JPS60224781A - Production of coated sintered hard alloy for cutting tool - Google Patents

Production of coated sintered hard alloy for cutting tool

Info

Publication number
JPS60224781A
JPS60224781A JP59079786A JP7978684A JPS60224781A JP S60224781 A JPS60224781 A JP S60224781A JP 59079786 A JP59079786 A JP 59079786A JP 7978684 A JP7978684 A JP 7978684A JP S60224781 A JPS60224781 A JP S60224781A
Authority
JP
Japan
Prior art keywords
powder
cutting
alloy
sintered alloy
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59079786A
Other languages
Japanese (ja)
Other versions
JPS63505B2 (en
Inventor
Hironori Yoshimura
吉村 寛範
Naohisa Ito
直久 伊藤
Kenichi Nishigaki
賢一 西垣
Mitsuo Koizumi
光生 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59079786A priority Critical patent/JPS60224781A/en
Publication of JPS60224781A publication Critical patent/JPS60224781A/en
Publication of JPS63505B2 publication Critical patent/JPS63505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a sintered alloy which permits high-speed cutting by using specific wt% of composite metallic carbonitride solid soln. powder, WC power and Co powder as a raw material, manufacturing a sintered hard alloy base body of said raw material and coating the cutting surface thereof with a carbide, etc. of the group IVa elements of periodic table. CONSTITUTION:The raw material of the formulation consisting of 20-90% composite metallic carbonitride solid soln. powder (M is 1 or >=2 kinds; Ti, Zr; Hf) having the compsn. formula: (M, W)(C, N), 10-80% WC powder and 0.5-3% Co powder is prepd. Such raw materials are mixed and are molded to a green compact and thereafter the green compact is sintered in a nitrogen atmosphere to produce the sintered hard alloy base body for the cutting tool. The surface coating layer consisting of 1 or >=2 layers of the carbide, nitride, carbonitride, etc. of the group 4a elements of periodic table is formed on the cutting surface thereof. The base body has high strength and hardness and since the hard coating layer is formed on the surface of the base body, the high-speed cutting exceeding 250m/min is possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高硬度かつ高強度を有し、切削工具として
使用した場合、すぐれた耐摩耗性および耐塑性変形性を
有し、これらの特性が要求される高速切削にすぐれた切
削性能を発揮する被覆超硬質焼結合金の製造法に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention has high hardness and high strength, and when used as a cutting tool, has excellent wear resistance and plastic deformation resistance. The present invention relates to a method for producing a coated ultra-hard sintered alloy that exhibits excellent cutting performance in high-speed cutting that requires special properties.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

近年、切削加工の分野では加工能率向上のために高速切
削が検討されているが、切削速度を大きくすると、切削
工具の刃先温度が上昇し、刃先が摩耗するというよりは
むしろ高温に起因して塑性変形することによって切削工
具として寿命に至る場合や、使用できない場合が多い。
In recent years, high-speed cutting has been considered in the field of cutting to improve machining efficiency, but increasing the cutting speed increases the temperature of the cutting tool's cutting edge, which is more likely to be caused by the high temperature than by the cutting edge being worn out. Plastic deformation often results in the end of its life as a cutting tool or makes it unusable.

例えば、現在切削工具として実用に供されているWCC
超超硬合金TiC基サーメットはそれぞれ結合金属であ
るCo、 Niの含有量が4〜20重量%(日本工業規
格)と多いため、刃先温度が1000℃を越えると刃先
が急激に軟化するようになるので、切削速度が200m
/分を越える条件の切削では使用できないのが現状であ
る。
For example, WCC, which is currently in practical use as a cutting tool,
Cemented carbide TiC-based cermets have a high content of Co and Ni, which are bonding metals, at 4 to 20% by weight (Japanese Industrial Standards), so if the cutting edge temperature exceeds 1000°C, the cutting edge will soften rapidly. Therefore, the cutting speed is 200m.
Currently, it cannot be used for cutting conditions exceeding 1/min.

一方、上記WCC超超硬合金耐摩耗性を改善する目的で
WCC超超硬合金表面に、元素周期表の4a族の炭化物
、窒化物、炭窒化物、炭酸化物。
On the other hand, for the purpose of improving the wear resistance of the WCC cemented carbide, carbides, nitrides, carbonitrides, and carbonates of Group 4a of the periodic table of elements are added to the surface of the WCC cemented carbide.

酸窒化物および炭酸窒化物、ならびにAQの酸化物およ
び酸窒化物のうちの1層又は2層以上からなる表面被覆
層を形成した切削用被覆超硬合金が実用化され、スロー
アウェイチップの主流となりつつあるが、この被覆超硬
合金にしても基体はCoを5〜10重量%含有したWC
C超超硬合金あるために、切削速度が250m/分を越
えると、刃先が軟化してしまうという問題点があった。
Coated cemented carbide for cutting with a surface coating layer consisting of one or more layers of oxynitrides, carbonate nitrides, and AQ oxides and oxynitrides has been put into practical use, and has become the mainstream of indexable inserts. However, even with this coated cemented carbide, the base is WC containing 5 to 10% by weight of Co.
Since it is made of C cemented carbide, there is a problem in that the cutting edge becomes soft when the cutting speed exceeds 250 m/min.

それで、切削速度が2!50m/分を越える切削では、
AC203基セラミックスが検討されたが5A2203
基セラミツクスは抗折力が50〜s o kg/war
と低強度のため利用範囲が鋳鉄切削の一部に限定されて
いた。
Therefore, when cutting at a cutting speed exceeding 250 m/min,
AC203 ceramics were considered, but 5A2203
The base ceramics has a transverse rupture strength of 50~s o kg/war
Due to its low strength and low strength, its use was limited to some parts of cast iron cutting.

そこで、WCC超超硬合金Co量を減じて、合金の硬さ
を向上させ、ひいては切削時の耐摩耗性を向上させると
ともに5耐塑性変形性をも向上させようという試みがな
されてきたが、いずれの試みにおいてもWCC超超硬合
金中Co量を減すると、合金の硬さと耐塑性変形性は向
上するが、抗折力が大巾に低下して上記セラミックスと
同等の強度の合金となってしまい、実用に供せないでい
た。
Therefore, attempts have been made to reduce the amount of Co in WCC cemented carbide to improve the hardness of the alloy, which in turn improves the wear resistance during cutting and also improves the plastic deformation resistance. In both attempts, reducing the amount of Co in the WCC cemented carbide improves the hardness and plastic deformation resistance of the alloy, but the transverse rupture strength decreases significantly, resulting in an alloy with the same strength as the ceramics mentioned above. As a result, it could not be put to practical use.

〔発明の目的〕[Purpose of the invention]

したがって、この発明の目的は、上記セラミックスより
も高強度で、しかも一般のWC基超硬合金並みの強度と
、より高い硬度と耐塑性変形性とを有し、250m/分
を越える高速切削用の切削工具としても使用することが
できる材料を製造することである。
Therefore, an object of the present invention is to have higher strength than the above-mentioned ceramics, as well as strength comparable to general WC-based cemented carbide, higher hardness and plastic deformation resistance, and to be suitable for high-speed cutting exceeding 250 m/min. The aim is to produce materials that can also be used as cutting tools.

〔先行技術及び知見事項〕[Prior art and knowledge]

本発明者らは、先に、 組成式: (M、W)(C,N)を有する複合金属炭窒
化物固溶体粉末(ただし、M =Ti、 ZrおよびH
fのうちの1種又は2種以上):20〜90重量%。
The present inventors previously discovered a composite metal carbonitride solid solution powder having the composition formula: (M, W) (C, N) (where M = Ti, Zr and H
one or more of f): 20 to 90% by weight.

炭化タングステン(以下、WCで示す。)粉末゛lO〜
8010〜8 0重量%゛05〜3重量% からなる配合組成を有する成形体を、窒素雰囲気中で焼
結することにより、小孔が少なく、硬さがロックウェル
A硬さく以下、 HRAで表わす。)で925以上かつ
抗折力が150に、9/−以上という高硬度かつ高強度
の超硬質焼結合金が得られることを見い出したが、この
度、 前記超硬質焼結合金は塑性変形を起しにくい特°性をも
有し、このような合金を基体として、その表面1で元素
周期表の4a族の炭化物、窒化物、炭窒化物、炭酸化物
、酸窒化物および炭酸窒化物、ならびKAP、の酸化物
および酸窒化物のうちの1層又は2層以上からなる表面
被覆層を形成すると、被覆超硬質焼結合金全体の耐塑性
変形性が向上し、又、基体の塑fll変形による表面被
覆層の剥離が起こりにくいため、従来のWCC超超硬合
金表面に上記硬質物質を被覆した核覆WC基超硬合金と
比べて、表面被覆層による耐摩耗性向上の比率がきわめ
て高く、これらの結果として、切削速度が250m/分
を越える高速で切削工具として使用した場合でもすぐれ
た切削性能を示すことを発見した3゜ 〔発明の構成に欠くことができない事項〕この発明は、
上記知見に基いてなされた切削工具用被覆超硬質焼結合
金の製造法であり、原料粉末として1組成式: (M、
 W )(C,N )を有する複合金属炭窒化物固溶体
粉末(ただし、M :Ti、 Zr、およびHfのうち
の1種捷たは2種以上)、炭化タングステン粉末、およ
びCo粉末を用意し、これら原料粉末を、重量%で、 複合金属炭窒化物固溶体粉末゛20〜90%。
Tungsten carbide (hereinafter referred to as WC) powder ゛1O~
By sintering a molded body having a compounding composition of 8010-80% by weight and 05-3% by weight in a nitrogen atmosphere, it has few small pores and has a hardness equal to or less than Rockwell A hardness, expressed as HRA. . ), it was discovered that a super hard sintered alloy with high hardness and high strength, with a transverse rupture strength of 925 or more and a transverse rupture strength of 150 or more, can be obtained. Using such an alloy as a substrate, its surface 1 contains carbides, nitrides, carbonitrides, carbonates, oxynitrides, and carbonitrides of group 4a of the periodic table of elements. Forming a surface coating layer consisting of one or more layers of oxides and oxynitrides of KAP improves the plastic deformation resistance of the entire coated ultra-hard sintered alloy, and also reduces the plastic deformation of the base. Because peeling of the surface coating layer is less likely to occur, the ratio of wear resistance improvement due to the surface coating layer is extremely high compared to the core-covered WC-based cemented carbide in which the surface of the conventional WCC cemented carbide is coated with the above-mentioned hard material. As a result of these, it was discovered that the cutting tool exhibits excellent cutting performance even when used as a cutting tool at a cutting speed exceeding 250 m/min. 3. [Indispensable Matters of the Invention] This invention has
This is a method for producing a coated ultra-hard sintered alloy for cutting tools based on the above knowledge, in which the raw material powder has one composition formula: (M,
A composite metal carbonitride solid solution powder having W) (C, N) (M: one or more of Ti, Zr, and Hf), tungsten carbide powder, and Co powder were prepared. The weight percentage of these raw material powders is 20 to 90% composite metal carbonitride solid solution powder.

炭化タングステン粉末:10〜80%。Tungsten carbide powder: 10-80%.

Co粉末 05〜3チ からなる配合組成に配合し、通常の条件で混合し、圧粉
体に成形した後、窒素雰囲気中で焼結し、高硬度および
高強度を有する切削工具用の超硬質焼結合金基体を製造
し、 次に、前記超硬質焼結合金基体の少なくとも切削面に、
元素周期表の4a族の炭化物、窒化物。
Co powder is blended into a composition consisting of 0.05 to 3.0%, mixed under normal conditions, formed into a green compact, and then sintered in a nitrogen atmosphere to create an ultra-hard material for cutting tools with high hardness and high strength. A sintered alloy base is manufactured, and then, on at least the cut surface of the ultra-hard sintered alloy base,
Carbides and nitrides of group 4a of the periodic table of elements.

炭窒化物、炭酸化物、酸窒化物および炭酸窒化物、並び
にAlの酸化物および酸窒化物のうちの1層又は2層以
上からなる表面被覆層を形成することを特徴とするもの
である。
It is characterized by forming a surface coating layer consisting of one or more layers of carbonitrides, carbonates, oxynitrides, carbonate nitrides, and oxides and oxynitrides of Al.

〔発明の構成要件〕[Components of the invention]

以下、この発明の構成を詳細に説明する。 Hereinafter, the configuration of the present invention will be explained in detail.

CI)基体の製造について (1)原料粉末の粒度 複合金属炭窒化物固溶体粉末、WC粉末ともに得られる
合金の抗折力を向上させるためKは、粉末の粒度が細か
い方が望ましい。例えば、複合金属炭窒化物固溶体粉末
あ平均粒径は、05〜50μmの範囲内、WC粉末の平
均粒径は05〜5.0μmの範囲内が好ましい。そして
、Co粉末はO5〜3.0μmの範囲内の平均粒径であ
ることが望ましい。
CI) Regarding the manufacture of the substrate (1) Particle size of raw material powder In order to improve the transverse rupture strength of the alloy obtained from both the composite metal carbonitride solid solution powder and the WC powder, it is preferable that the K powder has a finer particle size. For example, the average particle size of the composite metal carbonitride solid solution powder is preferably in the range of 05 to 50 μm, and the average particle size of the WC powder is preferably in the range of 05 to 5.0 μm. It is desirable that the Co powder has an average particle size within the range of O5 to 3.0 μm.

(11)配合組成 (a) (M 、 W ) (C、N )この成分は、
この発明により製造される合金の第1の硬質分散相形成
成分であって、窒化されることにより組成が変化し、合
金の焼結性を向上させ、緻密な焼結体とし、合金の抗折
力を向上させる。又、固溶体が金属分としてTx、Zr
およびHfの1種またけ2種以上を必須成分とするので
、それ自体高硬度であるため、合金の硬さを向上させる
作用を有する。その含有量が20重量−未満では前記の
所望の効果が得られず、一方、90重量%を越えると、
合金の抗折力が低下するようKなることから、その含有
量を20〜90重量%と定めた。
(11) Composition (a) (M, W) (C, N) This component is
It is the first hard dispersed phase forming component of the alloy produced by this invention, and its composition changes when nitrided, improving the sinterability of the alloy, making it a dense sintered body, and improving the bending resistance of the alloy. Improve power. In addition, the solid solution contains Tx, Zr as metal components.
Since it contains one or more of Hf and Hf as essential components, it has a high hardness in itself and has the effect of improving the hardness of the alloy. If the content is less than 20% by weight, the desired effect described above cannot be obtained, while if it exceeds 90% by weight,
Since K decreases the transverse rupture strength of the alloy, its content was determined to be 20 to 90% by weight.

(b) w c wcriこの発明により得られる合金の第2の硬質分散
相形成成分であって、前記(M、 W)(C,N)がス
ケルトンを作ることを阻害し、硬質相形成成分の分散を
良くし、合金の抗折力を向上させる作用を有するが、そ
の含有量が10重量−未満では前記の所望の効果が得ら
れず、一方、80重量%を越えると、切削時の耐摩耗性
が低下するようになることから、その含有量を10〜8
0重量%と定めた。
(b) w c wcri A second hard dispersed phase forming component of the alloy obtained by this invention, wherein the (M, W) (C, N) inhibits the formation of a skeleton and inhibits the hard phase forming component. It has the effect of improving dispersion and transverse rupture strength of the alloy, but if the content is less than 10% by weight, the desired effect described above cannot be obtained, while if it exceeds 80% by weight, the cutting resistance will decrease. Since the abrasiveness will decrease, the content should be increased to 10 to 8.
It was determined to be 0% by weight.

(c)C。(c)C.

COは、この発明においては、従来のWCC超超硬合金
中のCOのように結合金属という役割よりは、むしろ触
媒的な役割を果し、合金の主成分である前記(M、 W
)(C,N )の窒化による固溶体組成の変化を起こし
やすくして、合金の焼結性を著しく向上させ、合金の抗
折力を大巾に改善する効果を有するので、従来のWCC
超超硬合金含有されているCo量よりも少ない含有量で
効果を発揮するのである。
In the present invention, CO plays a catalytic role rather than a binding metal role like CO in conventional WCC cemented carbide, and is a catalytic metal in the main components of the alloy (M, W).
) (C,N) by nitriding, which has the effect of significantly improving the sinterability of the alloy and greatly improving the transverse rupture strength of the alloy.
The effect is exhibited even when the Co content is smaller than the amount of Co contained in the cemented carbide.

その含有量が05重量%未満では上記の効果が十分でな
く、一方、3重量%を越えると硬さが低下し、切削時の
耐摩耗性も低下して、従来のWCC超超硬合金耐摩耗性
における差がなくなるので、その含有量を05〜3重量
%と定めた。
If the content is less than 0.5% by weight, the above effects will not be sufficient, while if it exceeds 3% by weight, the hardness will decrease and the wear resistance during cutting will also decrease, making it difficult to maintain the conventional WCC cemented carbide resistance. Since there is no difference in abrasion properties, the content was determined to be 0.5 to 3% by weight.

この発明においては、上記3成分の他に、WCの粒成長
抑制剤としてWCC超超硬合金添加されているTaC,
NbC、V C、、Cr3C2等を2重i%まで配合し
てもよい。
In this invention, in addition to the above three components, TaC, which is added to the WCC cemented carbide as a grain growth inhibitor of WC,
NbC, VC, Cr3C2, etc. may be added up to 2 i%.

011)混合 混合は通常の条件、例えば、ボールミルで72時時間式
(例えはアルコール中)粉砕混合することによって行わ
れる。
011) Mixing Mixing is carried out under normal conditions, for example, by pulverizing and mixing in a ball mill for 72 hours (for example, in alcohol).

0ψ成形 粉末混合物を乾燥した後、10〜30kg/−の圧力で
プレス成形して圧粉体とする。
After drying the 0ψ compacted powder mixture, it is press-molded at a pressure of 10 to 30 kg/- to form a green compact.

(■)焼結 焼結は、複合金属炭窒化物固溶体を窒化させ、その組成
を変化させ、合金の焼結性を改善するために、窒素雰囲
気中で行なうことが必要である。
(■) Sintering Sintering must be performed in a nitrogen atmosphere in order to nitride the composite metal carbonitride solid solution, change its composition, and improve the sinterability of the alloy.

窒素圧は0.01気圧以上が好捷しい。0.01気圧未
満では複合金属炭窒化物固溶体の窒化が十分に進まない
からである。
The nitrogen pressure is preferably 0.01 atm or higher. This is because if the pressure is less than 0.01 atm, nitridation of the composite metal carbonitride solid solution will not proceed sufficiently.

そして、焼結温度は1400〜1800℃が好ましい。The sintering temperature is preferably 1400 to 1800°C.

1400℃未満では、未焼結で、焼結体中に大東が多数
残存して、合金の抗折力が低下してしまうからであり、
逆に、1800℃を超えると、合金中の(M、 W)(
C,N )とWCが粒成長を起こし、抗折力が低下して
しまうからである。
This is because if the temperature is lower than 1400°C, the alloy will remain unsintered and a large number of Daito will remain in the sintered body, reducing the transverse rupture strength of the alloy.
On the other hand, when the temperature exceeds 1800℃, (M, W) (
This is because grain growth occurs in C, N) and WC, resulting in a decrease in transverse rupture strength.

■表面被覆層の形成について (i)層構成 表面被覆層は、元素周期表の4a族の炭化物。■About formation of surface coating layer (i) Layer structure The surface coating layer is a carbide of group 4a of the periodic table of elements.

窒化物、炭窒化物、炭酸化物、酸窒化物および炭酸窒化
物、並びにAl!の酸化物および酸窒化物のうちの1層
又は2層以上から構成される。
Nitride, carbonitride, carbonate, oxynitride and carbonitride, and Al! It is composed of one or more layers of oxides and oxynitrides.

元素周期表の4a族とは、Ti、ZrおよびHfからな
る群のことである。したかつて、元素周期表の4a族の
炭化物、窒化物、炭窒化物、炭酸化物。
Group 4a of the periodic table of elements is a group consisting of Ti, Zr, and Hf. Once upon a time, carbides, nitrides, carbonitrides, and carbonates of group 4a of the periodic table of elements.

酸窒化物および炭酸窒化物、並びにAMの酸化物および
酸窒化物のうちの1層又は2層以上とは、Tiの炭化物
、窒化物、炭窒化物、炭酸化物、酸窒化物および炭酸窒
化物、Zrの炭化物、窒化物、炭窒化物、炭酸化物、酸
窒化物および炭酸窒化物、Hfの炭化物、窒化物、炭窒
化物、炭酸化物、酸窒化物および炭酸窒化物並びにMの
酸化物および酸窒化物のうちから選ばれた1層、あるい
はその上に順次前記の1層以上を重ねたものを指す。
Oxynitrides and carbonitrides, and one or more layers of AM oxides and oxynitrides include Ti carbides, nitrides, carbonitrides, carbonates, oxynitrides, and carbonitrides. , Zr carbides, nitrides, carbonitrides, carbonates, oxynitrides and carbonitrides, Hf carbides, nitrides, carbonitrides, carbonates, oxynitrides and carbonitrides, and M oxides and It refers to one layer selected from oxynitrides, or one or more of the above-mentioned layers stacked on top of it.

(11)平均層厚 1層又は2層以上からなる表面被覆層全体の平均層厚は
05〜20μmとするのが望ましい。
(11) Average layer thickness The average layer thickness of the entire surface coating layer consisting of one layer or two or more layers is desirably 05 to 20 μm.

平均層厚が05μm未満では所望の耐摩耗性を確保する
ことができず、一方20μmを越えた平均層厚にすると
、被覆超硬質焼結合金の靭性劣化が著しくなるからであ
る。
This is because if the average layer thickness is less than 0.5 μm, the desired wear resistance cannot be ensured, whereas if the average layer thickness exceeds 20 μm, the toughness of the coated ultra-hard sintered alloy will be significantly deteriorated.

(110層形成法 通常の化学蒸着法や物理蒸着法によって形成される。(110 layer formation method It is formed by conventional chemical vapor deposition or physical vapor deposition.

〔実施例〕〔Example〕

次に、この発明の構成及び効果を実施例と比較例により
詳細に説明する。
Next, the structure and effects of the present invention will be explained in detail using Examples and Comparative Examples.

実施例及び比較例 各原料粉末を第1表に示される配合組成に配合し、メー
ルミルにて72時時間式粉砕混合し、乾燥した後、15
kg/−の圧力にてプレス成形して圧粉体とし、ついで
この圧粉体を第1表に示される焼結条件にて焼結して、
本発明超硬質焼結合金基体1〜22と比較超硬質焼結合
金基体1〜6を製造した。前記基体のHRA及び抗折力
も合わせて第1表に示す。なお、比較超硬質焼結合金基
体1〜5は配合組成がこの発明の配合組成範囲から外れ
たものであり(この発明の配合組成範囲から外れた成分
の配合率には※をつけて示す。)、比較超硬質焼結合金
基体5は更に窒素雰囲気中ではなく真空中で焼結する点
でも、この発明から外れたものである(※で示す)。又
5比較超硬質焼結合金基体6は窒素雰囲気中でなく真空
中で焼結する点でのみこの発明から外れている(※で示
す)。
Examples and Comparative Examples Each raw material powder was blended into the composition shown in Table 1, pulverized and mixed in a mail mill for 72 hours, dried,
Press-forming at a pressure of kg/- to form a green compact, then sintering this green compact under the sintering conditions shown in Table 1,
Ultrahard sintered alloy substrates 1 to 22 of the present invention and comparative ultrahard sintered alloy substrates 1 to 6 were manufactured. The HRA and transverse rupture strength of the substrate are also shown in Table 1. Comparative ultra-hard sintered alloy substrates 1 to 5 have compounding compositions that are outside the compounding composition range of the present invention (the compounding ratios of components that are outside the compounding composition range of the present invention are marked with *). ), the comparative ultra-hard sintered alloy substrate 5 also differs from the present invention in that it is sintered not in a nitrogen atmosphere but in a vacuum (indicated by *). Further, the ultra-hard sintered alloy substrate 6 of Comparison 5 differs from the present invention only in that it is sintered in a vacuum instead of in a nitrogen atmosphere (indicated by *).

ついで、これらの基体からCI S −5NP432の
形状の切削チップを製作した。
Then, cutting tips in the shape of CIS-5NP432 were manufactured from these substrates.

これらのチップの全表面に、通常の化学蒸着法(耐熱合
金製反応容器内で、TiCを被覆する場合は、TlC1
c 、 CH4、H2がスを流して1000℃で反応さ
せ、TiNを被覆する場合は、TlC44r N2 +
)(2がスを1000℃で反応させ、T1の炭酸化物を
被覆する場合は、TiCt4 、 C02、H2ガスを
1000℃で反応させ、Ag2O3を被覆する場合はA
lct3゜CO21H2がスを950℃で反応させる。
The entire surface of these chips is coated with TiC using the usual chemical vapor deposition method (TlC1 when coating TiC in a heat-resistant alloy reaction vessel).
c, CH4, H2 are reacted at 1000 °C by flowing a stream to coat TiN, TlC44r N2 +
) (If 2 reacts at 1000 °C and coats T1 carbonate, then reacts TiCt4, C02, and H2 gas at 1000 °C, and when coats Ag2O3, A
lct3°CO21H2 is reacted at 950°C.

また、複合化合物を被覆する場合は、各種ガスを適宜混
合して反応させて被覆層を形成する。)を用いて、第2
表に示される層構成(層を構成する化合物を表わす式は
化学量論的に記載しである)および各層の平均層厚をも
った1〜3層からなる表面被覆層を形成することによっ
て、本発明被覆超硬質焼結合金チップト29および比較
被覆超硬質焼結合金チップト6を製造した。
Further, when coating a composite compound, a coating layer is formed by appropriately mixing various gases and reacting them. ), the second
By forming a surface coating layer consisting of 1 to 3 layers having the layer structure shown in the table (the formulas representing the compounds constituting the layers are stoichiometrically described) and the average layer thickness of each layer, A coated ultra-hard sintered alloy tip 29 of the present invention and a comparative coated ultra-hard sintered alloy tip 6 were manufactured.

次いで、これらの切削チップを下記の条件での鋼の高速
連続切削試験 被削材°SNCM8(プリネル硬さ 240)の丸棒 切削条件 切削速度:3oom1分 送り°03111111/回転 切込み:IU 切削時間、10分 ならびに、下記の条件での鋳鉄の高速断続切削試験 被削材: FC25(ブリネル硬さ°140)の溝付き
丸棒 切削条件 切削速度 270rnZ分 送り 03朋/回転 切込み:2朋 切削時間、10分 を行ない、鋼の高速連続切削試験では切刃のにげ面摩耗
幅とすくい面摩耗深さを、又、鋳鉄の高速断続切削試験
ではフランク摩耗幅とクレータ−摩耗深さを測定し、こ
れらの結果を第2表に合わせて示した。
Next, these cutting chips were subjected to a high-speed continuous cutting test of steel under the following conditions: Work material ° SNCM 8 (Prinell hardness 240) round bar cutting conditions Cutting speed: 3oom 1 minute feed ° 03111111/rotation Depth of cut: IU Cutting time, High-speed interrupted cutting test of cast iron for 10 minutes and under the following conditions Work material: Grooved round bar of FC25 (Brinell hardness °140) Cutting conditions Cutting speed 270rnZ minute feed 03 mm/rotation Depth of cut: 2 mm Cutting time, The test was carried out for 10 minutes, and in the high-speed continuous cutting test of steel, the wear width of the cutting edge and the wear depth of the rake face were measured, and in the high-speed interrupted cutting test of cast iron, the flank wear width and crater wear depth were measured. These results are also shown in Table 2.

また、比較の目的で、表面被覆層を有していない本発明
超硬質焼結合金基体4,5,6.8及び9から作った比
較超硬質焼結合金チップト5とPIO相当のWCC超超
硬合金チップ従来合金チップ1;組成は73%WC−1
5%TiC−5%TaC−7%Co)、KO5相当のW
C基超硬合金チップ(従来合金チップ2;組成は92%
WC,2%TiC−14TaC−5%Co)、被覆WC
C超超硬合金チップ従来合金チップ3と4)及びAe2
03基セラミックスチップ(従来合金チップ5)によっ
ても同様な切削試験を行″・そ1らの結うをも第2表に
合わせて示した。
In addition, for the purpose of comparison, comparative ultra-hard sintered alloy chips 5 made from ultra-hard sintered alloy substrates 4, 5, 6.8, and 9 of the present invention that do not have a surface coating layer and WCC ultra-super equivalent to PIO are also shown. Hard alloy chip Conventional alloy chip 1; Composition is 73% WC-1
5%TiC-5%TaC-7%Co), W equivalent to KO5
C-based cemented carbide tip (conventional alloy tip 2; composition is 92%
WC, 2%TiC-14TaC-5%Co), coated WC
C cemented carbide tip Conventional alloy tip 3 and 4) and Ae2
A similar cutting test was also carried out using a 03 ceramic chip (conventional alloy chip 5), and the results are also shown in Table 2.

なお、第2表の超硬質焼結合金基体の欄における本1〜
22及び比1〜61″i、それぞれ本発明超硬質焼結合
金基体1〜22及び比較超硬質焼結合金基体1〜6を表
わす。
In addition, books 1 to 1 in the column of ultra-hard sintered alloy substrates in Table 2
22 and ratios 1 to 61''i represent the ultrahard sintered alloy substrates 1 to 22 of the present invention and comparative ultrahard sintered alloy substrates 1 to 6, respectively.

第2表かられかるように、本発明被覆超硬質焼結合金チ
ップは、鋼の高速連続切削においても鋳鉄の高速断続切
削においても、すぐれた耐摩耗性を示し、切刃が欠損し
にくいのに対し、本発明の配合組成範囲からはずれた超
硬質焼結合金基体に被覆した比較被覆超硬質焼結合金チ
ップは、切刃の欠損安定性に欠けたり、耐摩耗性の悪い
ものであり、又、表面被覆層を有しない比較超硬質焼結
合金チップはいずれも耐摩耗性が悪く、又、従来合金チ
ップは1〜4が耐摩耗性が悪く、5が切刃の欠損安定性
に欠けるものであった。
As shown in Table 2, the coated ultrahard sintered alloy tip of the present invention exhibits excellent wear resistance in both high-speed continuous cutting of steel and high-speed interrupted cutting of cast iron, and the cutting edge is less likely to break. On the other hand, the comparatively coated ultra-hard sintered alloy chips coated on the ultra-hard sintered alloy substrates which are out of the blending composition range of the present invention lack stability of cutting edges and have poor wear resistance. In addition, all of the comparative ultra-hard sintered alloy tips that do not have a surface coating layer have poor wear resistance, and the conventional alloy tips 1 to 4 have poor wear resistance, and 5 lacks cutting edge fracture stability. It was something.

特に、従来のWCC超超硬合金表面にこの発明の被覆層
と同じ被覆層を設けた従来合金チップ3〜4に比較して
、本発明被覆超硬質焼結合金チップの耐摩耗性は格段に
優れていることがわかる。
In particular, compared to conventional alloy chips 3 and 4 in which the same coating layer as that of the present invention is provided on the surface of the conventional WCC cemented carbide, the wear resistance of the coated superhard sintered alloy chip of the present invention is significantly higher. It turns out that it is excellent.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明被覆超硬質焼結合金は、基体が高
硬度かつ高強度であり、しかも耐塑性変形性にすぐれる
ので、この基体表面に硬質被覆層を蒸着させることによ
り、切削工具として用いたときK、従来合金あるいは従
来被覆合金では実用上不可能であった切削速度が250
m/分を越える高速切削を可能としたのである。
As described above, the coated ultrahard sintered alloy of the present invention has a base body with high hardness and high strength, and also has excellent plastic deformation resistance. When used as K, the cutting speed was 250, which was practically impossible with conventional alloys or conventional coated alloys.
This enabled high-speed cutting exceeding m/min.

出願人 三菱金属株式会社 代理人 富 1) 和 夫 外1名Applicant: Mitsubishi Metals Corporation Agent Tomi 1) Kazuo and 1 other person

Claims (1)

【特許請求の範囲】 原料粉末として、組成式: (M、 W)(C,N)を
有する複合金属炭窒化物固溶体粉末(ただし、M:T”
」、Zr、およびHfのうちの1種または2種以−F)
。 炭化タングステン粉末、およびCO粉末を用意し、これ
ら原料粉末を、重量%で、 複合金属炭窒化物固溶体粉末゛20〜90%。 炭化タングステン粉末 10〜80%。 Co粉末、05〜3チ からなる配合組成に配合し、通常の条件で混合し、圧粉
体に成形した後、窒素雰囲気中で焼結し、高硬度および
高強度を有する切削工具用の超硬質焼結合金基体を製造
し、 次に、前記超硬質焼結合金基体の少なくとも切削面に1
元素周期表の4a族の炭化物、窒化物。 炭窒化物、炭酸化物、酸窒化物および炭酸窒化物、並び
にAI!の酸化物および酸窒化物のうちの1層又は2層
以上からなる表面被覆層を形成することを特徴とする切
削工具用被覆超硬質焼結合金の製造法。
[Claims] As a raw material powder, a composite metal carbonitride solid solution powder having the composition formula: (M, W) (C, N) (wherein M:T”
”, Zr, and Hf)
. Tungsten carbide powder and CO powder are prepared, and these raw material powders are mixed into composite metal carbonitride solid solution powder (20 to 90% by weight). Tungsten carbide powder 10-80%. Co powder is blended into a composition consisting of 05-3T, mixed under normal conditions, molded into a green compact, and then sintered in a nitrogen atmosphere to create a super ultra-high grade material for cutting tools with high hardness and high strength. A hard sintered alloy base is manufactured, and then at least a cut surface of the ultrahard sintered alloy base is coated with
Carbides and nitrides of group 4a of the periodic table of elements. Carbonitrides, carbonates, oxynitrides and carbonitrides, and AI! A method for producing a coated ultra-hard sintered alloy for a cutting tool, the method comprising forming a surface coating layer consisting of one or more layers of oxides and oxynitrides.
JP59079786A 1984-04-20 1984-04-20 Production of coated sintered hard alloy for cutting tool Granted JPS60224781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079786A JPS60224781A (en) 1984-04-20 1984-04-20 Production of coated sintered hard alloy for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079786A JPS60224781A (en) 1984-04-20 1984-04-20 Production of coated sintered hard alloy for cutting tool

Publications (2)

Publication Number Publication Date
JPS60224781A true JPS60224781A (en) 1985-11-09
JPS63505B2 JPS63505B2 (en) 1988-01-07

Family

ID=13699889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079786A Granted JPS60224781A (en) 1984-04-20 1984-04-20 Production of coated sintered hard alloy for cutting tool

Country Status (1)

Country Link
JP (1) JPS60224781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042201A (en) * 2003-07-25 2005-02-17 Sandvik Ab Method for producing fine grained tungsten carbide-cobalt cemented carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042201A (en) * 2003-07-25 2005-02-17 Sandvik Ab Method for producing fine grained tungsten carbide-cobalt cemented carbide

Also Published As

Publication number Publication date
JPS63505B2 (en) 1988-01-07

Similar Documents

Publication Publication Date Title
JP2003311510A (en) Coated cutting tool for turning steel
KR20070000358A (en) Fine grained sintered cemented carbides containing a gradient zone
JP2775955B2 (en) Manufacturing method of coating cermet with excellent wear resistance
JP2556101B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool
JP2001239404A (en) Cutting tool made of surface coated cemented carbide having good chipping resistance
JP4069749B2 (en) Cutting tool for roughing
JP2005153098A (en) Surface coated cutting tool
JPS60224781A (en) Production of coated sintered hard alloy for cutting tool
JPS5914534B2 (en) Tough cermet with a softened surface layer
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JPS644989B2 (en)
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPH07136810A (en) Ceramic tool for cutting very hard material
JPS6245290B2 (en)
JPH04289002A (en) Hard-layer-coated alumina-ceramics cutting tool
JP4484500B2 (en) Surface coated cutting tool
JP2970199B2 (en) Surface-coated Ti-carbon boride based cermet cutting tool with excellent adhesion of hard coating layer
JPS59229430A (en) Production of cermet having high hardness and high toughness
JPS6245291B2 (en)
JPH0387368A (en) Coated sintered hard alloy tool
JPS58120434A (en) Thermet chip for cutting provided with surface reaction layer and manufacture thereof
JPS59129751A (en) Superheat-resistant sintered alloy and its production
JPS63103069A (en) Surface coated sintered hard alloy
JPS6343454B2 (en)