JPS59129751A - Superheat-resistant sintered alloy and its production - Google Patents

Superheat-resistant sintered alloy and its production

Info

Publication number
JPS59129751A
JPS59129751A JP58003687A JP368783A JPS59129751A JP S59129751 A JPS59129751 A JP S59129751A JP 58003687 A JP58003687 A JP 58003687A JP 368783 A JP368783 A JP 368783A JP S59129751 A JPS59129751 A JP S59129751A
Authority
JP
Japan
Prior art keywords
powder
cutting
mgo
sintered alloy
phase forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58003687A
Other languages
Japanese (ja)
Other versions
JPS6117899B2 (en
Inventor
Hironori Yoshimura
吉村 寛範
Naohisa Ito
直久 伊藤
Kenichi Nishigaki
賢一 西垣
Katsuaki Anzai
安在 克章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58003687A priority Critical patent/JPS59129751A/en
Priority to US06/570,282 priority patent/US4587095A/en
Priority to KR1019840000098A priority patent/KR890004539B1/en
Priority to DE19843401008 priority patent/DE3401008A1/en
Publication of JPS59129751A publication Critical patent/JPS59129751A/en
Publication of JPS6117899B2 publication Critical patent/JPS6117899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To obtain a superheat-resistant sintered alloy consisting of a solid soln. and a bond phase forming component and having high toughness by sintering a green compact consisting of (Ti, W) Cn solid soln. powder, MgO powder and W powder at a high temp. and decarborizing the solid soln. powder with evaporated MgO. CONSTITUTION:A green compact consisting of 10-65% (Ti, W) Cn powder, 0.5-10.0% MgO powder and the balance W powder and compounded with 0.5- 10.0% >=1 kind of Al2O3 and Y2O3 powder is sintered at a high temp. of 1,800- 2,700 deg.C in vacuum or an inert gaseous atmosphere. A superheat-resistant sintered alloy contg. 10-65% (Ti, W) CN which is a hard phase forming component, 0.01-1.0% MgO, and further 0.5-10.0% >=1 kind of Al2O and Y2O3 and consisting of the balance W which is a bond phase forming component and unavoidable impurities is thus obtd. The alloy has high hardness and is highly resistant to wear, plastic deformation and impact respectively and is therefore suitable for a hot working tool such as cutting tool.

Description

【発明の詳細な説明】 この発明は、高靭性および高硬度を有し、さらにすぐれ
た耐摩耗性、耐塑性変形性、および耐衝撃性を有し、し
たがって、これらの特性が要求される高速切削や、高速
シ切削および深切シ込み切削などの重切削に用いられる
切削工具として、さらに熱間圧延ロール、熱間線引ロー
ル、熱間圧縮ダイス、熱間鍛造ダイス、および熱間押出
しパンチなどの比較的長時間高温にさらされる熱間加工
用工具として使用した場合にすぐれた性能を発揮するタ
ングステン(以下Wで示す)を結合相とする超耐熱焼結
合金およびその製造法に関するものである。
Detailed Description of the Invention The present invention has high toughness and hardness, as well as excellent wear resistance, plastic deformation resistance, and impact resistance. Cutting tools used for cutting and heavy cutting such as high-speed cutting and deep cutting, as well as hot rolling rolls, hot drawing rolls, hot compression dies, hot forging dies, and hot extrusion punches. This invention relates to a super heat-resistant sintered alloy with tungsten (hereinafter referred to as W) as a binder phase, which exhibits excellent performance when used as a hot working tool exposed to high temperatures for a relatively long period of time, and a method for producing the same. .

近年、加工能率向上のために高速切削化や高速 ゛9切
削化が検討されているが、切削速度を高くしたり、送υ
量を多くしたりすると、切削工具の刃先温度が上昇し、
刃先が摩耗よりは、むしろ高温に起因する塑性変形によ
って使用寿命に至る場合が多い。
In recent years, high-speed cutting and high-speed 9-cutting have been considered to improve machining efficiency, but
If the amount is increased, the temperature of the cutting tool's edge will rise,
In many cases, the cutting edge reaches the end of its useful life due to plastic deformation caused by high temperatures rather than wear.

しかしながら、現在実用に供されている硬質相が主とし
て炭化タングステンc以下WCで示す)や炭化チタン(
以下TiCで示す)で構成され、一方結合相が主として
鉄族金属で構成されているW C超超硬合金やTiC基
サーメットは、刃先温度が1000℃を越えると急激に
軟化するようになるために、これらのWCC超超硬合金
TiC基サーメットは勿論のこと、これらの表面に硬質
被覆層を形成したものにおいても、その使用条件は刃先
温度が1000℃を・若干上廻る程度に制限されている
However, the hard phases currently in practical use are mainly tungsten carbide (denoted by WC below c) and titanium carbide (
WC cemented carbides and TiC-based cermets, whose binder phase is mainly composed of iron group metals (hereinafter referred to as TiC), rapidly soften when the cutting edge temperature exceeds 1000°C. In addition, not only these WCC cemented carbide TiC-based cermets, but also those with a hard coating layer formed on their surfaces, are limited to operating conditions where the cutting edge temperature is slightly above 1000°C. There is.

また、硬質相がT1とWの複合金属炭窒化物(以下、(
Ti、 W) CNで示す)で構成され、一方結合相が
W−Mo合金で構成されたサーメットが提案され、この
サーメットを高速切削や重切削に切削工具として用いる
試みもなされているが、この従来サーメットは、焼結性
が悪く、しかも原料粉末として使用される(Ti、 W
)CN粉末におけるC濃度が比較的高いために、焼結時
にその一部がW粉末の一部と反応して脆いW2Cを形成
し、とのW2Cの存在によって耐衝撃性の劣ったものと
なることから、十分満足する切削性能を示さないのが現
状である。
In addition, a composite metal carbonitride (hereinafter referred to as ()) whose hard phase is T1 and W is
A cermet has been proposed in which the binder phase is made of a W-Mo alloy, and attempts have been made to use this cermet as a cutting tool for high-speed cutting and heavy cutting. Conventional cermets have poor sinterability and are used as raw material powders (Ti, W
) Because the C concentration in the CN powder is relatively high, a part of it reacts with a part of the W powder during sintering to form brittle W2C, resulting in poor impact resistance due to the presence of W2C. Therefore, the current situation is that it does not exhibit sufficiently satisfactory cutting performance.

そこで、本発明者等は、上述のような観点から、特にす
ぐれた耐塑性変形性および耐衝撃性、さらに耐摩耗性が
要求される鋼などの高速切削や重切削に切削工具として
使用するのに適した月別を開発すべく研究を行った結果
、重量%で、(Ti、W)CN粉末°10〜65%、酸
化マグネシウム(以下1v[oで示す)粉末:0、5〜
10.0  チ、 W粉末:残シ、 からなる配合組成をもった圧粉体、または、(1“i、
 w)c N粉末:10〜65チ、MgO:0.5〜1
0.0%、 酸化アルミニウム(以下AA203で示す)粉末および
酸化イツトリウム(以下Y2O3で示す)粉末のうちの
1種または2種:05〜10.0%、W粉末:残9、 からなる配合組成をもった圧粉体を、真空中、あるいは
不活性力゛ス雰囲気中、1800〜2700℃の範囲内
の高温で焼結すると、 硬質相形成成分として(Ti、 C)CN ’> 10
〜65%、 MgO:0.01〜10%、 を含有し、さらに必要に応じて、 AA203およびY2O3のうちの1種または2種:0
.5〜10.0%、 を含有し、 結合相形成成分としてWおよび不可避不純物:残シ、 からなる組成をもった超耐熱焼結合金が得られ、この超
耐熱焼結合金は、焼結時に、原料粉末たる(Ti、 W
)CN粉末中のC成分がMgOと反応して減少し、この
結果焼結性が著しく向上するようになると共に、脆いW
2Cの形成も皆無となることから、すぐれた耐衝撃性を
もつようになり、しかも耐摩耗性および耐塑性変形性に
もすぐれていることから、これを高速切削や重切削など
の切削工具として用いた場合にはすぐれた切削性能を発
揮するという知見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a cutting tool that can be used as a cutting tool for high-speed cutting and heavy-duty cutting of steel, etc., which requires particularly excellent plastic deformation resistance, impact resistance, and wear resistance. As a result of conducting research to develop a monthly formula suitable for
10.0 Chi, W powder: Residue, Green compact having a composition consisting of (1"i,
w) c N powder: 10 to 65 inches, MgO: 0.5 to 1
0.0%, one or two of aluminum oxide (hereinafter referred to as AA203) powder and yttrium oxide (hereinafter referred to as Y2O3) powder: 05 to 10.0%, W powder: balance 9. When a green compact having a hard phase is sintered at a high temperature in the range of 1800 to 2700°C in a vacuum or an inert force atmosphere, (Ti, C)CN'> 10 as hard phase forming components.
~65%, MgO: 0.01~10%, and, if necessary, one or two of AA203 and Y2O3: 0
.. A super heat-resistant sintered alloy containing 5 to 10.0% of , raw material powder barrel (Ti, W
) The C component in the CN powder is reduced by reacting with MgO, and as a result, the sinterability is significantly improved, and the brittle W
Since there is no formation of 2C, it has excellent impact resistance, and also has excellent wear resistance and plastic deformation resistance, so it can be used as a cutting tool for high-speed cutting and heavy-duty cutting. They found that when used, it exhibits excellent cutting performance.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に配合組成(成分組成〕および焼結温度を上記
の通りに限定した理由を説明する。
This invention has been made based on the above findings, and the reason why the blending composition (component composition) and sintering temperature are limited as described above will be explained below.

(a)  (Ti、 w)CN この成分・は、主体硬質相形成成分であって、この合金
にすぐれた耐摩耗性と耐塑性変形性を伺与する作用をも
つが、その配合量(含有量)が10係未満では、W素地
中にスケルトンを形成することなく均一に分散してしま
って前記作用に所望の効果が得られず、一方65%を越
えて配合(含有)させると、相対的に素地を形成するW
量が減少し、靭性が劣化するようになることから、その
配合(含有)量を10〜65%と定めた。
(a) (Ti, w)CN This component is the main hard phase forming component and has the effect of imparting excellent wear resistance and plastic deformation resistance to this alloy. If the amount) is less than 10%, the W base material will be uniformly dispersed without forming a skeleton, and the desired effect will not be obtained. W that forms the basis of
Since the amount decreases and the toughness deteriorates, the blending (containing) amount was determined to be 10 to 65%.

(b)  MgO MgOは、その大半が焼結時に、(Ti、 W)CN中
のCと反応して合金のC量を減少させると同時に、焼結
性を改善し、かつそのわずかな量が合金中に残留して耐
衝撃性を著しく向上させる作用をもつが、その配合量が
05%未満では所望の焼結性改善効果が得られないばか
りでなく、合金中に残留するMgOの量が0.01%未
満となってしまって所望の耐衝撃性を確保することがで
きず、一方lO係を越えた配合量にすると、焼結温度が
低い場合は合金中のMgO含有量が1.0%を越えて高
くなってしまい、この結果合金の耐塑性変形性が低下す
るようになるばかりでなく、合金に巣が形成され易くな
って耐衝撃性も劣化するようになることか   ゛ら、
MgOの配合量を05〜10.0%、すなわちMgOの
含有量を0.01〜1.0%と定めた。
(b) MgO Most of MgO reacts with C in (Ti, W)CN during sintering, reducing the amount of C in the alloy and improving sinterability, and a small amount of MgO reacts with C in (Ti, W)CN. MgO remains in the alloy and has the effect of significantly improving impact resistance, but if its content is less than 0.5%, not only will the desired effect of improving sinterability not be obtained, but the amount of MgO remaining in the alloy will increase. If the MgO content is less than 0.01%, the desired impact resistance cannot be ensured, and on the other hand, if the content exceeds the 1O ratio, the MgO content in the alloy will decrease to 1.0% if the sintering temperature is low. As a result, not only the plastic deformation resistance of the alloy decreases, but also cavities are more likely to form in the alloy and the impact resistance deteriorates. ,
The blending amount of MgO was determined to be 05 to 10.0%, that is, the MgO content was determined to be 0.01 to 1.0%.

(c)  At!203およびY2O3これらの成分は
、そのほとんどが素地中に均一に分散して焼結性を向上
させると共に、合金の耐摩耗性および耐衝撃性をさらに
一段と向上させる作用をもつので必要に応じて配合(含
有〕されるが、その配合(含有)量が0.5%未満では
前記作用に所望の向上効果が得られず、一方その耐容(
含有)量が10%を越えると、合金の耐衝撃性および耐
塑性変形性に劣化傾向が現われるようになることから、
その配合(含有)量を05〜10チと定めた。
(c) At! 203 and Y2O3 Most of these components are uniformly dispersed in the base material and have the effect of improving sinterability, as well as further improving the wear resistance and impact resistance of the alloy, so they may be added as necessary. (contained), but if the blended (contained) amount is less than 0.5%, the desired effect of improving the above action cannot be obtained, and on the other hand, its tolerability (
If the content exceeds 10%, the impact resistance and plastic deformation resistance of the alloy tend to deteriorate.
The blending (containing) amount was determined to be 0.5 to 10.

(a)、  wおよび不可避不純物 Wは、その一部が硬質相に固溶するが、大部分は結合相
として存在して硬質層と強固に結合し、合金にすぐれた
耐衝撃性を付与する作用を有するものである。また、不
可避不純物としてMo、Cr。
(a), W and the unavoidable impurity W are partially dissolved in the hard phase, but most of them are present as a binder phase and are strongly bonded to the hard layer, giving the alloy excellent impact resistance. It has an effect. In addition, Mo and Cr are unavoidable impurities.

Fe、 Ni、 Cot Re、 Pt 、  および
Pdなどのうちの1種または2種以」二を含有しても、
それぞれの成分含有量が1%以下であれば合金の特性が
何ら損なわれるものではない。
Even if it contains one or more of Fe, Ni, Cot Re, Pt, Pd, etc.,
If the content of each component is 1% or less, the properties of the alloy will not be impaired in any way.

(e)  焼結温度 焼結温度が1800℃未満では、MgOの蒸発が不十分
で、このため合金における炭素量の減少が少なく、所望
の焼結性および耐衝撃性を確保することができず、一方
2700℃を越えた焼結温度にすると、合金に液相が発
生して、その形状が変化するようになることから、焼結
温度を1800〜2700℃と定めた。
(e) Sintering temperature If the sintering temperature is less than 1800°C, the evaporation of MgO will be insufficient, and therefore the amount of carbon in the alloy will decrease less, making it impossible to secure the desired sinterability and impact resistance. On the other hand, if the sintering temperature exceeds 2700°C, a liquid phase will occur in the alloy and its shape will change, so the sintering temperature was set at 1800 to 2700°C.

つぎに、この発明の超耐熱焼結合金を実施例によシ具体
的に説明する。
Next, the super heat-resistant sintered alloy of the present invention will be specifically explained using examples.

実施例 l 原料粉末として、平均粒径1.5μmを有する完全固溶
体の(Tio、85+ ”WO,15)(Co、yoN
o3o)粉末(括弧内の数値は原子比を示す)、同0.
4μmのMgO粉末、同05μmのへ〇203粉末、同
0.4 p mのY2O3粉末、および同08μmのW
粉末を用意し、これら原料粉末をそれぞれ第1表に示さ
れる配合組成に配合し、ボールミルにて72時時間式粉
砕混合し、乾燥した後、15kg/−の圧力にてプレス
成形して圧粉体とし、ついでとの圧粉体を760tor
rの窒素雰囲気中で、それぞれ第1表に示される温度に
2時間保持9条件で焼結することによって、同じく第1
表に示される成分組成をもった本発明合金1〜24およ
び比較合金1〜3をそれぞれ製造した。
Example 1 As a raw material powder, a completely solid solution (Tio, 85+”WO, 15) (Co, yoN) having an average particle size of 1.5 μm was used as a raw material powder.
o3o) Powder (numbers in parentheses indicate atomic ratio), 0.
4 μm MgO powder, 05 μm He〇203 powder, 0.4 p m Y2O3 powder, and 08 μm W
Prepare powders, blend these raw powders into the composition shown in Table 1, pulverize and mix in a ball mill for 72 hours, dry, and then press-form at a pressure of 15 kg/- to form a compacted powder. body and then the green compact at 760 torr.
Similarly, the first and second samples were sintered in a nitrogen atmosphere of
Invention alloys 1 to 24 and comparative alloys 1 to 3 having the compositions shown in the table were manufactured, respectively.

ついで、この結果得られた本発明合金1〜24および比
較合金1〜3の硬さくロックウェル硬さAスケール)お
よび抗折力を測定すると共に、これよりSNP 433
の形状をもった切削チップを切出し、 被剛材:SNCM−8(硬さ:HB240)、切削速度
: 200 m/miy+。
Next, the hardness (Rockwell hardness A scale) and transverse rupture strength of the resulting invention alloys 1 to 24 and comparative alloys 1 to 3 were measured, and from this, SNP 433
A cutting tip with the shape of was cut out, Rigid material: SNCM-8 (hardness: HB240), Cutting speed: 200 m/miy+.

送り:03賠/ rev:、 切込み:2M、 切削時間: 10 min、 の条件での高速連続切削試験、並びに、被削材: S、
N CM −8’(硬さ:HB270)、切削速度: 
120 m1m1t+。
High-speed continuous cutting test under the conditions of feed: 03/rev:, depth of cut: 2M, cutting time: 10 min, and work material: S,
N CM -8' (hardness: HB270), cutting speed:
120 m1m1t+.

送り: 0.4NL/ rev、、 切込み一3u、 切削時間:H3min、 の条件での断続切削試験を行ない、上記高速連続切削試
験では、切刃の逃げ面摩耗幅およびすくい面摩耗深さを
測定し、また」二記断続切削試験では10個の試験切刃
のうち、その刃先に欠損が発生した切刃数を測定した。
An intermittent cutting test was conducted under the following conditions: feed: 0.4NL/rev, depth of cut - 3u, cutting time: H3min, and in the above high-speed continuous cutting test, the flank wear width and rake face wear depth of the cutting edge were measured. In addition, in the interrupted cutting test described in Section 2, the number of cutting edges in which chipping occurred at the cutting edge among the 10 test cutting edges was measured.

これらの測定結果を第2表に示した。また、比較の目的
で、IS、OのPIOグレードのWCC超超硬合金製切
削チップ以下従来切削チップlという)およびTiC−
10%Mo −15%N1の組成(以上重量%、以下%
は重量係を示す)を有するTiC基サーメット製切削チ
ップ(以下従来切削チップ2という)についても上記の
切削条件で切削試験を行ない、この結果も第2表に示し
た。
The results of these measurements are shown in Table 2. For comparison purposes, IS, O PIO grade WCC cemented carbide cutting tips (hereinafter referred to as conventional cutting tips l) and TiC-
Composition of 10%Mo-15%N1 (more than weight%, less than %
A cutting test was also conducted on a TiC-based cermet cutting tip (hereinafter referred to as conventional cutting tip 2) having a weight ratio of 0.05 to 1.5 mm (weight ratio) under the above-mentioned cutting conditions, and the results are also shown in Table 2.

第2表に示される結果から明らかなように、本発明合金
1〜24は、いずれも高硬度および高靭性を有し、いず
れの切削試験でもすぐれた耐摩耗性および耐衝撃性を示
すのに対して、MgOを含有しない比較合金1は、焼結
性および耐衝撃性に劣るものであるために、特に断続切
削試験では全切刃に欠損が発生し、また(Ti、W)C
Nの含有量がこの発明の範囲から高い方に外れた比較合
金2゜3は、比較的すぐれた耐摩耗性を示すものの、靭
性が劣るものでるるため、断続切削試験ではほとんどの
切刃に欠損が発生した。さらに従来切削チップ1.2は
耐摩耗性および耐衝撃性に劣り、きわめて悪い切削性能
しか示さないことが明らかである。
As is clear from the results shown in Table 2, alloys 1 to 24 of the present invention all have high hardness and high toughness, and exhibit excellent wear resistance and impact resistance in all cutting tests. On the other hand, Comparative Alloy 1, which does not contain MgO, has inferior sintering properties and impact resistance, and therefore defects occur on all cutting edges, especially in the interrupted cutting test, and (Ti, W)C
Comparative alloy 2゜3, whose N content is higher than the range of this invention, exhibits relatively good wear resistance, but has poor toughness, so it was difficult to match most cutting edges in interrupted cutting tests. A defect has occurred. Furthermore, it is clear that the conventional cutting insert 1.2 has poor wear resistance and impact resistance and exhibits very poor cutting performance.

実施例 2 原料粉末として、実施例1で用いた原料粉末のほかに、
平均粒径15μmを有する完全固溶体の(Tio、ta
+ Wo2.)CC0,8ON0.20 )粉末、同1
8μmの(T10.70+ W(1,30X C0,7
ON0.30 )粉末、同2.0μmの(Tio、so
+ Wo、20)(Co、5oNo2o)粉末を用意し
、これら原料粉末を、第3表に示される配合組成に配合
した後、実施例1におけると同一の条件で湿式粉砕混合
し、乾燥し、成形して圧粉体とし、ついでそれぞれ第2
表に示される各種圧力のN、ガス雰囲気中、温度:、2
000℃に2時間保持の条件で焼結することによって、
同じく第3表に示される成分組成をもった本発明合金2
5〜46をそれぞれ製造した。
Example 2 In addition to the raw material powder used in Example 1, as raw material powder,
Complete solid solution (Tio, ta) with an average particle size of 15 μm
+Wo2. ) CC0.8ON0.20 ) Powder, same 1
8μm (T10.70+ W(1,30X C0,7
ON0.30) powder, same 2.0μm (Tio, so
+Wo, 20) (Co, 5oNo2o) powder was prepared, and these raw material powders were blended into the composition shown in Table 3, and then wet-pulverized and mixed under the same conditions as in Example 1, dried, It is molded into a green compact, and then a second
N at various pressures shown in the table, in gas atmosphere, temperature: 2
By sintering at 000℃ for 2 hours,
Invention alloy 2 having the component composition also shown in Table 3
5 to 46 were produced, respectively.

ついで、この結果得られ走水発明合金25〜46につい
て、硬さおよび抗折力を測定すると共に、これよシSN
P 433の形状をもった切削チップを切出し、さらに
比較の目的で用意したISOのP30グレードのWCC
超超硬合金製切削チップ以下従来切削チップ3という)
と共に、被削材:SNCM−8(硬さ:HB260 )
、切削速度:100m/卿、 送1) : 0.8 myrt/ rev、、切込み:
4B、 切削時間:10mVL。
Next, the hardness and transverse rupture strength of the water running invention alloys 25 to 46 obtained as a result were measured, and the SN
A cutting chip with the shape of P 433 was cut and an ISO P30 grade WCC was prepared for comparison purposes.
Cemented carbide cutting tips (hereinafter referred to as conventional cutting tips 3)
Also, work material: SNCM-8 (hardness: HB260)
, Cutting speed: 100m/rev, Feed 1): 0.8 myrt/rev, Depth of cut:
4B, Cutting time: 10mVL.

の条件での高速シ連続切削試験、並びに、−被削材:S
NCM−8(硬さ:HB270)、切削速度:100m
/卿、 送り:045朋/ rev・、 切込み23頭、 切削時間、3祠、 の条件での断続切削試験を行ない、実施例1におけると
同様に、それぞれ切刃の逃げ面摩耗幅およびすくい面摩
耗深さ、並びに欠損切刃数を測定した。これらの測定結
果を第4表に合せて示した。
High-speed continuous cutting test under the conditions of - Work material: S
NCM-8 (hardness: HB270), cutting speed: 100m
An interrupted cutting test was conducted under the following conditions: feed: 045 mm/rev, depth of cut: 23 heads, cutting time: 3 mm, and the flank wear width of the cutting edge and the rake face, respectively, as in Example 1. Wear depth and number of missing cutting edges were measured. These measurement results are also shown in Table 4.

第4表に示される結果から、本発明合金25〜46は、
いずれも高硬度および高靭性を有し、高送り連続切削お
よび断続切削においてすぐれた切削性能を示すのに対し
て、従来切削チップ3は特に耐塑性変形性に劣るために
高送り連続切削試験では3分で切削不能となるものであ
った。
From the results shown in Table 4, the alloys 25 to 46 of the present invention are:
All of them have high hardness and toughness, and show excellent cutting performance in high-feed continuous cutting and interrupted cutting, whereas conventional cutting tip 3 has poor plastic deformation resistance, so it did not perform well in high-feed continuous cutting tests. It became impossible to cut after 3 minutes.

実施例 3 原料粉末として、実施例1で用いたM g O粉末。Example 3 MgO powder used in Example 1 as a raw material powder.

Ae203粉末、 Y2O3粉末、およびW粉末のほか
に、平均粒径15μmを有する完全固溶体の(Tio、
eo。
Besides Ae203 powder, Y2O3 powder, and W powder, completely solid solution (Tio,
eo.

Wo、zo)・(Co、yoNo3o)粉末、さらに不
純物として、同08μmのMO粉末、同2.5pmのN
1粉末、同12μmのCo粉末、および同3.0μmの
Re粉末を用意し、これら原料粉末をそれぞれ第5表に
示される配合組成に配合した後、実施例1におけると同
一の条件で湿式粉砕混合し、乾燥し、成形して圧粉体上
し、ついでこれらの圧粉体を、300torrの窒素雰
囲気中で、それぞれ第5表に示される温度に2時間保持
の条件で焼結することによって、同じく第3表に示され
る成分組成をもった本発明合金47〜66および比較合
金4〜11をそれぞれ製造した。
Wo, zo)・(Co, yoNo3o) powder, and as impurities, MO powder of 08 μm and N of 2.5 pm.
1 powder, a Co powder of 12 μm, and a Re powder of 3.0 μm were prepared, and after blending these raw powders into the composition shown in Table 5, wet pulverization was carried out under the same conditions as in Example 1. By mixing, drying, shaping and forming green compacts, these green compacts are then sintered in a nitrogen atmosphere of 300 torr at the temperatures shown in Table 5 for 2 hours. Invention alloys 47 to 66 and comparative alloys 4 to 11 having the same compositions shown in Table 3 were manufactured, respectively.

つぎに、これらの本発明合金47〜66および比較合金
4〜11について、硬さおよび抗折力を測定すると共に
、これより5NP433の形状をもった切削チップを切
出し、さらに比較の目的で用意したISOのP40グレ
ードのWCC超超硬合金製切削チップ以下従来切削チッ
プ4という)と共に、 被削材:SNCM−8(硬さ;HB260)、切削速度
: 60 m 1m1n。
Next, the hardness and transverse rupture strength of these invention alloys 47 to 66 and comparative alloys 4 to 11 were measured, and cutting chips having a shape of 5NP433 were cut from them and prepared for the purpose of comparison. ISO P40 grade WCC cemented carbide cutting tip (hereinafter referred to as conventional cutting tip 4), work material: SNCM-8 (hardness: HB260), cutting speed: 60 m 1 m1n.

送シ:o7跋/rev・、 切込み:10朋、 切削時間:3m1n、 の条件での高送り連続切削試、験、並びに、被削材:S
NCM−8(硬さ:HB270)、切削速度:som/
順、 送り 0.5騒/ rev、、 切込み:3顧、 切削時間、3m転 の条件での断続切削試験を行ない、実施例1におけると
同様に、それぞれ切刃の逃げ面摩耗幅およびすくい面摩
耗深さ、並びに欠損切刃数を測定した。これらの測定結
果を第6表に合せて示した。
Continuous high feed cutting test and test under the conditions of feed: o7/rev, depth of cut: 10mm, cutting time: 3mm1n, and work material: S
NCM-8 (hardness: HB270), cutting speed: som/
Intermittent cutting tests were conducted under the following conditions: feed: 0.5 mm/rev; depth of cut: 3 mm; cutting time; Wear depth and number of missing cutting edges were measured. These measurement results are also shown in Table 6.

第6表に示される結果から、本発明合金46〜66は′
、いずれも高硬度およ1び高靭性を有し、いずれの切削
試験でもすぐれた性能を示し、特に本発明合金54〜5
″7および同63〜66に見られるように、 Mo、 
Ni、 CO+  またはReなどの不純物ある。これ
に対してMgOの配合(含有)量がこの発明の範囲から
高い方に外れた比較合金4,5゜(T’i、W)・CN
の含有量がこの発明の範囲から低い方に外れた比較合金
6,7.不純物たるN1の含有量が1%を越えて高い比
較合金8,9.および焼結温度がこの発明の範囲から外
れて低い条件で製造した比較合金10.11においては
、いずれも靭性不足が原因で、きわめて悪い切削性能し
か示さず、また従来切削チップ4は、本発明合金とほぼ
同等のすぐれた耐衝撃性をもつものの、耐塑性変形性に
劣るために高送り連続切削試験では1分で切削不能に至
るものであった。
From the results shown in Table 6, the alloys 46 to 66 of the present invention are
, all have high hardness and high toughness, and show excellent performance in all cutting tests, especially the present invention alloys 54 to 5.
As seen in ``7 and 63-66, Mo,
Contains impurities such as Ni, CO+ or Re. On the other hand, comparative alloy 4.5° (T'i, W)・CN whose blending (content) amount of MgO is higher than the range of this invention.
Comparative alloys 6, 7. whose content is lower than the range of this invention. Comparative alloys 8 and 9 with a high content of N1 as an impurity exceeding 1%. Comparative alloys 10 and 11 manufactured at low sintering temperatures outside the range of the present invention exhibited extremely poor cutting performance due to insufficient toughness, and the conventional cutting tip 4 of the present invention Although it has excellent impact resistance almost equivalent to that of alloys, it has poor plastic deformation resistance, and in a high-feed continuous cutting test, it became impossible to cut within 1 minute.

上述のように、この発明の超耐熱焼結合金は、高靭性お
よび高硬度を有し、かつ耐摩耗性、耐塑性変形性、およ
び耐衝撃性にすぐれているので、これらの特性が要求さ
れる鋼の高速切削や重切削などに切削工具として用いた
場合にすぐれた切削性能を示し、さらに熱間圧延ロール
、熱間線引ロール、熱間圧縮ダイス、熱間鍛造ダイス、
さらには熱間押出しバンブーなどの比較的長時間高温に
さらされる熱間加工用工具として用いた場合にもすぐれ
た性能を長期に亘って発揮するなど工業上有用な特性を
有するのである。
As mentioned above, the super heat-resistant sintered alloy of the present invention has high toughness and hardness, and has excellent wear resistance, plastic deformation resistance, and impact resistance. It shows excellent cutting performance when used as a cutting tool for high-speed cutting and heavy cutting of steel, and is also suitable for hot rolling rolls, hot drawing rolls, hot compression dies, hot forging dies, etc.
Furthermore, it has industrially useful properties, such as exhibiting excellent performance over a long period of time when used as a hot working tool that is exposed to high temperatures for a relatively long period of time, such as hot extrusion bamboo.

出願人  三菱金属株式会社 代理人  富  1) 和  夫 外1名手続補正書(
自発) 昭和58年6月6日 特許庁長官 若 杉 和 夫   殿 1、事件の表示 特願昭58− 3687  号 2発明の名称 超耐熱焼結合金およびその製造法 3 補正をする者 事件との関係 特許出願人 フリガナ 住所  東京都千代田区大手町−丁目5番2号氏名 (
名称)(626) 三菱金属株式会社代表者  永 野
   健 4、代 理 人 住所 東京都千代口1区神1日錦町−丁目23番地宗保
第二ビル8階 5、拒絶理由通知の日付           −(1
)  明細書、第6頁、発明の詳細な説明の項、第13
行、 [(Ti、C)CNJとあるを、 「(ri、w)cNJと訂正する。
Applicant Mitsubishi Metals Co., Ltd. Agent Tomi 1) Written amendment to the procedure filed by Kazuo and one other person (
(Voluntary) June 6, 1981 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1. Indication of the case Patent Application No. 1987-3687 2. Name of the invention Super heat-resistant sintered alloy and its manufacturing method 3. Person making the amendment Related Patent Applicant Furigana Address 5-2 Otemachi-chome, Chiyoda-ku, Tokyo Name (
Name) (626) Mitsubishi Metals Co., Ltd. Representative Ken Nagano 4, Agent Address 5th floor, 8th floor, Soho Daini Building, 23-chome, Kamiichi Nishiki-cho, Chiyoguchi 1-ku, Tokyo, Date of notice of reasons for refusal - (1
) Specification, page 6, detailed description of the invention, section 13
In the line, [(Ti, C) CNJ should be corrected to ``(ri, w) cNJ.

(2)  明細書、第14頁、発明の詳細な説明の項、
第2表中、′ [高速9連続切削]とあるを、 「高速連続切削」と訂正する。
(2) Specification, page 14, detailed description of the invention,
In Table 2, the text '[9 consecutive high-speed cutting]' is corrected to ``high-speed continuous cutting.''

(3)  明細書、第16頁、発明の詳細な説明の項、
第14行、 [(T10.80 + V1’0.20 ) (C0,
8ON0.20 ) Jとあるを、 r (Ti0.80. Wo、20 ) (Co6oN
O,40) Jと訂正する。
(3) Specification, page 16, detailed description of the invention,
Line 14, [(T10.80 + V1'0.20) (C0,
8ON0.20) J, r (Ti0.80. Wo, 20) (Co6oN
O, 40) Correct as J.

以  −トBelow

Claims (3)

【特許請求の範囲】[Claims] (1)硬質相形成成分としてのT1とWの複合金属炭窒
化物固溶体:1o〜65%、 ゛同じく酸化マグネシウム:、 0.01〜1.0%、
結合相形成成分としてのWおよび不可避不純物:残り、 からなる組成(以上重量%)を有することを特徴とする
高靭性および高硬度を有し、かつ耐摩耗性。 耐塑性変形性、および耐衝撃性にすぐ・れた超耐熱焼結
合金。
(1) Composite metal carbonitride solid solution of T1 and W as hard phase forming components: 10 to 65%, ゛Also magnesium oxide: 0.01 to 1.0%,
W as a binder phase-forming component and unavoidable impurities: The remainder: High toughness, high hardness, and wear resistance characterized by having a composition (the above weight %). A super heat-resistant sintered alloy with excellent plastic deformation resistance and impact resistance.
(2)  硬質相形成成分としてのT1とWの複合金属
炭窒化物固溶体:10〜65%、 同じく酸化マグネシウム:0.01−1.0%、同じく
酸化アルミニウムおよび酸化イツトリウムのうちの1種
または2種:05〜10.0%、結合相形成成分として
のWおよび不可避不純物:残り、 からなる組成(以上重量%)を有することを特徴とする
高靭性および高硬度を有し、かつ耐摩耗性。 耐塑性変形性、および耐衝撃性にすぐれた超耐熱焼結合
金。
(2) Composite metal carbonitride solid solution of T1 and W as hard phase forming components: 10 to 65%, also magnesium oxide: 0.01 to 1.0%, and one of aluminum oxide and yttrium oxide or Type 2: 05 to 10.0%, W as a binder phase forming component, and the remainder: unavoidable impurities: High toughness and hardness, and wear resistance. sex. A super heat-resistant sintered alloy with excellent plastic deformation resistance and impact resistance.
(3)  TiとWの複合金属炭窒化物固溶体粉末。 10〜65%、 酸化マグネシウム粉末:O,’5〜10.0%、−を配
合し、さらに必要に応じて、 酸化アルミニウム粉末および酸化イツトリウム粉末のう
ちの1種または2種:05〜10.0%、を配合し、 W粉末:残り。 からなる配合組成を有する圧粉体を、真空中、あるいは
不活性ガス雰囲気中、18□00〜2700℃の範囲内
の高温で焼結し、この焼結中に蒸発した酸化マグネシウ
ムによpTiとWの複合金属炭窒化物固溶体粉末の脱炭
をはかり、もって、硬質相形成成分とし−てTiとWの
複合金属炭窒化物固溶体:10〜65%、 同じく酸化マグネシウム:O,O1〜1.0%、を含有
し、さらに必要に応じて、 酸化アルミニウムおよび酸化イツトリウムのうちの1種
または2種:05〜10.0%、を含有し、残りが結合
相形成成分としてのWと不可避不純物からなる組成(以
上重量%)を有する超耐熱焼結合金を製造することを特
徴とする超、耐熱焼結合金の製造法。
(3) Composite metal carbonitride solid solution powder of Ti and W. 10 to 65%, magnesium oxide powder: O, 5 to 10.0%, and, if necessary, one or two of aluminum oxide powder and yttrium oxide powder: 05 to 10. 0%, W powder: remainder. A green compact having a composition consisting of By decarburizing the composite metal carbonitride solid solution powder of W, the composite metal carbonitride solid solution of Ti and W as hard phase forming components: 10 to 65%, and magnesium oxide: O, O1 to 1. 0%, and if necessary, one or two of aluminum oxide and yttrium oxide: 05 to 10.0%, and the remainder is W as a binder phase forming component and unavoidable impurities. 1. A method for producing a super heat-resistant sintered alloy, the method comprising producing a super heat-resistant sintered alloy having a composition (the above weight %) consisting of:
JP58003687A 1983-01-13 1983-01-13 Superheat-resistant sintered alloy and its production Granted JPS59129751A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58003687A JPS59129751A (en) 1983-01-13 1983-01-13 Superheat-resistant sintered alloy and its production
US06/570,282 US4587095A (en) 1983-01-13 1984-01-12 Super heatresistant cermet and process of producing the same
KR1019840000098A KR890004539B1 (en) 1983-01-13 1984-01-12 Super heatresistant cerment and process of producing the same
DE19843401008 DE3401008A1 (en) 1983-01-13 1984-01-13 Highly heat-resistant metal ceramic, cutting tips and edges produced therefrom for cutting tools, and process for the production of a metal ceramic of this type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58003687A JPS59129751A (en) 1983-01-13 1983-01-13 Superheat-resistant sintered alloy and its production

Publications (2)

Publication Number Publication Date
JPS59129751A true JPS59129751A (en) 1984-07-26
JPS6117899B2 JPS6117899B2 (en) 1986-05-09

Family

ID=11564310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003687A Granted JPS59129751A (en) 1983-01-13 1983-01-13 Superheat-resistant sintered alloy and its production

Country Status (2)

Country Link
JP (1) JPS59129751A (en)
DE (1) DE3401008A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183437A (en) * 1985-02-07 1986-08-16 Toshiba Tungaloy Co Ltd High strength sintered alloy and its production
CN102257171A (en) * 2008-12-18 2011-11-23 山高刀具公司 Cermet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116694974B (en) * 2023-08-07 2023-10-03 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) Method for enhancing wear resistance of coring bit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2420768A1 (en) * 1973-06-18 1975-01-09 Teledyne Ind CARBONITRIDE ALLOYS FOR CUTTING TOOLS AND WEAR PARTS
US3971656A (en) * 1973-06-18 1976-07-27 Erwin Rudy Spinodal carbonitride alloys for tool and wear applications
AU501073B2 (en) * 1974-10-18 1979-06-07 Sumitomo Electric Industries, Ltd. Cemented carbonitride alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183437A (en) * 1985-02-07 1986-08-16 Toshiba Tungaloy Co Ltd High strength sintered alloy and its production
CN102257171A (en) * 2008-12-18 2011-11-23 山高刀具公司 Cermet

Also Published As

Publication number Publication date
JPS6117899B2 (en) 1986-05-09
DE3401008A1 (en) 1984-07-19

Similar Documents

Publication Publication Date Title
JPS6025605A (en) Surface coated cermet member for cutting tool
JPS59129751A (en) Superheat-resistant sintered alloy and its production
JPS5918157A (en) Aluminum oxide ceramic for cutting tool
JPS59123738A (en) Tungsten-base cermet
JP4553382B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPS59229430A (en) Production of cermet having high hardness and high toughness
JPS6021352A (en) Cermet for tool and its production
JPS6056782B2 (en) Cermets for cutting tools and hot working tools
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
JPS585981B2 (en) Tough cermet containing titanium nitride
JPS6245290B2 (en)
JPS6245292B2 (en)
JPH05171337A (en) Cutting tool made of ti type carbonitroborate-base cermet excellent in oxidation resistance
JPS58213843A (en) Manufacture of high strength cermet
JPS6334217B2 (en)
JPH0517298B2 (en)
JPS6343454B2 (en)
JPS601942B2 (en) Sintered materials for cutting tools and wear-resistant tools with excellent high-temperature properties
JPS59173237A (en) Ultra-heat resistant sintered alloy and preparation thereof
JPS602379B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS59123737A (en) Tungsten-base cermet
JPS6017016B2 (en) Cutting tool material with excellent high temperature properties
JPS60224781A (en) Production of coated sintered hard alloy for cutting tool
JP2002205217A (en) Small end mill made of cemented carbide excellent in high temperature hardness and thermal resisting plastic deformation property