比較例の試
験磁3の場合には炭化珪素膜の耐剥離性が低下し始めた
As is clear from Table 1, the resistance of the silicon carbide film of the silicon carbide-coated graphite material is that the surface layer of the graphite base material is silicified by reaction with quartz glass at a temperature of 1400°C or higher before forming the silicon carbide film by chemical vapor deposition. The peelability was improved compared to Comparative Example Test Magnet 5, in which such pretreatment was not performed at all, and Comparative Example Test Magnet 4, in which the reaction with quartz glass was performed at a temperature below 1400°C. I understand. However, in the case of Comparative Example Test Magnet 3 in which the reaction temperature with quartz glass exceeded 1800° C., the peeling resistance of the silicon carbide film began to deteriorate.

したがって、石英ガラスとの反応温度は1400〜18
00℃が好ましいことがわかる。
Therefore, the reaction temperature with quartz glass is 1400~18
It can be seen that 00°C is preferable.

第1表 実施例2 大きさ30 X 30 X 10m−の黒鉛基材(25
00℃黒鉛化品)の上部にこれと同サイズの石英ガラス
を載荷して横型電気炉内にセットし、1500℃の温度
でそれぞれ3.8時間加熱処理を行った。処理時の^r
流量は5ONcc/分で一定とした。加熱処理後の黒鉛
基材に実施例1と同様な化学蒸着法により炭化珪素膜を
形成し、実施例1と同様な方法により熱サイクル実験を
行った。結果を第2表にまとめて示す。
Table 1 Example 2 Graphite base material (25
A piece of quartz glass of the same size was loaded onto the top of the 00° C. graphitized product, set in a horizontal electric furnace, and heat-treated at a temperature of 1500° C. for 3.8 hours. During processing ^r
The flow rate was kept constant at 5ONcc/min. A silicon carbide film was formed on the heat-treated graphite base material by the same chemical vapor deposition method as in Example 1, and a thermal cycle experiment was conducted in the same manner as in Example 1. The results are summarized in Table 2.

第2表には温度1500℃で石英ガラスとの反応時間が
本発明の範囲外にある1時間、15時間の加熱処理を行
った黒鉛基材について実施例1と同様な化学蒸着法によ
り炭化珪素膜を形成し、実施例1と同様な方法により熱
サイクル実験を行ったときの結果も併せて示す。
Table 2 shows graphite substrates that have been heat-treated at a temperature of 1,500°C for 1 hour and 15 hours, which are outside the scope of the present invention, for silicon carbide by the same chemical vapor deposition method as in Example 1. The results of forming a film and conducting a thermal cycle experiment in the same manner as in Example 1 are also shown.

第2表より明らかなごとく、本発明にしたがって、温度
1500℃で2時間以上石英ガラスとの反応により黒鉛
基材の表層部を珪化した後、化学蒸着法による炭化珪素
膜の形成を行った炭化珪素被覆黒鉛材料の膜の耐剥離性
は、前処理を全〈実施しない比較例の試験磁5や石英ガ
ラスとの反応時間が2時間に達しない比較例の試験嵐9
と比べいずれも向上していることがわかる。しかしなが
ら、石英ガラスとの反応時間が10時間を越える比較例
の試験ぬ8の場合には炭化珪素膜の耐剥離性が低下し始
めた。したがって、石英ガラスとの反応時間は2〜10
時間が好ましいことがわかる。
As is clear from Table 2, according to the present invention, the surface layer of the graphite base material was silicified by reaction with quartz glass at a temperature of 1500°C for 2 hours or more, and then a silicon carbide film was formed by chemical vapor deposition. The peeling resistance of the film of silicon-coated graphite material was determined by Test Magnet 5, a comparative example in which no pretreatment was performed, and Test Arashi 9, a comparative example in which the reaction time with quartz glass did not reach 2 hours.
It can be seen that both are improved compared to However, in the case of Comparative Test No. 8 in which the reaction time with quartz glass exceeded 10 hours, the peeling resistance of the silicon carbide film began to deteriorate. Therefore, the reaction time with quartz glass is 2 to 10
It turns out that time is favorable.

第2表 (発明の効果) 以上説明したごとく、本発明によれば、ウェハー固定治
具として使用する炭化珪素被覆黒鉛材料の炭化珪素膜の
眉間剥離を著しく低減することが可能であり、したがっ
てエピタキシャル成長法によりウェハーを製造する際の
ウェハー固定治具の耐久寿命を延長できるので、ウェハ
ー製造コスト引下げ効果は極めて大きい。
Table 2 (Effects of the Invention) As explained above, according to the present invention, it is possible to significantly reduce the peeling of the silicon carbide film of the silicon carbide coated graphite material used as a wafer fixing jig, and therefore the epitaxial growth This method can extend the life of the wafer fixing jig when manufacturing wafers, so the effect of reducing wafer manufacturing costs is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 黒鉛材料から成る基材を不活性雰囲気下1400〜18
00℃の温度で2〜10時間二酸化珪素と反応させて該
基材の表層部を珪化して炭化珪素基地とした後、該炭化
珪素基地上に化学蒸着法により炭化珪素膜を形成するこ
とを特徴とする、炭化珪素被覆黒鉛材料の製造方法。
A base material made of graphite material is heated to 1400 to 18
After reacting with silicon dioxide at a temperature of 00°C for 2 to 10 hours to silicify the surface layer of the base material to form a silicon carbide base, a silicon carbide film is formed on the silicon carbide base by chemical vapor deposition. A method for producing a silicon carbide-coated graphite material.
JP5778987A 1987-03-12 1987-03-12 Manufacture of silicon carbide-coated graphite material Pending JPS63225591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5778987A JPS63225591A (en) 1987-03-12 1987-03-12 Manufacture of silicon carbide-coated graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5778987A JPS63225591A (en) 1987-03-12 1987-03-12 Manufacture of silicon carbide-coated graphite material

Publications (1)

Publication Number Publication Date
JPS63225591A true JPS63225591A (en) 1988-09-20

Family

ID=13065650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5778987A Pending JPS63225591A (en) 1987-03-12 1987-03-12 Manufacture of silicon carbide-coated graphite material

Country Status (1)

Country Link
JP (1) JPS63225591A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282112A (en) * 1988-05-10 1989-11-14 Sumitomo Electric Ind Ltd Coated carbonaceous material
JPH03501062A (en) * 1989-04-13 1991-03-07 エンドレス ウント ハウザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー pressure sensor
JPH03201527A (en) * 1989-12-28 1991-09-03 Toshiba Ceramics Co Ltd Stacking boat
JPH04352679A (en) * 1991-05-28 1992-12-07 Ibiden Co Ltd Graphite-made wafer retaining jig
GB2307337B (en) * 1995-11-14 2000-10-18 Sumitomo Chemical Co Member for production device of semi conductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282112A (en) * 1988-05-10 1989-11-14 Sumitomo Electric Ind Ltd Coated carbonaceous material
JP2567455B2 (en) * 1988-05-10 1996-12-25 住友電気工業株式会社 Coated carbon material
JPH03501062A (en) * 1989-04-13 1991-03-07 エンドレス ウント ハウザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー pressure sensor
JPH03201527A (en) * 1989-12-28 1991-09-03 Toshiba Ceramics Co Ltd Stacking boat
JPH04352679A (en) * 1991-05-28 1992-12-07 Ibiden Co Ltd Graphite-made wafer retaining jig
GB2307337B (en) * 1995-11-14 2000-10-18 Sumitomo Chemical Co Member for production device of semi conductor

Similar Documents

Publication Publication Date Title
JPH1012692A (en) Dummy wafer
JPS63225591A (en) Manufacture of silicon carbide-coated graphite material
JP2000302576A (en) Graphite material coated with silicon carbide
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JP2004075493A (en) CVD-SiC COVERED GRAPHITE MATERIAL AND ITS PRODUCTION METHOD
JP2003183076A (en) Method for manufacturing pyrolytic carbon or graphite- coated carbon material
JPS6115150B2 (en)
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH1135391A (en) Silicon carbide-coated susceptor
JPH0426576A (en) Silicon carbide coated carbon product and production thereof
JPH03295880A (en) Silicon carbide member and its production
JPH07263366A (en) Susceptor and its manufacture
JPS6117910B2 (en)
JPH01286980A (en) Silicon carbide-coated graphite material and production thereof
JP2002128580A (en) METHOD FOR MANUFACTURING HIGH-PURITY SiC-COATED CARBON SUBSTANCE
JPH06163439A (en) Semiconductor diffusion oven boat and manufacture thereof
JPS6140640B2 (en)
JPH03217016A (en) Materials for semiconductor manufacturing apparatus
JPS5826167B2 (en) Silicon carbide manufacturing method
JPS60176913A (en) Insulating silicon carbide powder and its production
JPH05124864A (en) Production of high purity silicon carbide body
JPH0154432B2 (en)
JPS6385075A (en) Diffusion furnace process tube for semiconductor
JPH0644566B2 (en) Jig for heat treatment