JPS61183437A - High strength sintered alloy and its production - Google Patents

High strength sintered alloy and its production

Info

Publication number
JPS61183437A
JPS61183437A JP60022655A JP2265585A JPS61183437A JP S61183437 A JPS61183437 A JP S61183437A JP 60022655 A JP60022655 A JP 60022655A JP 2265585 A JP2265585 A JP 2265585A JP S61183437 A JPS61183437 A JP S61183437A
Authority
JP
Japan
Prior art keywords
solid solution
sintered alloy
powder
carbonitride
carbonitride solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60022655A
Other languages
Japanese (ja)
Inventor
Takamitsu Igarashi
五十嵐 隆光
Yuji Katsumura
勝村 祐次
Akira Fukawa
府川 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP60022655A priority Critical patent/JPS61183437A/en
Publication of JPS61183437A publication Critical patent/JPS61183437A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high strength sintered alloy by mixing specific carbonitride solid solution powder with Fe powder or the like in a specific ratio and by heating and sintering the mixture under specific conditions. CONSTITUTION:The carbonitride solid solution powder (70-97vol%) represented by a formula is mixed with the balance powder of at least one kind among Fe, Co, and Ni to form into a green compact, which is sintered by heating at 1300-1,600 deg.C in 5-100 Torr nitrogen. In the formula, M1 is Ti or Ti and Zr and/or Hf; M2 is at least one kind among V, Nb, and Ta; M3 is W or W and Mo and/or Cr; (X), (Y), and (Z) are mole ratios of M1, M2 and M3, respec tively; (m) and (n) are mole ratios of C and N, respectively; (p) is a total mole ratio of non-metallic elements C and N based on one mole of total metallic elements M1, M2 and M3; and X+Y+Z=1, m+n=1, 0.7<=P<=1, 1.0<=Y<=0.2, 0.05<=Z<=0.5 (X-n), and 0.1<=n<=0.5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は8周期律表4a、5a、6a族金属、特に4a
族金属のTfを主体とし、更に6a族金属のWを少なく
とも含む炭窒化物焼結合金及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to metals of groups 4a, 5a, and 6a of the 8 periodic table, especially metals of groups 4a and 4a of the periodic table.
The present invention relates to a carbonitride sintered alloy mainly containing Tf, a group metal, and further containing at least W, a group 6a metal, and a method for producing the same.

(従来の技術) 従来、周期律表4a、5a、6a族金属の化合物と鉄族
金属を主体にした焼結合金として、超硬合金又はサーメ
ットがある。この内、サーメー。
(Prior Art) Conventionally, cemented carbide or cermet has been used as a sintered alloy mainly composed of compounds of metals of groups 4a, 5a, and 6a of the periodic table and iron group metals. Among these, Thermae.

トとして注目されているのにTiを主体にした化合物と
鉄族金属からなる焼結合金がある。サーメットとしては
、まずT i CにMo又はMo2Cを添加してなる(
Ti、Mo)C固溶体と鉄族金属からなる炭化物系焼結
合金が開発され、Ticに比べて(Ti、Mo)Cが鉄
族金属との濡れ性の向上に寄与したことによって成る程
度実用化されている。しかし、焼結合金中の(Ti、M
o)C固溶体結晶粒子は、均賀相でなく中芯部がTiに
富んだ固溶体相であるのに対し外周部がMoに富んだ固
溶体相であるために鉄族金属との濡れ性に向上した反面
、外周部の硬さ及び強度の低下が生じるという問題があ
る。この炭化物系焼結合金を改良したものとして、主と
してTiCにTiN又はT f N CとMo,Mo2
C又はwcを添加してなる炭窒化物固溶体と鉄族金属か
らなる炭窒化物系焼結合金が多数提案され、例えば特願
昭49−69624号は、1つの改良方向を提案したも
のである。
Sintered alloys consisting of Ti-based compounds and iron group metals are attracting attention as potential targets. Cermet is first made by adding Mo or Mo2C to TiC (
A carbide-based sintered alloy consisting of a Ti, Mo)C solid solution and an iron group metal was developed, and its practical use was achieved because (Ti, Mo)C contributed to improved wettability with iron group metals compared to Tic. has been done. However, (Ti, M
o) The C solid solution crystal particles are not a Jyuga phase, but have a Ti-rich solid solution phase in the core, while the outer periphery is a Mo-rich solid solution phase, which improves wettability with iron group metals. However, there is a problem in that the hardness and strength of the outer periphery are reduced. As an improved version of this carbide-based sintered alloy, mainly TiC is combined with TiN or T f N C and Mo, Mo2
Many carbonitride-based sintered alloys made of a carbonitride solid solution added with C or WC and an iron group metal have been proposed; for example, Japanese Patent Application No. 49-69624 proposes one improvement direction. .

(発明が解決しようとする問題点) 従来のサーメットの内、例えば特願昭49−69624
号の炭窒化物系焼結合金は、炭化物系焼結合金における
硬さ及び強度低下に対して成る程度改良できたものであ
る。しかし、焼結合金の構成要件の1つである炭窒化物
固溶体の結晶構造は、均質相でなく、焼結粒子の中芯部
がチタン及び窒素に富む炭窒化物固溶体からなり、結晶
粒子の外周部がWやMoの6a族金属に富み窒素に乏し
い炭窒化物固溶体からなっているために常温における強
度がまだ満足できるものでなく、シかも高温において熱
衝撃や高負荷が生じると結晶内の中芯部と外周部の境界
部に歪が生じたり又は転位が生じて強度不足になり破壊
しゃすくなるという問題がある。
(Problems to be solved by the invention) Among the conventional cermets, for example, Japanese Patent Application No. 49-69624
The carbonitride-based sintered alloy of No. 1 can be improved to a certain degree in contrast to the decrease in hardness and strength of carbide-based sintered alloys. However, the crystal structure of carbonitride solid solution, which is one of the constituent elements of sintered alloys, is not a homogeneous phase, but the center of the sintered particles consists of carbonitride solid solution rich in titanium and nitrogen, and Because the outer periphery is made of a carbonitride solid solution rich in group 6a metals such as W and Mo and poor in nitrogen, the strength at room temperature is still unsatisfactory. There is a problem in that strain or dislocation occurs at the boundary between the central core and the outer periphery, resulting in insufficient strength and susceptibility to fracture.

本発明は、上記のような問題点を解決したもので、特に
焼結合金の構成要件の1つである炭窒化物固溶体相の各
結晶粒子を均質にすると共にもう1つの構成要件である
鉄族金属と炭窒化物固溶体相との濡れ性を高めることに
よって焼結合金の硬度を低下させずに強度を著しく高め
ることができた炭窒化物焼結合金及びその製造方法の提
供を目的とするものである。
The present invention solves the above-mentioned problems, and in particular, makes each crystal grain of the carbonitride solid solution phase, which is one of the constituent elements of a sintered alloy, homogeneous, and also makes iron, which is another constituent element, homogeneous. The purpose of the present invention is to provide a carbonitride sintered alloy whose strength can be significantly increased without reducing the hardness of the sintered alloy by increasing the wettability between the group metal and the carbonitride solid solution phase, and a method for producing the same. It is something.

(発明を解決するための手段) 本発明者らは、Tiを主体とした炭窒化物固溶体と鉄族
金属からなる焼結合金の強度向上を目的に、まずTf(
C,N)と周期律表4a。
(Means for Solving the Invention) The present inventors first aimed at improving the strength of a sintered alloy consisting of a Ti-based carbonitride solid solution and an iron group metal.
C, N) and periodic table 4a.

5a、6a族金属の炭化物又は窒化物とからなる固溶体
を作製し、これら固溶体とNiとの濡れ性を真空、不活
性ガス又は窒素雰囲気中で調べた所、特に6a族元素を
含んだ炭窒化物固溶体が良い濡れ性を示し、この日a族
元素比率の増大に従って濡れ性が向上すること並びにこ
れら固溶体中の非金属元素に対する窒素の比率(Nic
、N)が増加すると6a族元素の中でもCr又はMoを
含んだ固溶体は単調に濡れ性が低下するのに対してWを
含んだ固溶体は濡れ性が向上することを確認したことに
よって本発明を完成するに至ったものである。
Solid solutions consisting of carbides or nitrides of group 5a and 6a metals were prepared, and the wettability of these solid solutions with Ni was investigated in vacuum, inert gas, or nitrogen atmosphere. Solid solutions of Nic metals show good wettability, and the wettability improves as the ratio of group A elements increases, and the ratio of nitrogen to nonmetallic elements in these solid solutions (Nic
, N) increases, the wettability of solid solutions containing Cr or Mo among Group 6a elements decreases monotonically, whereas the wettability of solid solutions containing W improves. It has been completed.

すなわち、本発明の高強度焼結合金は。That is, the high strength sintered alloy of the present invention is.

(Mix 、M2Y 、M3Z ) (CI 、 Nn
 ) pで表示される炭窒化物固溶体相70〜97体積
%と、残りFe、Co、Niの中の少なくとも1種の結
合相と不可避的不純物とでなる焼結合金であって、前記
炭窒化物固溶体相の各結晶粒子が均質な固溶体である。
(Mix, M2Y, M3Z) (CI, Nn
) A sintered alloy consisting of 70 to 97% by volume of a carbonitride solid solution phase represented by p, the remainder being at least one binder phase among Fe, Co, and Ni and unavoidable impurities, wherein the carbonitride solid solution phase is Each crystal grain of the substance solid solution phase is a homogeneous solid solution.

但し、前記炭窒化物固溶体相を表示する式中、MlはT
i又はTiとZ 、r及び/又はHfを示し、M2はV
、Nb、Taの中の少なくとも1種を示し、M3はW又
はWとMo及び/又はCrを示す、X、Y、Zは、それ
ぞれMl 、M2 、M3のモル比を示し、m、nはそ
れぞれC(炭素)、N(窒素)のモル比を示し、PはM
l 、M2 、M3を合計した金属元素1モルに対する
C、Nを合計した非金属元素のモル比を示し、これらは
X+Y+Z= 1 、m+ n= 1 。
However, in the formula representing the carbonitride solid solution phase, Ml is T
i or Ti and Z, r and/or Hf, M2 is V
, Nb, and Ta; M3 represents W or W and Mo and/or Cr; X, Y, and Z represent the molar ratio of Ml, M2, and M3, respectively; m and n are Each shows the molar ratio of C (carbon) and N (nitrogen), P is M
It shows the molar ratio of non-metallic elements, which is the sum of C and N, to 1 mole of metal elements, which is the sum of l, M2, and M3, and these are X+Y+Z=1, m+n=1.

0.7≦P≦1.1.0≦Y≦0.2゜0.05≦Z≦
0.5(X=n)。
0.7≦P≦1.1.0≦Y≦0.2゜0.05≦Z≦
0.5 (X=n).

0.1≦n≦0.5の関係を満足する。The relationship 0.1≦n≦0.5 is satisfied.

本発明の高強度焼結合金は、Tiを主体にしてWをも含
有した炭窒化物固溶体と鉄族金属からなる焼結合金であ
り、この固溶体と鉄族金属の中の特に、Ni及びCOと
の濡れ性がすぐれているために易焼結性があって巣孔の
少ない焼結合金である。また、窒素を含有した固溶体で
あることから焼結時に炭窒化物固溶体の粒成長が抑制さ
れ、特にNic−s比率が増大するに従って粒成長抑制
効果も高くなり、しかも6a族元素のWが含有された固
溶体であることから一層粒成長抑制効果が著しく微細粒
組織の焼結合金となる。この微細粒組織の炭窒化物固溶
体の平均粒径が2pm以下の球状、望ましくは14m以
下の球状にすることによって一層高強度のすぐれた焼結
合金になる。
The high-strength sintered alloy of the present invention is a sintered alloy consisting of a carbonitride solid solution mainly composed of Ti and also containing W, and an iron group metal. It is a sintered alloy that is easy to sinter and has few pores due to its excellent wettability. In addition, since it is a nitrogen-containing solid solution, the grain growth of the carbonitride solid solution is suppressed during sintering, and in particular, as the Nic-s ratio increases, the grain growth suppressing effect increases. Since it is a solid solution, the effect of suppressing grain growth is even greater, resulting in a sintered alloy with a fine grain structure. By forming the carbonitride solid solution having a fine grain structure into a spherical shape with an average particle size of 2 pm or less, preferably 14 m or less, an excellent sintered alloy with even higher strength can be obtained.

本発明の高強度焼結合金において、数値限定を行なった
理由は、 (Mix 、 M2y 、 M3Z ) (Cm 、 
Nn ) pで表示される炭窒化物固溶体と鉄族金属と
の濡れ性を調べた所1例えば (T ix  、 Wz )  (CI、 Nn ) 
0.95  固溶体とNiとの濡れ性は、縦軸に接触角
、横軸に’/C−N比率すなわちnとして表示すると第
1図の結果が11られ、この第1図の結果からWを含む
6a族元素の比率を示すZは、鉄族金属との濡れ性を高
めるために、0.05≦Zが必要であり、逆にZを多く
すると6a族金属の炭化物が焼結時に固溶体から解離し
て粗大粒子として析出し、焼結合金の強度低下となるた
めに 0.05≦Z≦0.5(X−n)と定めたものである。
The reason for the numerical limitations in the high-strength sintered alloy of the present invention is as follows: (Mix, M2y, M3Z) (Cm,
Nn ) When we investigated the wettability of carbonitride solid solution represented by p with iron group metals 1 For example, (T ix , Wz ) (CI, Nn )
0.95 The wettability of a solid solution with Ni is expressed as the contact angle on the vertical axis and the '/C-N ratio, or n, on the horizontal axis. Z, which indicates the ratio of group 6a elements contained, needs to be 0.05≦Z in order to improve wettability with iron group metals.Conversely, when Z is increased, carbides of group 6a metals are removed from solid solution during sintering. This is determined to be 0.05≦Z≦0.5 (X−n) because it dissociates and precipitates as coarse particles, reducing the strength of the sintered alloy.

また、炭窒化物固溶体中の5a族元素は、微量含有する
と焼結合金の高温強度の向上に効果があるが逆に多量含
有すると巣孔が発生し易くなるためにO≦Y≦0.2と
定めたものである。さらに、炭窒化物固溶体の非金属元
素中の窒素の比率は、第1図の結果からn≦0.5が望
ましく、逆にnが少なくなると焼結時に炭窒化物固溶体
の粒成長抑制効果が弱くなるために 0.1≦n≦0.5と定めたものである。化学量論組成
の炭窒化物固溶体と鉄族金属との焼結合金にすることが
望ましいが非化学量論組成の炭窒化物固溶体と鉄族金属
との焼結合金においても作用効果に大差なく、特に金属
元素に対して非金属元素が少なくなり過ぎると硬さの低
下や強度低下が生じ、逆に多くなり過ぎると巣孔が多く
発生して強度低下となることから金属元素に対する非金
属元素の比率は、0.7≦P≦1.1と定めたものであ
る。
In addition, when the group 5a element in the carbonitride solid solution is contained in a small amount, it is effective in improving the high-temperature strength of the sintered alloy, but on the other hand, when it is contained in a large amount, pores are likely to occur, so O≦Y≦0. This is what has been established. Furthermore, the ratio of nitrogen in the non-metallic elements of the carbonitride solid solution is preferably n≦0.5 from the results shown in Figure 1; conversely, when n is small, the effect of suppressing the grain growth of the carbonitride solid solution during sintering is reduced. This is set as 0.1≦n≦0.5 in order to make it weaker. Although it is desirable to use a sintered alloy of a carbonitride solid solution with a stoichiometric composition and an iron group metal, there is no significant difference in the effect of a sintered alloy of a carbonitride solid solution with a non-stoichiometric composition and an iron group metal. In particular, if the amount of nonmetallic elements is too small compared to metal elements, the hardness and strength will decrease, and if the amount is too large, many pores will be generated and strength will be reduced. The ratio is set as 0.7≦P≦1.1.

本発明の高強度焼結合金の製造方法は。The method for producing a high strength sintered alloy of the present invention is as follows.

(MIX 、 M2Y 、 M3Z ) (CI 、 
Nn ) pで表示される炭窒化物固溶体粉末とFe、
Co。
(MIX, M2Y, M3Z) (CI,
Nn) Carbonitride solid solution powder represented by p and Fe,
Co.

Niの中の少なくとも1種の粉末との混合粉末を圧粉体
又は成形体とした後5〜100Torrの窒素中で13
00℃〜1600℃に加熱して焼結する方法である。但
し、MlはTi又はTiとZr及び/又はHfを示し、
M2はV、Nb。
The mixed powder with at least one type of Ni powder is made into a green compact or compact, and then heated in nitrogen at 5 to 100 Torr for 13 min.
This is a method of heating and sintering at 00°C to 1600°C. However, Ml represents Ti or Ti and Zr and/or Hf,
M2 is V, Nb.

Taの中の少なくとも1種を示し、M3はW又はWとM
o及び/又はCrを示す、Y、Zは。
represents at least one kind of Ta, M3 is W or W and M
Y and Z represent o and/or Cr.

それぞれMl 、M2 、M3のモル比を示し、m。Indicates the molar ratio of Ml, M2, and M3, respectively, and m.

nはそれぞれC(炭素)、N(窒素)のモル比を示し、
PはMl 、M2 、M3を合計した金属元素1モルに
対するC、Nを合計した非金属元素のモル比を示し、こ
れらはx+y+z= 1 。
n indicates the molar ratio of C (carbon) and N (nitrogen), respectively,
P represents the molar ratio of the nonmetallic elements, which are the sum of C and N, to 1 mole of the metal elements, which are the sum of Ml, M2, and M3, and these are x+y+z=1.

m+n=1.0.7 ≦P≦ 1 、1 。m+n=1.0.7 ≦P≦1, 1.

0≦Y≦0.2 。0≦Y≦0.2.

0.05≦Z≦0.5(X−n)。0.05≦Z≦0.5 (X−n).

0.1≦n≦0.5の関係を満足する。The relationship 0.1≦n≦0.5 is satisfied.

この本発明の高強度焼結合金の製造方法について、更に
具体的に説明すると、出発原料として用いる (MIX 、 M2Y 、 M3Z ) (Cm 、 
Nn ) pで表示される炭窒化物固溶体粉末は、2I
Lm以下の固溶体粉末を使用するのがよく、更に微細粒
子を使用する程焼結を促進することから望ましいことで
ある。また、出発原料としての固溶体粉末は、均質な固
溶体粉末にすることが特に1重要なことである。均質な
固溶体粉末を得るためには、目的とする固溶体粉末の組
成となる炭化物、窒化物。
To explain more specifically the method for producing the high-strength sintered alloy of the present invention, (MIX, M2Y, M3Z) (Cm,
The carbonitride solid solution powder represented by Nn) p is 2I
It is preferable to use a solid solution powder having a particle diameter of Lm or less, and it is more desirable to use finer particles because sintering is accelerated. Furthermore, it is particularly important that the solid solution powder used as the starting material be a homogeneous solid solution powder. In order to obtain a homogeneous solid solution powder, carbides and nitrides that have the composition of the desired solid solution powder are required.

炭窒化物などの金属化合物粉末、例えば0゜7終m程度
に微粉砕したTiC,TiN。
Metal compound powder such as carbonitride, for example TiC, TiN finely pulverized to about 0°7 mm.

T1CN、(Ti 、W)C,WC,Mo2C。T1CN, (Ti, W)C, WC, Mo2C.

TaC、TaN 、(Ti 、Ta)C。TaC, TaN, (Ti, Ta)C.

(Ti 、Ta、W)C,NbCなどの周期律表4a、
5a、6a族金属の化合物から必要に応じて組合わせて
配合し、この配合粉末を混合粉砕するときに不可避的不
純物の混入、特にFe族族金属9朋 いように例えば、粉砕効果が低下するけれども混合粉砕
容器としてはラバーなどで内張すしたり、混合粉砕のた
めのポール等も表面被着するなどと考慮する必要がある
.このようにして得た混合粉末を0.5〜5気圧の窒素
雰囲気で1600℃以上,望ましくは1800℃以上,
2時間保持により固溶処理して未固溶の化合物の混在や
金属の混在のない均質な固溶体粉末とする必要がある。
Periodic table 4a such as (Ti, Ta, W)C, NbC,
Compounds of group 5a and group 6a metals are blended as necessary, and when this blended powder is mixed and pulverized, unavoidable impurities are mixed in, especially Fe group metals, for example, the pulverizing effect is reduced. However, as a mixing and grinding container, it is necessary to take into consideration things such as lining it with rubber, etc., and attaching poles for mixing and grinding to the surface. The mixed powder thus obtained is heated at 1600°C or higher, preferably 1800°C or higher, in a nitrogen atmosphere of 0.5 to 5 atm.
It is necessary to carry out a solid solution treatment by holding for 2 hours to obtain a homogeneous solid solution powder free of unmixed compounds and metals.

このようにして得た均質な炭窒化物固溶体粉末に鉄族金
属粉末を配合し、この配合粉末を混合粉砕するときは混
合粉砕時の容器内壁及びポール表面からの摩耗による金
属及び金属化合物などの不純物の混入を出来るだけ避け
るためにステンレス又は耐熱合金からなる容器には超硬
合金又はラバーなどを内張すしたり、もしくは超硬合金
製容器又は超硬合金製容器にラバーなどを内張すして使
用することが望ましく、混合粉砕のためのポール等も同
様の考慮をして使用することが望ましい。
When the homogeneous carbonitride solid solution powder thus obtained is blended with iron group metal powder and this blended powder is mixed and pulverized, metals and metal compounds, etc., are removed by abrasion from the inner wall of the container and the pole surface during the mixed pulverization. To avoid contamination with impurities as much as possible, containers made of stainless steel or heat-resistant alloys should be lined with cemented carbide or rubber, or containers made of cemented carbide or cemented carbide should be lined with rubber, etc. It is desirable to use a pole, etc. for mixing and grinding with the same consideration.

このとき、粉砕効果を高めるのと粉末の表面酸化を防ぐ
ためには、アセトン、ヘキサン、ベンゼン、アルコール
等の有機溶媒を容器の中に入れて湿式混合粉砕するのが
よい.混合粉砕した混合粉末の成形は,混合粉末を黒鉛
モールドに充填して雰囲気を充分にコントロールしてホ
ットプレスする方法,又は混合粉末にパラフィン、カン
ファ等の成形助剤を添加して必要ならば顆粒状にした後
金型モールドに充填して加圧成形したり、もしくはラバ
ープレス等の静水圧加圧によって成形する.このように
して成形した粉末圧粉体を直接焼結したり,又は粉末圧
粉体を焼結温度よりも低い温度で雰囲気を充分にコント
ロールしながら予備焼結した後切断,研削,切削等の機
械加工を施してから焼結することもできる。
At this time, in order to enhance the grinding effect and prevent surface oxidation of the powder, it is best to place an organic solvent such as acetone, hexane, benzene, alcohol, etc. in a container and perform wet mixing and grinding. The mixed and pulverized powder mixture can be molded by filling it into a graphite mold and hot-pressing it with a well-controlled atmosphere, or by adding molding aids such as paraffin and camphor to the mixed powder and forming granules if necessary. After forming into a shape, it is filled into a metal mold and press-formed, or it is formed using hydrostatic pressure such as a rubber press. The powder compact formed in this way can be directly sintered, or the powder compact can be pre-sintered at a temperature lower than the sintering temperature while fully controlling the atmosphere, and then subjected to cutting, grinding, cutting, etc. It is also possible to perform machining and then sintering.

本発明の高強度焼結合金の製造工程の内、焼結は,脱酸
素の促進と脱窒素の防止による雰囲気コントロールをし
て焼結する必要がある.脱酸素の促進に効果のある焼結
雰囲気は、水素などの還元性ガス及び窒素であり、脱窒
素の防止に効果のある焼結雰囲気は窒素である.このこ
とから焼結雰囲気は、窒素又は窒素と水素の混合ガス中
で焼結するのが脱酸素の促進と脱窒素の防止による均質
な炭窒化物固溶体を含む焼結合金の製造方法として望ま
しいものである.この内、作業性及び調整の容易性から
窒素ガス雰囲気による焼結が望ましく、特に窒素分圧が
5Torr未満では脱酸素の促進と脱窒素の防止効果が
弱く、窒素分圧が100Torrを超えると焼結時に窒
素が合金中に取り込まれて巣孔として残存することから
窒素ガス雰囲気中の窒素分圧は5Torr−100To
rrにすることが望ましい.焼結温度は、液相の生じる
温度以上であればよいが高温度になり過ぎると粒成長が
生じるので1300℃〜1600℃が望ましい.このよ
うな条件で焼結したものを熱間静水圧加圧法(H I 
P)によって再処理することにより一層緻密で高強度焼
結合金にすることもできる。
In the manufacturing process of the high-strength sintered alloy of the present invention, sintering requires atmosphere control to promote deoxidation and prevent denitrification. The sintering atmosphere that is effective in promoting deoxidation is a reducing gas such as hydrogen and nitrogen, and the sintering atmosphere that is effective in preventing denitrification is nitrogen. For this reason, sintering in nitrogen or a mixed gas of nitrogen and hydrogen is the preferred method for producing a sintered alloy containing a homogeneous carbonitride solid solution by promoting deoxidation and preventing denitrification. It is. Among these, sintering in a nitrogen gas atmosphere is preferable from the viewpoint of workability and ease of adjustment.In particular, when the nitrogen partial pressure is less than 5 Torr, the effect of promoting deoxidation and preventing denitrification is weak, and when the nitrogen partial pressure exceeds 100 Torr, sintering is Since nitrogen is taken into the alloy during solidification and remains as pores, the nitrogen partial pressure in the nitrogen gas atmosphere is 5 Torr-100To
It is desirable to set it to rr. The sintering temperature should be at least the temperature at which a liquid phase occurs, but if the temperature is too high, grain growth will occur, so a temperature of 1300°C to 1600°C is preferable. The product sintered under these conditions is subjected to hot isostatic pressing (HI).
By reprocessing with P), a more dense and high-strength sintered alloy can be obtained.

(作用) 本発明の高強度焼結合金は、微細粒子の炭窒化物固溶体
と鉄族金属とからなり、しかもこの炭窒化物固溶体が均
質な結晶粒子であることから高温又は高負荷が作用する
場合でも結晶粒内型又は転位などが生じ難いために強度
がすぐれている。
(Function) The high-strength sintered alloy of the present invention is composed of a carbonitride solid solution of fine particles and an iron group metal, and since the carbonitride solid solution is a homogeneous crystal grain, it cannot be subjected to high temperatures or high loads. Even in the case of steel, it has excellent strength because it is difficult for intragrain type or dislocation to occur.

′  また、Tiを主体にした4a族金属に少なくとも
Wを含む炭窒化物固溶体であることから、この固溶体と
鉄族金属との濡れ性がすぐれたものになり一層強度を陶
土しているものである。
' Also, since it is a carbonitride solid solution containing at least W in a group 4a metal mainly composed of Ti, the solid solution has excellent wettability with iron group metals, making it even stronger. be.

本発明の高強度焼結合金の製造方法は、均質な炭窒化物
固溶体粉末と鉄族金属粉末とを出発原料とするもので、
この均質な炭窒化物固溶体が焼結時に分解又は再固溶し
たり、もしくは炭窒化物固溶体から分離再析出が生じな
く、均質な炭窒化物固溶体と鉄族金属との焼結合金が得
られる製造方法である。
The method for producing a high-strength sintered alloy of the present invention uses homogeneous carbonitride solid solution powder and iron group metal powder as starting materials,
This homogeneous carbonitride solid solution does not decompose or re-dissolve during sintering, or separate and re-precipitate from the carbonitride solid solution, and a homogeneous sintered alloy of carbonitride solid solution and iron group metal can be obtained. This is the manufacturing method.

(実施例) 実施例1 平均粒度が1〜2gm内にあるTic。(Example) Example 1 Tic with an average particle size within 1-2 gm.

TiN、TaC,WCC粒粉末重量%テT i C:T
iN:TaC:WC=50:20:  15:15に秤
量し、アセトン溶媒を用いて48時間ボールミル混合し
た。この混合粉末を乾燥後2X2X2■のペレットに成
形し、2気圧の窒素雰囲気中で1900℃2時間保持に
より固溶体化処理を行なった。得られた固溶体は、 全炭素量11.55%、遊離炭素量0.07%。
TiN, TaC, WCC grain powder weight %TeTiC:T
It was weighed out at iN:TaC:WC=50:20:15:15, and mixed in a ball mill for 48 hours using an acetone solvent. After drying, this mixed powder was formed into 2×2×2×2 pellets, and solid solution treatment was carried out by holding the pellets at 1900° C. for 2 hours in a nitrogen atmosphere of 2 atm. The obtained solid solution had a total carbon content of 11.55% and a free carbon content of 0.07%.

結合窒素量4.24%、酸素量0.17%で示性式が(
T io、sa、 T ao 06. wo、o6) 
 (C0,76゜No 74) o、q5  で表現さ
れる均質な炭窒化物固溶体であった。この炭窒化物固溶
体粉末を粗粉砕し、さらにボールミルにより平均粒度1
.5ILmの微粉末とした。この微粉末の炭窒化物固溶
体とNi粉末との混合比が異なる粉末をアセトン溶媒に
よる湿式でもって48時間ボールミル混合した。この混
合粉末を乾燥後2%パラフィンを添加してJIS規格に
よる抗折力試験片及び5NP432形状にプレス成形し
、この成形体を50Torrの窒素雰囲気中で1400
″ci時間保持して焼結した。得られた焼結合金の硬さ
及び抗折力を測定し、焼結合金の組成と共に第1表に示
した。このようにして作製した本発明の焼結合金に対し
て従来より市販されているTEN添加サーメットを比較
として第1表に併記した。この第1表の内5本発明の焼
結合金試料No2 、No3 、hb4と比較品尚lを
5NP432形状でもって被削材548C,切削速度1
50m/sin 、 9]込み量1.5mm、送り速度
0 、3 am/revの条件で10分間旋削したとき
の平均逃げ面摩耗量(VB)並びに被削材SCM440
.切削速度100 s/sin 。
The specific formula is (
T io, sa, T ao 06. wo, o6)
(C0,76°No 74) It was a homogeneous carbonitride solid solution expressed by o, q5. This carbonitride solid solution powder was coarsely pulverized and further milled with an average particle size of 1
.. It was made into a fine powder of 5ILm. The powders having different mixing ratios of the fine carbonitride solid solution and the Ni powder were mixed in a wet ball mill for 48 hours using an acetone solvent. After drying this mixed powder, 2% paraffin was added and press molded into a transverse rupture strength test piece and 5NP432 shape according to JIS standard, and this molded body was heated to 1400 in a nitrogen atmosphere of 50 Torr.
The hardness and transverse rupture strength of the obtained sintered alloy were measured and shown in Table 1 along with the composition of the sintered alloy. Conventionally available TEN-added cermets for the alloy are listed in Table 1 for comparison.In Table 1, five sintered alloy samples of the present invention No. 2, No. 3, and hb4 and a comparative product, 5NP432, are listed. Due to the shape, the work material is 548C, the cutting speed is 1
50 m/sin, 9] Average flank wear amount (VB) and work material SCM440 when turning for 10 minutes under the conditions of depth 1.5 mm, feed rate 0, 3 am/rev
.. Cutting speed: 100 s/sin.

切込み場2厘■、l刃当りの速度0.3厘腸/1oot
hの条件でフライス切削したときの各試料の欠損までの
切削長さを測定して同じく第1表に併記した。
Cutting area 2 cm, speed per blade 0.3 cm/1oot
When milling was performed under the conditions of h, the cutting length of each sample to the point of defect was measured and is also listed in Table 1.

以下 余白 尚1本発明品No4と比較品Nolの炭窒化物固溶体の
結晶粒子を走査オージェ電子分光法で測定した所、本発
明品M4は各結晶粒子が均質な炭窒化物固溶体であった
のに対して比較品NO1は各結晶粒子が2相構造からな
っていることが確認できた。
Margin Note 1: When the crystal grains of the carbonitride solid solution of the invention product No. 4 and the comparative product No. 1 were measured by scanning Auger electron spectroscopy, it was found that the invention product M4 was a carbonitride solid solution in which each crystal grain was homogeneous. On the other hand, it was confirmed that each crystal grain of comparative product No. 1 had a two-phase structure.

実施例2 実施例1で用いた各粉末とNbC,ZrC。Example 2 Each powder used in Example 1, NbC, and ZrC.

VC,Mo2 C,Cr3C2粉末を用いて実施例1と
同様にして第2表に示す各種の炭窒化物固溶体粉末を一
作製した。この各種の炭窒化物固溶体粉末にNi又はN
iとCoからなる鉄族金属粉末を10体積%加えて実施
例1と同様に混合、成形。
Various carbonitride solid solution powders shown in Table 2 were prepared in the same manner as in Example 1 using VC, Mo2 C, and Cr3C2 powders. Ni or N is added to these various carbonitride solid solution powders.
10% by volume of iron group metal powder consisting of i and Co was added and mixed and molded in the same manner as in Example 1.

焼結して焼結合金を得た。得られた各種の焼結合金の諸
特性を実施例1と同様にして調べて、その結果を第3表
に示した。
A sintered alloy was obtained by sintering. The various properties of the various sintered alloys obtained were investigated in the same manner as in Example 1, and the results are shown in Table 3.

実施例3 モ均粒度1〜ZuLm内にあるTiC。Example 3 TiC having an average particle size of 1 to ZuLm.

T i N 、WC、Mo2C各粉末を用いて実施例1
と同様にして非金属元素であるC、!−Nの比率の異な
る      (T i o a  、 Wo 15.
  M 0005)(Cm  Nn ) 0.95  
の炭窒化物固溶体粉末を作製した。こうして得たN/C
3Nが0.1,0.2゜0.3,0.4である各種の炭
窒化物固溶体粉末に13体積%Ni粉末を加えて実施例
1と同様に混合、成形、焼結して未発明の焼結合金を得
た。
Example 1 using T i N, WC, and Mo2C powders
Similarly, C, which is a nonmetallic element,! -Different ratios of N (Tio a, Wo 15.
M 0005) (Cm Nn ) 0.95
A carbonitride solid solution powder was prepared. N/C obtained in this way
13% by volume Ni powder was added to various carbonitride solid solution powders with 3N of 0.1, 0.2°, 0.3, 0.4, and mixed, molded, and sintered in the same manner as in Example 1. A sintered alloy of the invention was obtained.

この本発明の焼結合金に比較して平均粒度l〜zpm内
にあるT iC、T i N 、 W C、M O2C
各粉末に13体積%Ni粉末を加えて実施例1と同様に
混合、成形、焼結して’/C−Nが0.1゜0.2,0
゜3,0.4で本発明の焼結合金の同M11&の各種比
較焼結合金を作製した。この本発明の焼結合金と比較焼
結合金の抗折力強度と合金組織を調べた。抗折力強度の
結果は、第2図に示した。また、合金組織を走査オージ
ェ電子分光法で観察した所、未発明の焼結合金は均質な
炭窒化物固溶体であったのに対して比較焼結合金は2相
構造の炭窒化物固溶体であった。
Compared to the sintered alloy of the present invention, T i C, T i N, W C, M O2C whose average particle size is within l~zpm
13% by volume Ni powder was added to each powder, mixed, molded, and sintered in the same manner as in Example 1 until the '/C-N was 0.1°0.2,0
Various comparison sintered alloys of the same M11& of the sintered alloy of the present invention were prepared at a temperature of 3.0.4. The transverse rupture strength and alloy structure of the sintered alloy of the present invention and a comparative sintered alloy were investigated. The transverse rupture strength results are shown in Figure 2. Furthermore, when the alloy structure was observed using scanning Auger electron spectroscopy, it was found that the uninvented sintered alloy was a homogeneous carbonitride solid solution, whereas the comparative sintered alloy was a carbonitride solid solution with a two-phase structure. Ta.

(発明の効果) 本発明の高強度焼結合金は、炭窒化物固溶体と結合相と
の濡れ性がすぐれており、しかも)& I化物固溶体が
均質な結晶粒子からなっているために塑性変形、歪及び
転位に対して耐える作用が高くて高強度を発揮するもの
である。このことから本発明の焼結合金は、旋削工具は
勿論のことフライス工具から刃先の鋭角なドリル、ミク
ロンドリルを含めた穴あけ工具など各種の切削用工具と
して使用できる。また1紙、磁気テープ等の切断用スリ
ッターからドツトビン、スノースパイクチップ、ゴルフ
スパイクチップ、ボールなどの衝撃の加わる用途からゲ
ージ、ノズル、メカニカルシールなどの各種耐摩耗用工
具としても産業上有用な材料である。
(Effects of the Invention) The high-strength sintered alloy of the present invention has excellent wettability between the carbonitride solid solution and the binder phase, and also has low plastic deformation because the carbonitride solid solution is composed of homogeneous crystal grains. It has high resistance to strain and dislocation, and exhibits high strength. Therefore, the sintered alloy of the present invention can be used not only as a turning tool but also as various cutting tools such as a milling tool, a drill with an acute cutting edge, and a drilling tool including a micron drill. It is also an industrially useful material, from slitters for cutting paper, magnetic tape, etc., to dot bins, snow spike tips, golf spike tips, balls, and other impact applications, to gauges, nozzles, mechanical seals, and other wear-resistant tools. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は。 (Tix  、V’it )  (Cm  、 Nn 
) o qs炭窒化物固溶体における’/1.w及びN
/C0Hの比率を変えた固溶体とNiとの濡れ性を20
Torr窒素雰囲気中1400℃で調べた結果である。 第2図は、実施例3に示した (T io  s  、 Wo  15. Moo a
s)  (Cm  。 Nn ) a q5炭窒化物固溶体と13体精%Niの
焼結合金における本発明の焼結合金と比較焼結合金との
N/C,N k!c率と抗折力強度の結果である。 特許出願人 東芝タンガロイ株式会社 第1 図 打2図 ?ヨ讐、s  (rF−串ジ
Figure 1 is. (Tix, V'it) (Cm, Nn
) o qs '/1 in carbonitride solid solution. w and N
The wettability of solid solutions with different ratios of /C0H and Ni was 20
These are the results of an investigation at 1400° C. in a Torr nitrogen atmosphere. FIG. 2 is shown in Example 3 (Tios, Wo 15. Moo a
s) (Cm.Nn) aq5 N/C, Nk! of the sintered alloy of the present invention and the comparative sintered alloy in the sintered alloy of carbonitride solid solution and 13% Ni. These are the results of c-rate and transverse rupture strength. Patent Applicant Toshiba Tungaloy Corporation Figure 1 Figure 2? Yo enemy, s (rF-kushiji

Claims (1)

【特許請求の範囲】 (1)次式(A)で表示される炭窒化物固溶体相70〜
97体積%と、残りFe、Co、Niの中の少なくとも
1種の結合相と不可避的不純物とでなる焼結合金であっ
て、前記炭窒化物固溶体相の各結晶粒子が均質な固溶体
であることを特徴とする高強度焼結合金。 (M1_X、M2_Y、M3_Z)(Cm、Nn)_P
・・・・(A) 但し、M1はTi又はTiとZr及び/又はHfを示し
、M2はV、Nb、Taの中の少なくとも1種を示し、
M3はW又はWとMo及び/又はCrを示す。X、Y、
Zは、それぞれM1、M2、M3のモル比を示し、m、
nはそれぞれC(炭素)、N(窒素)のモル比を示し、
PはM1、M2、M3を合計した金属元素1モルに対す
るC、Nを合計した非金属元素のモル比を示し、これら
はX+Y+Z=1、m+n=1、0.7≦P≦1.1、
0≦Y≦0.2、 0.05≦Z≦0.5(X−n)、 0.1≦n≦0.5の関係を満足する。 (2)上記炭窒化物固溶体相の平均粒径が2μm以下の
球状であることを特徴とする特許請求の範囲第1項記載
の高強度焼結合金。 (3)次式(B)で表示される炭窒化物固溶体粉末とF
e、Co、Niの中の少なくとも1種の粉末との混合粉
末を圧粉体又は成形体とした後5〜100Torrの窒
素中で1300℃〜1600℃に加熱して焼結すること
を特徴とする高強度焼結合金の製造方法。 (M1_X、M2_Y、M3_Z)(Cm、Nn)_P
・・・・(B) 但し、M1はTi又はTiとZr及び/又はHfを示し
、M2はV、Nb、Taの中の少なくとも1種を示し、
M3はW又はWとMo及び/又はCrを示す。X、Y、
Zは、それぞれM1、M2、M3のモル比を示し、m、
nはそれぞれC(炭素)、N(窒素)のモル比を示し、
PはM1、M2、M3を合計した金属元素1モルに対す
るC、Nを合計した非金属元素のモル比を示し、これら
はX+Y+Z=1、m+n=1、0.7≦P≦1.1、
0≦Y≦0.2、 0.05≦Z≦0.5(X−n)、 0.1≦n≦0.5の関係を満足する。 (4)上記炭窒化物固溶体粉末が均質な結晶粒子からな
る固溶体粉末であることを特徴とする特許請求の範囲第
3項記載の高強度焼結合金の製造方法。
[Claims] (1) Carbonitride solid solution phase 70~ represented by the following formula (A)
A sintered alloy consisting of 97% by volume, the remaining binder phase of at least one of Fe, Co, and Ni and unavoidable impurities, wherein each crystal grain of the carbonitride solid solution phase is a homogeneous solid solution. A high-strength sintered alloy characterized by: (M1_X, M2_Y, M3_Z) (Cm, Nn)_P
...(A) However, M1 represents Ti or Ti and Zr and/or Hf, M2 represents at least one of V, Nb, and Ta,
M3 represents W or W and Mo and/or Cr. X, Y,
Z represents the molar ratio of M1, M2, M3, m,
n indicates the molar ratio of C (carbon) and N (nitrogen), respectively,
P indicates the molar ratio of the non-metallic element, which is the sum of C and N, to 1 mole of the metal element, which is the sum of M1, M2, and M3, and these are X+Y+Z=1, m+n=1, 0.7≦P≦1.1,
The following relationships are satisfied: 0≦Y≦0.2, 0.05≦Z≦0.5 (X-n), and 0.1≦n≦0.5. (2) The high-strength sintered alloy according to claim 1, wherein the carbonitride solid solution phase has a spherical shape with an average particle size of 2 μm or less. (3) Carbonitride solid solution powder expressed by the following formula (B) and F
The mixed powder with at least one kind of powder among E, Co, and Ni is made into a green compact or a compact, and then heated to 1300°C to 1600°C in nitrogen at 5 to 100 Torr and sintered. A method for producing high-strength sintered alloys. (M1_X, M2_Y, M3_Z) (Cm, Nn)_P
...(B) However, M1 represents Ti or Ti and Zr and/or Hf, M2 represents at least one of V, Nb, and Ta,
M3 represents W or W and Mo and/or Cr. X, Y,
Z represents the molar ratio of M1, M2, M3, m,
n indicates the molar ratio of C (carbon) and N (nitrogen), respectively,
P indicates the molar ratio of the non-metallic element, which is the sum of C and N, to 1 mole of the metal element, which is the sum of M1, M2, and M3, and these are X+Y+Z=1, m+n=1, 0.7≦P≦1.1,
The following relationships are satisfied: 0≦Y≦0.2, 0.05≦Z≦0.5 (X-n), and 0.1≦n≦0.5. (4) The method for producing a high-strength sintered alloy according to claim 3, wherein the carbonitride solid solution powder is a solid solution powder consisting of homogeneous crystal grains.
JP60022655A 1985-02-07 1985-02-07 High strength sintered alloy and its production Pending JPS61183437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022655A JPS61183437A (en) 1985-02-07 1985-02-07 High strength sintered alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022655A JPS61183437A (en) 1985-02-07 1985-02-07 High strength sintered alloy and its production

Publications (1)

Publication Number Publication Date
JPS61183437A true JPS61183437A (en) 1986-08-16

Family

ID=12088854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022655A Pending JPS61183437A (en) 1985-02-07 1985-02-07 High strength sintered alloy and its production

Country Status (1)

Country Link
JP (1) JPS61183437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525848A (en) * 2001-02-22 2004-08-26 シーメンス アクチエンゲゼルシヤフト Method for producing scintillator ceramic and use of said scintillator ceramic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141543A (en) * 1979-04-17 1980-11-05 Sumitomo Electric Ind Ltd Mo-containing hard alloy
JPS5651201A (en) * 1979-06-04 1981-05-08 Uss Eng & Consult Method and device for purifying waste gas
JPS599140A (en) * 1982-07-09 1984-01-18 Mitsubishi Metal Corp Production of sintered material for cutting tool having excellent high-temperature characteristic
JPS59129751A (en) * 1983-01-13 1984-07-26 Mitsubishi Metal Corp Superheat-resistant sintered alloy and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141543A (en) * 1979-04-17 1980-11-05 Sumitomo Electric Ind Ltd Mo-containing hard alloy
JPS5651201A (en) * 1979-06-04 1981-05-08 Uss Eng & Consult Method and device for purifying waste gas
JPS599140A (en) * 1982-07-09 1984-01-18 Mitsubishi Metal Corp Production of sintered material for cutting tool having excellent high-temperature characteristic
JPS59129751A (en) * 1983-01-13 1984-07-26 Mitsubishi Metal Corp Superheat-resistant sintered alloy and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525848A (en) * 2001-02-22 2004-08-26 シーメンス アクチエンゲゼルシヤフト Method for producing scintillator ceramic and use of said scintillator ceramic
US7303699B2 (en) 2001-02-22 2007-12-04 Siemens Aktiengesellschaft Method for producing a scintillator ceramic

Similar Documents

Publication Publication Date Title
US4049876A (en) Cemented carbonitride alloys
US4097275A (en) Cemented carbide metal alloy containing auxiliary metal, and process for its manufacture
US5045512A (en) Mixed sintered metal materials based on borides, nitrides and iron binder metals
JPH05209247A (en) Cermet alloy and its production
US5993506A (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
EP0759480A1 (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
US5330553A (en) Sintered carbonitride alloy with highly alloyed binder phase
EP1420076A1 (en) Hard alloy and W-based composite carbide powder used as starting material
EP0480636B1 (en) High hardness, wear resistant materials
EP2047005B1 (en) Ceramic and cermet having the second phase to improve toughness via phase separation from complete solid-solution phase and the method for preparing them
JPH06192763A (en) Preparation of titanium radical charcoal nitride alloy
JPS63286550A (en) Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
JPH07278719A (en) Particulate plate crystal cemented carbide containing wc and its production
JPS61183437A (en) High strength sintered alloy and its production
JP2006111947A (en) Ultra-fine particle of cermet
JP2502322B2 (en) High toughness cermet
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPH1136022A (en) Production of cemented carbide containing plate crystal wc
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JP2796011B2 (en) Whisker reinforced cemented carbide
JPH08143987A (en) Production of sintered hard alloy containing plate crystal wc
JP4413022B2 (en) Composite oxide dispersion sintered alloy
JP2001179508A (en) Cutting tool
JP2006213977A (en) Chromium-containing cermet