JPS59186265A - Method for manufacture of gas diffusion electrode for battery - Google Patents

Method for manufacture of gas diffusion electrode for battery

Info

Publication number
JPS59186265A
JPS59186265A JP58060149A JP6014983A JPS59186265A JP S59186265 A JPS59186265 A JP S59186265A JP 58060149 A JP58060149 A JP 58060149A JP 6014983 A JP6014983 A JP 6014983A JP S59186265 A JPS59186265 A JP S59186265A
Authority
JP
Japan
Prior art keywords
oxide
gas diffusion
diffusion electrode
catalysis
synthesized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58060149A
Other languages
Japanese (ja)
Inventor
Fumio Oo
大尾 文夫
Akira Oota
璋 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58060149A priority Critical patent/JPS59186265A/en
Publication of JPS59186265A publication Critical patent/JPS59186265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide an economical gas diffusion electrode with decreased precious metal catalyzer used therein but having catalysis equal to or higher than the conventional electrode having a larger amount of precious metal catalyzer, by combining manganese oxide, precious metal oxide having catalysis, and active carbon. CONSTITUTION:A mixture of a water solution of manganese sulfate including hydrophilic polymer and a water solution of salt of metal having catalysis is added with caustic alkali to be alkalinized and a hydroxide is thereby synthesized. Then oxygen is sent into the same and an oxide is synthesized by air oxidation. The synthesized oxide is heat-decomposed in an oxidizing or non- oxidizing atmosphere and an oxide having highly active catalysis is produced. This oxide is kneaded together with active carbon, current conducting material, and water-repellent bonding agent and then spread over the current collector 3, and thus the gas diffusion electrode 4 integrating the catalyzer layer 2 spread over the current collector 3 is provided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正極活物質に酸素を使用する電池、例えばボ
タン形空気電池のガス拡散電極の製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a gas diffusion electrode for a battery using oxygen as the positive electrode active material, such as a button-type air battery.

従来例の構成とその問題点 従来、ガス拡散電極の触媒には種々のものが提案されて
いる。これらのうち活性炭を触媒に使用するものでは、
これを白金(Pt)、パラジウム(pa)、銀(Ag 
) + マ”ガン酸化物(MnOx)などと混合するか
、又は活性炭上にこれらを付着させることにより、特性
を改良しようという提案がなされてきた。一般に、長期
にわたって使用する燃料電池や二次電池などでは、高価
な貴金属を多量に使用してもその価値はあるが、近年補
聴器関係に電源として使用されはじめたボタン形の空気
電池は−次電池であシ、通常2〜3週間で寿命がつきて
取り換えられるため、高価な貴金属を多量に使用するこ
とは、コスト高を招いて好ましくない。
Conventional Structures and Problems Various types of catalysts for gas diffusion electrodes have been proposed in the past. Among these, those that use activated carbon as a catalyst,
This is platinum (Pt), palladium (pa), silver (Ag
) + Proposals have been made to improve the characteristics by mixing with magganese oxide (MnOx) or by depositing these on activated carbon.In general, it is used for fuel cells and secondary batteries that are used for a long period of time. Although there is value in using large amounts of expensive precious metals, the button-shaped air batteries that have recently begun to be used as power sources for hearing aids are secondary batteries and usually have a lifespan of 2 to 3 weeks. Therefore, it is undesirable to use a large amount of expensive precious metals because this increases the cost.

従って、安価な触媒が望まれ安価なマンガン酸化物を触
媒に応用する試みが種々なされているが、充分に満足し
つるものは現在のところ得られていない。
Therefore, an inexpensive catalyst is desired, and various attempts have been made to apply inexpensive manganese oxides to catalysts, but so far nothing has been found that is fully satisfactory.

発明の目的 本発明はマンガン酸化物と、他の触媒能を有した貴金属
酸化物と、活性炭とを組み合わせて、貴金属触媒の添加
量を減少させても従来の貴金属触媒を多量に用いたもの
と同等ないしはそれ以上の触媒活性を有する安価なガス
拡散電極を提供することを目的とする。
Purpose of the Invention The present invention combines manganese oxide, other noble metal oxides with catalytic ability, and activated carbon to reduce the amount of noble metal catalyst added, compared to conventional noble metal catalysts that use a large amount. The object of the present invention is to provide an inexpensive gas diffusion electrode having the same or higher catalytic activity.

発明の構成 すなわち本発明は、親水性ポリマーを含有した硫酸マン
ガン水溶液と、他の触媒能を有した金属の塩類の水溶液
との混合液に、か性アルカリを加えてアルカリ性液とし
て水酸化物を合成し、ついで酸素を送シ込んで空気酸化
により酸化物を合成し、この合成物を酸化性雰囲気、あ
るいは非酸化性雰囲気下で熱分解して高活性な触媒能を
有した酸化物となした後、活性炭、導電材及び撥水性結
着剤とともに混練して集電体に塗着することを特徴とす
るものである。
The constitution of the invention, that is, the present invention is to add a caustic alkali to a mixed solution of an aqueous solution of manganese sulfate containing a hydrophilic polymer and an aqueous solution of salts of other metals having catalytic ability to form a hydroxide as an alkaline solution. Then, oxygen is pumped in to synthesize an oxide by air oxidation, and this compound is thermally decomposed in an oxidizing or non-oxidizing atmosphere to become an oxide with highly active catalytic ability. After that, the mixture is kneaded with activated carbon, a conductive material, and a water-repellent binder, and then applied to a current collector.

なお、親水性ポリマーとしては、保護コロイドの作用を
有する水溶性高分子が有効であり、例えばポリビニルア
ルコール、ポリメチルメタアクリレート、ゼラチン、ア
ラビアゴム、ポリビニルピロリドン、アルギン酸のナト
リウム塩の群から選ばれるものであれば良い。また、そ
の添加量としては、硫酸マンガフ1壬ル/l溶液、及び
他の触媒能を有する金属例えば白金、銀、鉄、コバルト
In addition, as the hydrophilic polymer, a water-soluble polymer having the action of a protective colloid is effective, and for example, one selected from the group of polyvinyl alcohol, polymethyl methacrylate, gelatin, gum arabic, polyvinylpyrrolidone, and sodium salt of alginic acid. That's fine. In addition, the amount added is 1 liter/l solution of mangaf sulfate, and other metals having catalytic ability, such as platinum, silver, iron, and cobalt.

パラジウム、ニッケル、セリウムの1モル/ l水溶液
に対し、重量パーセントで0.05〜0.3%添加した
ものが有効である。0.05%以下では保護コロイドと
して有効に作用せず、0.3%以上であると親水性ポリ
マー同志が凝集するため触媒金属が均一に分散しない。
It is effective to add 0.05 to 0.3% by weight to a 1 mol/l aqueous solution of palladium, nickel, and cerium. If it is less than 0.05%, it will not act effectively as a protective colloid, and if it is more than 0.3%, the hydrophilic polymers will aggregate and the catalyst metal will not be uniformly dispersed.

なお、熱分解によって得られるマンガン酸化物と他の金
属触媒との構成比は、マンガン酸化物に対し金属触媒が
重量パーセントで0.03〜6.0%の範囲で十分有効
であった。
Note that the composition ratio of the manganese oxide obtained by thermal decomposition to other metal catalysts was sufficiently effective in a range of 0.03 to 6.0% by weight of the metal catalyst to the manganese oxide.

本発明によって得られた酸化物が後述のように高い活性
を示す理由は、現在のところ十分に解明できていないが
、次の様に考えられる。すなわち、上記のような条件下
で作られた酸化物、特にマンガン酸化物の表面状態、あ
るいは内部状態を電子顕微鏡で観察すると、細孔の発達
した多孔体であり、この多孔体に一様に他の触媒能を有
した金属、あるいは金属酸化物が散在しており、これが
一つの要因と考えられる。特に分解温度が300〜60
0℃、加熱時間が1〜3時間のものは、細孔分布が均一
で、しかも表面積の大きい緻密な多孔体となっており、
酸素との接触面積が最大であり、触媒活性点が多大であ
る。
The reason why the oxide obtained by the present invention exhibits high activity as described below has not been fully elucidated at present, but is thought to be as follows. In other words, when observing the surface or internal state of an oxide, especially a manganese oxide, produced under the above conditions using an electron microscope, it is found that it is a porous body with well-developed pores. Other metals or metal oxides with catalytic ability are scattered, and this is considered to be one of the factors. Especially when the decomposition temperature is 300 to 60
When heated at 0°C for 1 to 3 hours, the pore distribution is uniform and the surface area is dense, making it a dense porous body.
It has the largest contact area with oxygen and a large number of catalytic active sites.

これは、硫酸マンガン水溶液及び他の触媒能を有する金
属の塩類の混合水溶液をアルカリ性液下で水酸化物を合
成し、ついで酸素を吹き込んで水酸化物を空気酸化して
酸化物に合成する際に、保護コロイドの作用を成す前述
の親水性ポリマーを所定量添加することにより、生成す
る水酸化物が反応時に相互に凝縮して二次粒子を形成し
、粒径が数十ミクロン以上の塊状となることを防止し、
水酸化物を加熱分解して、酸化物を合成した時に粒径が
数十ミクロン以上の塊状とならず、数ミクロンの微細々
触媒粒子が生成し、触媒としての有効表面積の減少を防
止することによる。
This is a process in which hydroxides are synthesized from an aqueous solution of manganese sulfate and a mixed aqueous solution of salts of other metals with catalytic ability under an alkaline solution, and then oxygen is blown in to air oxidize the hydroxides to synthesize oxides. By adding a predetermined amount of the above-mentioned hydrophilic polymer that acts as a protective colloid, the generated hydroxides condense with each other during the reaction to form secondary particles, forming lumps with a particle size of several tens of microns or more. to prevent
When hydroxide is thermally decomposed and oxide is synthesized, it does not form into lumps with a particle size of several tens of microns or more, and fine catalyst particles of several microns are generated to prevent a decrease in the effective surface area as a catalyst. by.

また合成された水酸化物の粒径が数ミクロンで、比較的
均一な粒子が合成されるため、酸化時における脱水反応
が個々の粒子において一定の割合で進行し、性状の均一
な触媒粒子が製造可能となることにもよる。
In addition, because the particle size of the synthesized hydroxide is several microns and relatively uniform particles are synthesized, the dehydration reaction during oxidation proceeds at a constant rate in each particle, resulting in catalyst particles with uniform properties. It also depends on whether it can be manufactured.

実施例の説明 以下、本発明の詳細な説明する。Description of examples The present invention will be explained in detail below.

まず、硫酸マンガンの1モル/l水溶液を調製する。次
に他の触媒塩、例えば硫酸第1鉄の1モル/召水溶液を
調製する。次にこれ等の水溶液に親水性ポリマー、例工
ばポリビニルピロリドンを重量ノ(−セントで0.05
〜0.3 %各々添加[7、完全に溶解させる。次に前
記の硫酸マンガン水溶液と硫酸第1鉄水溶液を良く撹拌
し々がら所定の割合に混合し、次にpHが10〜13に
なるようにか性アルカリ、例えば水酸化カリウムを添加
して水酸化物を合成する。次に酸素を200 cc 7
分の流量で吹き込み水酸化物を空気酸化して、酸化物の
沈澱物を得る。次に沈澱物をろ過し、温水でろ液が中性
近くになるまで洗浄し、真空乾燥器で乾燥させる。
First, a 1 mol/l aqueous solution of manganese sulfate is prepared. Next, a 1 mol/water solution of another catalyst salt, such as ferrous sulfate, is prepared. Next, a hydrophilic polymer, such as polyvinylpyrrolidone, is added to these aqueous solutions at a weight of 0.05 cents (-cents).
Add ~0.3% each [7, completely dissolve. Next, the manganese sulfate aqueous solution and the ferrous sulfate aqueous solution are mixed in a predetermined ratio with thorough stirring, and then a caustic alkali, such as potassium hydroxide, is added so that the pH becomes 10 to 13, and the water is Synthesize oxides. Next, add 200 cc of oxygen to 7
The hydroxide is air oxidized by blowing at a flow rate of 100 min to obtain an oxide precipitate. Next, the precipitate is filtered, washed with warm water until the filtrate becomes nearly neutral, and dried in a vacuum dryer.

次に酸化性、あるいは非酸化性雰囲気の電気炉中にて温
度3o○〜600 ’Cで、1〜3時間加熱を行なって
、主成分が高活性なマンガン酸化物である触媒材を得る
。この触媒材30M量部、活性炭40重量部、撥水性結
着剤としてのフッ素樹脂20重量部及び導電材としての
黒鉛10重量部の混合物に適量の水を加えてペースト状
とし、これを集電体であるニッケルネットに塗着後乾燥
し、総厚が0.4〜0.5mmのガス拡散電極を作製す
る。この電極をニッケル極を対極として陰分極を行なっ
て、酸化水銀参照電極に対する電位変化、つまり分極特
性を比較した。この隙の電極面積は1 cyAとし、電
解液としては濃度30重量%の水酸化カリウム水溶液を
用いて比較した。第1図はその結果を示すものであり、
図中の記号は、下記の条件で合成した触媒材を示す。
Next, heating is performed in an electric furnace in an oxidizing or non-oxidizing atmosphere at a temperature of 3°C to 600'C for 1 to 3 hours to obtain a catalyst material whose main component is a highly active manganese oxide. A suitable amount of water is added to a mixture of 30 M parts of catalyst material, 40 parts by weight of activated carbon, 20 parts by weight of fluororesin as a water-repellent binder, and 10 parts by weight of graphite as a conductive material, and this is made into a paste. After coating on a nickel net as a body, it is dried to produce a gas diffusion electrode with a total thickness of 0.4 to 0.5 mm. This electrode was cathodically polarized using a nickel electrode as a counter electrode, and the potential change, that is, the polarization characteristics, was compared with respect to a mercury oxide reference electrode. The electrode area of this gap was set to 1 cyA, and a potassium hydroxide aqueous solution with a concentration of 30% by weight was used as the electrolytic solution for comparison. Figure 1 shows the results.
Symbols in the figure indicate catalyst materials synthesized under the following conditions.

(A)  マンガン酸化物に銀を0.08重量%添加し
たもの。なお銀は硝酸銀水溶液からの析出物とし、親水
性ポリマーとしてはポリビニルアルコールを0.07重
量%添加した・ CB+  マンガン酸化物に鉄を0.2重量%添加した
もの。なお鉄は、硫酸第1鉄溶液からの析出物とし、親
水性ポリマーとしてはポリビニルピロリドンを0.15
重量%添加した。
(A) 0.08% by weight of silver was added to manganese oxide. The silver was precipitated from an aqueous silver nitrate solution, and the hydrophilic polymer was 0.07% by weight of polyvinyl alcohol. CB+ Manganese oxide with 0.2% by weight of iron. Note that iron is precipitated from a ferrous sulfate solution, and polyvinylpyrrolidone is used as a hydrophilic polymer at 0.15%.
% by weight was added.

(C)  マンガン酸化物にニッケルを2.5重量類添
加したもの。なお、ニッケルは硫酸ニッケル溶液からの
析出物とし、親水性ポリマーとしてはアルギン酸ナトリ
ウムを0.05重量%添加した。
(C) Manganese oxide with 2.5% nickel added by weight. Note that nickel was precipitated from a nickel sulfate solution, and 0.05% by weight of sodium alginate was added as a hydrophilic polymer.

[D)  従来品で、活性炭に1重量類白金を付着させ
たもの。
[D] Conventional product with 1-weight platinum attached to activated carbon.

(El  従来品で、活性炭のみのもの。(El Conventional product, only activated carbon.

(Fl  前記(C)で、親水性ポリマーを添加しない
でニッケルを添加したもの。
(Fl) In (C) above, nickel is added without adding a hydrophilic polymer.

なお、本発明品である(A)〜(C)、及び比較例の(
F)は、いずれも熱分解温度300〜600℃、加熱時
間を1〜3時間として、酸化性雰囲気あるいは非酸化性
雰囲気中で処理を行なったものである・第2図は本発明
のガス拡散電極を用いたボタン形空気電池の半断面図で
あう、図中1は正極容器で、その内部には、触媒層2を
集電体であるニッケルネット3に塗着一体化したガス拡
散電極4゜撥水膜5.セパレータ6が挿入されている。
In addition, the products (A) to (C) of the present invention, and the comparative example (
F) was treated in an oxidizing atmosphere or a non-oxidizing atmosphere at a thermal decomposition temperature of 300 to 600°C and a heating time of 1 to 3 hours. Figure 2 shows the gas diffusion of the present invention. This is a half-sectional view of a button-type air battery using electrodes. In the figure, 1 is a positive electrode container, and inside it is a gas diffusion electrode 4° in which a catalyst layer 2 is coated and integrated with a nickel net 3 that is a current collector. Water repellent film 5. A separator 6 is inserted.

まだ負極亜鉛7は負極容器8内に充填されている。9は
絶縁封口ガスケット、10は空気拡散と万一の漏液を防
止するだめの支持紙、11は空気供給孔である。
The negative electrode zinc 7 is still filled in the negative electrode container 8. 9 is an insulating sealing gasket, 10 is a supporting paper for preventing air diffusion and liquid leakage, and 11 is an air supply hole.

発明の効果 以上のように本発明によれば、マンガン酸化物を主体と
して安価で、かつ高活性の触媒能を有するガス拡散電極
を得ることができるものである。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a gas diffusion electrode which is mainly composed of manganese oxide and has an inexpensive and highly active catalytic ability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガス拡散電極の分極特性を示す図、第2図は同
ガス拡散電極を備えたボタン形空気電池の半断面図であ
る。 1・・・・・・正極容器、2・・・・・・触媒層、3・
・・・・・集電体、4・・・・・・ガス拡散電極、6・
・・・・・セノ(レータ、7・・・・・・負極亜鉛、8
・・・・・・負極容器。
FIG. 1 is a diagram showing the polarization characteristics of a gas diffusion electrode, and FIG. 2 is a half-sectional view of a button-shaped air cell equipped with the same gas diffusion electrode. 1...Positive electrode container, 2...Catalyst layer, 3.
... Current collector, 4 ... Gas diffusion electrode, 6.
...Seno (rater, 7...Negative electrode zinc, 8
...Negative electrode container.

Claims (3)

【特許請求の範囲】[Claims] (1)親水性ポリマー葡含有した硫酸マンガン水溶液と
、触媒能を有する金属の塩類の水溶液とを混合し、かつ
か性アルカリでアルカリ性液とする工程と、この混合液
に酸素を吹き込み、前記マンガンと触媒能を有する金属
の水酸化物を合成する工程と、得られた水酸化物を加熱
分解して酸化物とする工程と、前記酸化物を活性炭粉末
、導電材及び撥水性結着剤と混練して集電体に塗着する
工程とからなる電池用ガス拡散電極の製造法。
(1) A step of mixing an aqueous solution of manganese sulfate containing a hydrophilic polymer with an aqueous solution of metal salts having catalytic ability and making it an alkaline solution with an alkaline alkali, and blowing oxygen into this mixed solution, a step of synthesizing a metal hydroxide having catalytic ability; a step of thermally decomposing the obtained hydroxide to form an oxide; and a step of combining the oxide with activated carbon powder, a conductive material, and a water-repellent binder. A method for manufacturing a gas diffusion electrode for a battery, which comprises the steps of kneading and applying it to a current collector.
(2)親水性ポリマーとして、ポリビニルアルコール、
ポリメチルメタアクリレート、ゼラチン。 アラビアゴム、ポリビニルピロリドン、アルギン酸塩か
らなる群より選択したいずれかを0.05〜0.3重量
%含有してなる特許請求の範囲第1項記載の電池用ガス
拡散電極の製造法。
(2) Polyvinyl alcohol as a hydrophilic polymer,
Polymethyl methacrylate, gelatin. The method for producing a gas diffusion electrode for a battery according to claim 1, which contains 0.05 to 0.3% by weight of any one selected from the group consisting of gum arabic, polyvinylpyrrolidone, and alginate.
(3)触媒能を有する金属が、白金、銀、鉄、コバルト
、パラジウム、ニッケル、セリウムカラなる群よシ選択
されたいずれかである特許請求の範囲第1項記載の電池
用ガス拡散電極の製造法。
(3) Production of a gas diffusion electrode for a battery according to claim 1, wherein the metal having catalytic ability is any one selected from the group consisting of platinum, silver, iron, cobalt, palladium, nickel, and cerium. Law.
JP58060149A 1983-04-06 1983-04-06 Method for manufacture of gas diffusion electrode for battery Pending JPS59186265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58060149A JPS59186265A (en) 1983-04-06 1983-04-06 Method for manufacture of gas diffusion electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58060149A JPS59186265A (en) 1983-04-06 1983-04-06 Method for manufacture of gas diffusion electrode for battery

Publications (1)

Publication Number Publication Date
JPS59186265A true JPS59186265A (en) 1984-10-23

Family

ID=13133802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58060149A Pending JPS59186265A (en) 1983-04-06 1983-04-06 Method for manufacture of gas diffusion electrode for battery

Country Status (1)

Country Link
JP (1) JPS59186265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382780A1 (en) * 1987-08-24 1990-08-22 Battery Technologies Inc. Metal and metal oxide catalysed electrodes for electrochemical cells, and methods of making same
US6667127B2 (en) 2000-09-15 2003-12-23 Ballard Power Systems Inc. Fluid diffusion layers for fuel cells
US7811959B2 (en) * 2003-11-13 2010-10-12 Samsung Sdi Co., Ltd. Metal oxide-carbon composite catalyst support and fuel cell comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382780A1 (en) * 1987-08-24 1990-08-22 Battery Technologies Inc. Metal and metal oxide catalysed electrodes for electrochemical cells, and methods of making same
US6667127B2 (en) 2000-09-15 2003-12-23 Ballard Power Systems Inc. Fluid diffusion layers for fuel cells
US7811959B2 (en) * 2003-11-13 2010-10-12 Samsung Sdi Co., Ltd. Metal oxide-carbon composite catalyst support and fuel cell comprising the same

Similar Documents

Publication Publication Date Title
US4500647A (en) Three layer laminated matrix electrode
US20060252635A1 (en) Method for making catalysts for fuel cell oxygen electrodes
JP2005118671A (en) Fine particle for electrode catalyst, its dispersion liquid and method for preparing the dispersion liquid
JP2009518795A (en) Bifunctional air electrode
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
WO2004055244A1 (en) Electrode catalyst for oxygen reduction and gas diffusion electrode
KR101418050B1 (en) Catalyst for oxygen reduction electrode and preparing method thereof
JP2003288905A (en) Method of manufacturing for electrode catalyst
JP5197590B2 (en) Multilayer catalyst for fuel cell oxygen electrode
JP3236686B2 (en) Gas electrode and its manufacturing method
JP3628756B2 (en) Gas diffusion electrode
JPS59186265A (en) Method for manufacture of gas diffusion electrode for battery
JP2000067877A (en) Manufacture of electrode catalyst
US3171757A (en) Fuel cell electrodes and method of making the same
JP4716825B2 (en) Manufacturing method of gas diffusion electrode
JP2019137596A (en) Composite material and method for producing the same, catalyst and metal air battery
JP2005332662A (en) Catalyst for fuel cell and its manufacturing method
JPS598273A (en) Electrode for phosphotic acid fuel battery
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
JPH06235083A (en) Catalyst for gas electrode and production thereof
JPH0551150B2 (en)
JPH06124734A (en) Oxygen catalytic electrode and air cell using the electrode
JPS62222566A (en) Nickel electrode for alkaline battery
JPH06124712A (en) Catalyst for phosphoric acid fuel cell and manufacture of the catalyst
JP2005190726A (en) Catalyst carrying electrode, mea for fuel cell, and fuel cell