JP3244605B2 - Precious metal carbon catalyst with adjusted particle size - Google Patents

Precious metal carbon catalyst with adjusted particle size

Info

Publication number
JP3244605B2
JP3244605B2 JP00824595A JP824595A JP3244605B2 JP 3244605 B2 JP3244605 B2 JP 3244605B2 JP 00824595 A JP00824595 A JP 00824595A JP 824595 A JP824595 A JP 824595A JP 3244605 B2 JP3244605 B2 JP 3244605B2
Authority
JP
Japan
Prior art keywords
particle size
catalyst
activated carbon
less
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00824595A
Other languages
Japanese (ja)
Other versions
JPH08196905A (en
Inventor
朗 國田
誠司 高崎
信至 大仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP00824595A priority Critical patent/JP3244605B2/en
Publication of JPH08196905A publication Critical patent/JPH08196905A/en
Application granted granted Critical
Publication of JP3244605B2 publication Critical patent/JP3244605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特定の粒度分布を有
し、工業的な化学反応に有用な貴金属炭素触媒に関す
る。
The present invention relates to a noble metal carbon catalyst having a specific particle size distribution and useful for industrial chemical reactions.

【0002】[0002]

【従来の技術】粉末状の貴金属炭素触媒は、一般に反応
液中に分散した状態で用いられる。例えば水素添加反応
では、反応系に水素と反応液と触媒とがそれぞれ気相、
液相、固相において互に接触する状態で触媒反応が進行
する。このため、各相の接触性、および分散性が反応速
度に与える影響は大きい。一般に触媒の平均粒子径を小
さくすることにより、触媒単位重量当たりの触媒個数が
増え、分散性が向上する。このようにして高活性な触媒
を製造することができる。
2. Description of the Related Art Generally, a powdery noble metal carbon catalyst is used in a state of being dispersed in a reaction solution. For example, in a hydrogenation reaction, hydrogen, a reaction solution, and a catalyst are each in a gas phase,
The catalytic reaction proceeds in a state where the liquid phase and the solid phase are in contact with each other. For this reason, the influence of the contact property and dispersibility of each phase on the reaction rate is large. In general, by reducing the average particle size of the catalyst, the number of catalysts per unit weight of the catalyst increases, and the dispersibility improves. Thus, a highly active catalyst can be produced.

【0003】一方、工業的に用いる触媒は、濾過分離性
がすぐれていることも重要である。すなわち、反応終了
後には反応液と触媒との濾過分離工程があり、反応液は
次の工程へ進み、ろ別された触媒は活性が低下するまで
再使用される。触媒の使用量が多い場合には濾過時間が
長くなり生産性が低下することになる。このとき触媒活
性を高くして反応時間を短縮しても、濾過時間がそれを
上回るようであると、このような触媒は工業用触媒とし
ては高性能なものとは言えない。濾過性の良い触媒を製
造しようとすれば粒子径は粗いものが有利となるが、前
述の通り反応液中における分散性に問題がありかつ活性
の点でも不利である。
[0003] On the other hand, it is also important that a catalyst used industrially has excellent filtration and separation properties. That is, after the completion of the reaction, there is a filtration separation step of the reaction solution and the catalyst, the reaction solution proceeds to the next step, and the filtered catalyst is reused until the activity decreases. When the amount of the catalyst used is large, the filtration time is prolonged, and the productivity is reduced. At this time, even if the reaction time is shortened by increasing the catalyst activity, if the filtration time seems to exceed it, such a catalyst cannot be said to be high-performance as an industrial catalyst. In order to produce a catalyst having good filterability, a catalyst having a large particle diameter is advantageous, but as described above, there is a problem in dispersibility in a reaction solution and disadvantageous in terms of activity.

【0004】通常用いられるろ紙やろ布の捕捉粒子径は
2〜3μmであるので、3μm未満の微粒子の存在は濾
過漏れや濾過面の目詰まりを起こし、濾過速度の低下を
招く。このような場合、濾過助材を濾過面にコーティン
グすることで対処できるが、触媒を再使用できなくなる
という問題を生ずる。
[0004] Since the filter particles or filter cloth used usually have a trapped particle size of 2 to 3 µm, the presence of fine particles of less than 3 µm causes filtration leakage and clogging of the filtration surface, leading to a reduction in filtration speed. In such a case, the problem can be solved by coating the filter surface with a filter aid, but there is a problem that the catalyst cannot be reused.

【0005】[0005]

【発明が解決しようとする課題】本発明は、高活性でし
かも濾過性に優れた、粒度調整された貴金属炭素触媒を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a noble metal carbon catalyst having a high activity and excellent filterability, the particle size of which is controlled.

【0006】[0006]

【課題を解決するための手段】本発明者らは上述の見地
から、触媒の粒度をコントロールすることによって活性
と濾過性を両立した触媒が得られることを見いだし本発
明を完成させた。
Means for Solving the Problems From the above viewpoints, the present inventors have found that a catalyst having both activity and filterability can be obtained by controlling the particle size of the catalyst, and have completed the present invention.

【0007】一般に粒状触媒は1〜1000μmの範囲
の体積粒度分布を有している。触媒活性を上げるために
は平均粒子径が可能な限り細かい方が有利である。細か
くするに従い活性は向上するが濾過漏れや濾過面の目詰
まりの原因となる微細粒子の量が多くなり、濾過分離工
程に支障をきたす。また濾過分離工程に支障を来す微細
粒子をあらかじめ除去する場合、触媒製造工程の経済性
が低下する。
Generally, particulate catalysts have a volume particle size distribution in the range of 1-1000 μm. In order to increase the catalytic activity, it is advantageous that the average particle diameter is as small as possible. As the size is reduced, the activity increases, but the amount of fine particles causing filtration leakage and clogging of the filtration surface increases, which hinders the filtration separation process. In addition, if fine particles that interfere with the filtration / separation step are removed in advance, the economics of the catalyst production step will decrease.

【0008】本発明の貴金属炭素触媒は活性炭粒子から
なる担体と、それに担持されている貴金属触媒成分とを
含み、前記活性炭粒子が、その体積粒度分布における累
積90%が、60μm以下の粒子サイズを有し、かつそ
の個数粒度分布において3.3μm以下の粒子サイズを
有する微粒子の累積値が40%未満であるように粒度調
整されていることを特徴とするものである。
[0008] The noble metal carbon catalyst of the present invention comprises a support comprising activated carbon particles and a noble metal catalyst component supported thereon, wherein the activated carbon particles have a particle size of 60 µm or less in a 90% cumulative volume particle size distribution. The particle size is adjusted so that the cumulative value of the fine particles having a particle size of 3.3 μm or less in the number particle size distribution is less than 40%.

【0009】本発明の触媒において、前記貴金属触媒成
分がパラジウムまたは白金を含有していることが好まし
い。
In the catalyst of the present invention, it is preferable that the noble metal catalyst component contains palladium or platinum.

【0010】[0010]

【作用】本発明の触媒においては、活性炭素担体の粒子
サイズが3.3μm以下の微細粒子の個数粒度分布累積
値が40%未満に調整され、かつ粒子サイズ60μm以
下の粒子の体積分布累積値が90%に達しているため、
得られる貴金属炭素触媒は、実用上すぐれた触媒活性
と、濾過分離性とを併せ有し、化学反応工程の効率、生
産性を著しく向上させることができる。また、本発明の
触媒を用いると、濾過助剤の使用が不必要となるため触
媒の再使用が可能となる。
In the catalyst of the present invention, the cumulative value of the number particle size distribution of fine particles having an activated carbon carrier particle size of 3.3 μm or less is adjusted to less than 40% and the volume distribution cumulative value of particles having a particle size of 60 μm or less. Has reached 90%,
The resulting noble metal carbon catalyst has both practically excellent catalytic activity and filtration separation properties, and can significantly improve the efficiency and productivity of the chemical reaction process. Further, when the catalyst of the present invention is used, the use of a filter aid is not required, so that the catalyst can be reused.

【0011】本発明において、活性炭素担体の体積粒度
分布において、累積90%が、60μm以下の粒子サイ
ズを有し、かつ活性炭素担体の個数粒度分布において、
3.3μm以下の微細粒子の累積値が、40%未満にす
るためには、活性炭の原料炭について、それを所望の粒
子サイズ(60μm以下)になるように粉砕し、分級機
を用いて微細粒子の除去を行えばよい。上記粉砕および
分級は、活性炭について行ってもよい。
In the present invention, in the volume particle size distribution of the activated carbon carrier, 90% of the particles have a particle size of 60 μm or less, and in the number particle size distribution of the activated carbon carrier,
In order to make the cumulative value of fine particles of 3.3 μm or less less than 40%, the raw coal of activated carbon is pulverized to a desired particle size (60 μm or less), and then finely divided using a classifier. What is necessary is just to remove particles. The above pulverization and classification may be performed on activated carbon.

【0012】本発明において、活性炭素担体の体積粒度
分布において、累積90%に含まれる粒子のサイズが6
0μmより大きくなると、得られる触媒の活性が不十分
になる。また、本発明において、活性炭素担体の個数粒
度分布において、3.3μm以下の微細粒子の累積値
が、40%以上になると、濾過分離工程に要する時間の
増大という不都合を生ずる。
In the present invention, in the volume particle size distribution of the activated carbon carrier, the size of particles contained in 90% of the total is 6%.
If it is larger than 0 μm, the activity of the obtained catalyst becomes insufficient. In the present invention, when the cumulative value of the fine particles having a size of 3.3 μm or less in the number particle size distribution of the activated carbon carrier is 40% or more, there is a disadvantage that the time required for the filtration and separation step is increased.

【0013】本発明に用いられる活性炭素担体の粒度調
整(分級)は、一般に、触媒製造前に行うことが好まし
いが、触媒製造間に行われてもよい。後者の場合には、
湿式または乾式の分級機による分級をすることにより粒
度調整を行うことができる。
The particle size adjustment (classification) of the activated carbon carrier used in the present invention is generally preferably performed before the production of the catalyst, but may be carried out during the production of the catalyst. In the latter case,
The particle size can be adjusted by performing classification using a wet or dry classifier.

【0014】本発明に用いられる活性炭素としては、木
質材料、ピート、タール、椰子殻などから製造されたも
のを用いることができる。
As the activated carbon used in the present invention, those produced from wood materials, peat, tar, coconut shell, etc. can be used.

【0015】本発明において、貴金属触媒成分として
は、パラジウム、白金、ルテニウム、ロジウム、イリジ
ウム、オスミウム、金、銀、およびレニウムなどを用い
ることができるが、パラジウム又は白金を用いることが
好ましい。
In the present invention, palladium, platinum, ruthenium, rhodium, iridium, osmium, gold, silver, rhenium and the like can be used as the noble metal catalyst component, but palladium or platinum is preferably used.

【0016】本発明の触媒を製造するには、たとえば活
性炭素担体を水に懸濁させ、貴金属の水溶性塩を滴下し
て完全に吸着させた後、ホルマリン、ギ酸、またはナト
リウムボロハイドライド等の還元剤で還元させる方法を
行えばよい。
In order to produce the catalyst of the present invention, for example, an activated carbon carrier is suspended in water, a water-soluble salt of a noble metal is added dropwise and completely adsorbed. What is necessary is just to perform the method of reducing with a reducing agent.

【0017】本発明の触媒において、貴金属触媒成分の
担持量は、金属換算で1〜20%(重量)であることが
好ましい。また、本発明の触媒には貴金属成分の他に、
添加成分、例えばK,Na,Li,Pb、およびSbの
1種以上が含まれていてもよい。
In the catalyst of the present invention, the amount of the noble metal catalyst component carried is preferably 1 to 20% (weight) in terms of metal. The catalyst of the present invention, in addition to the noble metal component,
Additional components, for example, one or more of K, Na, Li, Pb, and Sb may be included.

【0018】[0018]

【実施例】以下実施例を挙げて、本発明を更に詳細に説
明する。粒度測定には、日機装株式会社製マイクロトラ
ックII SRA(0.7〜700μm)を使用した。本
文中では測定装置から出力された「粒度分布測定結果」
を「体積粒度分布」により表し、「個数分布演算結果」
を「個数粒度分布」として表し、「MV」を「体積加重
平均粒子径」と表す。また「頻度」とは、ある粒子径範
囲の度数(%)であり、「累積」とは、ある粒子径以下
の頻度全体を加えあわせた値である。「累積90%」と
は粒子径頻度の累積の値が90%であることを表す。
The present invention will be described in more detail with reference to the following examples. Nikkiso Co., Ltd. Microtrac II SRA (0.7-700 μm) was used for the particle size measurement. In the text, "Results of particle size distribution measurement" output from the measuring device
Is represented by “volume particle size distribution” and “number distribution calculation result”
Is represented as “number particle size distribution”, and “MV” is represented as “volume weighted average particle size”. “Frequency” is the frequency (%) of a certain particle size range, and “cumulative” is a value obtained by adding the entire frequency below a certain particle size. “Cumulative 90%” indicates that the cumulative value of the particle diameter frequency is 90%.

【0019】実施例1 パラジウム1.6gを王水に溶解した後、これを濃縮し
て15wt%塩化パラジウム溶液を得た。2.8〜176
μmの体積粒度分布を有し、累積90%の粒子径が5
9.05μm以下、体積加重平均粒子径が28.62μ
m、個数粒度分布において、3.3μm以下の微粒子の
累積値が34.06%に調整された活性炭30gを、3
00mlの水で懸濁させながら、この中に前記の塩化パラ
ジウム溶液を滴下した。16時間後、20wt%苛性ソー
ダ水溶液を、混合系のpHが13になるまで加えた。2時
間後、この混合物に37wt%ホルマリン水溶液7mlを加
えて1時間90℃に保って前記パラジウム化合物を還元
した後、濾過、水洗、乾燥して5%パラジウム炭素触媒
を調製した。
Example 1 1.6 g of palladium was dissolved in aqua regia and concentrated to obtain a 15 wt% palladium chloride solution. 2.8-176
It has a volume particle size distribution of μm and a 90% cumulative particle size of 5
9.05 μm or less, volume-weighted average particle diameter is 28.62 μm
m, 30 g of activated carbon in which the cumulative value of fine particles having a particle size of 3.3 μm or less was adjusted to 34.06% in the number particle size distribution,
The above-mentioned palladium chloride solution was added dropwise thereto while being suspended in 00 ml of water. After 16 hours, a 20 wt% aqueous sodium hydroxide solution was added until the pH of the mixed system reached 13. Two hours later, 7 ml of a 37 wt% formalin aqueous solution was added to the mixture, and the above-mentioned palladium compound was reduced at 90 ° C. for 1 hour, followed by filtration, washing with water and drying to prepare a 5% palladium-carbon catalyst.

【0020】この触媒5gを30℃のイオン交換水30
0mlに懸濁し、この懸濁液を、濾過面が直径3cmの円形
ろ紙(東洋濾紙株式会社No131 )により、0.1 kgf/
cm2の窒素圧をかけた条件下の濾過に供し、濾紙から窒
素が噴出するまでの濾過時間を測定したところ、12分
であった。
5 g of this catalyst was mixed with 30 ° C. ion-exchanged water 30
0 ml, and the suspension was filtered with a filter paper having a filtration surface of 3 cm in diameter (Toyo Roshi Kaisha No. 131) at 0.1 kgf / kg.
The mixture was subjected to filtration under a condition of applying a nitrogen pressure of cm 2 , and the filtration time required until nitrogen was ejected from the filter paper was measured, to be 12 minutes.

【0021】別に、ジニトロトルエン0.91gをエタ
ノールで溶解し、液量を25mlとし、この溶液中に上記
触媒50mgを加えた。この反応系を反応容器に入れ、さ
らにエタノールを10ml加えた。反応容器及びそれに通
じる水素ライン全体を30℃にした後、窒素置換し、さ
らに水素置換して、この容器を振盪させながら、ジニト
ロトルエンのニトロ基に水素添加反応を施した。このと
き、圧力が常圧を保つように水素を追加しながら15分
間の触媒活性試験を行ったところ、水素吸収量は550
mlであった。
Separately, 0.91 g of dinitrotoluene was dissolved in ethanol to make the volume 25 ml, and 50 mg of the above catalyst was added to this solution. This reaction system was placed in a reaction vessel, and 10 ml of ethanol was further added. After the entire temperature of the reaction vessel and the hydrogen line leading to the reaction vessel was set at 30 ° C., the atmosphere was replaced with nitrogen and further replaced with hydrogen. The nitro group of dinitrotoluene was subjected to a hydrogenation reaction while shaking the vessel. At this time, the catalyst activity test was performed for 15 minutes while adding hydrogen so that the pressure was maintained at normal pressure.
ml.

【0022】比較例1 2.8〜500μmの体積粒度分布を有し、累積90%
の粒子の径が225.26μm以下、体積加重平均粒子
径が70.53μm、3.3μm以下の微粒子が個数粒
度分布で50.21%の粒度を有する活性炭を用いたこ
とを除き、実施例1と同様にして5%パラジウム炭素触
媒を調製した。実施例1と同様にして、得られた触媒の
濾過試験を行ったところ濾過時間30分であり、またジ
ニトロトルエンによる触媒活性試験においては、水素吸
収量は500mlであった。
Comparative Example 1 A powder having a volume particle size distribution of 2.8 to 500 μm and a cumulative 90%
Example 1 except that activated carbon having a particle size of 225.26 μm or less, a volume-weighted average particle size of 70.53 μm, and a particle size of 3.3 μm or less having a particle size distribution of 50.21% was used. A 5% palladium carbon catalyst was prepared in the same manner as described above. A filtration test was performed on the obtained catalyst in the same manner as in Example 1. The filtration time was 30 minutes. In the catalyst activity test using dinitrotoluene, the hydrogen absorption was 500 ml.

【0023】実施例2 パラジウム3.38gを王水に溶解した後、濃縮して1
5wt%塩化パラジウム溶液を得た。実施例1で用いた粒
度調製活性炭30gを300mlの水で懸濁させ、この中
に前記の塩化パラジウム溶液を滴下した。16時間後、
20wt%苛性ソーダ水溶液をpH=13になるまで加え
た。2時間後、37wt%ホルマリン水溶液7mlを加えて
1時間90℃に保って前記パラジウム化合物を還元した
後、濾過水洗乾燥して10%パラジウム炭素触媒を調製
した。
Example 2 3.38 g of palladium was dissolved in aqua regia and concentrated to give 1
A 5 wt% palladium chloride solution was obtained. 30 g of the activated carbon particle size used in Example 1 was suspended in 300 ml of water, and the palladium chloride solution was added dropwise thereto. 16 hours later,
A 20 wt% aqueous sodium hydroxide solution was added until pH = 13. Two hours later, 7 ml of a 37 wt% formalin aqueous solution was added, and the above-mentioned palladium compound was reduced at 90 ° C. for 1 hour, followed by filtration, washing with water and drying to prepare a 10% palladium-carbon catalyst.

【0024】別に安息香酸ベンジル5gにエタノールを
加えて液量を25mlとし、その中に前記触媒200mgを
加えた。この溶液を反応容器に入れ、さらにエタノール
を10ml加えた。反応容器及びそれに通じる水素ライン
全体を30℃にした後、窒素置換、さらに水素置換し
て、この容器を振盪させながら脱ベンジル反応を行い、
圧力が常圧を保つように水素を追加しながら30分間の
活性試験を行ったところ、水素吸収量は400mlであっ
た。
Separately, ethanol was added to 5 g of benzyl benzoate to make the liquid volume 25 ml, and 200 mg of the catalyst was added thereto. This solution was put into a reaction vessel, and 10 ml of ethanol was further added. After the entire reaction vessel and the hydrogen line leading to it at 30 ° C., the atmosphere was replaced with nitrogen and further replaced with hydrogen, and a debenzylation reaction was carried out while shaking the vessel.
When an activity test was performed for 30 minutes while adding hydrogen so that the pressure was maintained at normal pressure, the hydrogen absorption amount was 400 ml.

【0025】比較例2 比較例1の活性炭を用いたことを除き、実施例2と同様
にして10%パラジウム炭素触媒を調製した。実施例2
と同様に安息香酸ベンジルの活性試験を行ったところ、
水素吸収量は350mlであった。
Comparative Example 2 A 10% palladium carbon catalyst was prepared in the same manner as in Example 2 except that the activated carbon of Comparative Example 1 was used. Example 2
When the activity test of benzyl benzoate was performed in the same manner as
The hydrogen absorption was 350 ml.

【0026】比較例3 2.8〜125μmの体積粒度分布を有し、累積90%
の粒子の粒子径が44.16μm以下、体積加重平均粒
子径が22.97μm、3.3μm以下の微粒子の累積
値が個数粒度分布で44.05%になるように粒度調整
された活性炭を用いたことを除き、実施例1と同様にし
て5%パラジウム炭素触媒を調製した。実施例1と同様
に濾過試験を行ったところ、濾過時間は22.5分であ
った。
Comparative Example 3 A powder having a volume particle size distribution of 2.8 to 125 μm and a cumulative 90%
Activated carbon whose particle size is adjusted so that the particle size of the particles is 44.16 μm or less and the volume-weighted average particle size is 22.97 μm or 3.3 μm or less has a cumulative value of 44.05% in the number particle size distribution. A 5% palladium-carbon catalyst was prepared in the same manner as in Example 1 except for the fact that the catalyst was used. When a filtration test was performed in the same manner as in Example 1, the filtration time was 22.5 minutes.

【0027】比較例4 3.9〜125μmの体積粒度分布を有し、累積90%
の粒子径が66.47μm以下、体積加重平均粒子径が
33.04μm、3.3μm以下の微粒子の累積値が個
数粒度分布で13.40%になるように粒度調整された
活性炭を用いたことを除き実施例1と同様にして5%パ
ラジウム炭素触媒を調製した。実施例1と同様に濾過試
験を行ったところ濾過時間は4.8分であった。またジ
ニトロトルエンによる触媒活性試験における水素吸収量
は375mlであった。
Comparative Example 4 having a volume particle size distribution of 3.9 to 125 μm and a cumulative 90%
Activated carbon whose particle size was adjusted so that the particle size of 66.47 μm or less, the volume-weighted average particle size was 33.04 μm, and the cumulative value of the fine particles having a size of 3.3 μm or less was 13.40% in the number particle size distribution. A 5% palladium carbon catalyst was prepared in the same manner as in Example 1 except for the above. When a filtration test was performed in the same manner as in Example 1, the filtration time was 4.8 minutes. The hydrogen absorption in the catalytic activity test with dinitrotoluene was 375 ml.

【0028】実施例1および2に用いられた活性炭素担
体の体積粒度分布を表1に示す。
Table 1 shows the volume particle size distribution of the activated carbon carrier used in Examples 1 and 2.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例1、および2に用いられた活性炭素
担体の個数粒度分布を表2に示す。
Table 2 shows the number and particle size distribution of the activated carbon carriers used in Examples 1 and 2.

【0031】[0031]

【表2】 [Table 2]

【0032】比較例1および2に用いられた、活性炭素
担体の体積粒度分布を表3に示す。
Table 3 shows the volume particle size distribution of the activated carbon carrier used in Comparative Examples 1 and 2.

【0033】[0033]

【表3】 [Table 3]

【0034】比較例1および2に用いられた活性炭素担
体の個数粒度分布を表4に示す。
Table 4 shows the number particle size distribution of the activated carbon carriers used in Comparative Examples 1 and 2.

【0035】[0035]

【表4】 [Table 4]

【0036】実施例3 白金3.9gを王水に溶解した後、濃縮して15wt%塩
化白金酸溶液を得た。実施例1で用いた粒度調整活性炭
120gと炭酸ソーダ23gを1200mlの水に入れて
懸濁させ、この中に前記の塩化白金酸溶液を滴下した。
2時間後、過剰の水素化ホウ素ナトリウムの水溶液を滴
下して前記白金化合物の還元を行った。濾過水洗乾燥し
て3%白金炭素触媒を調製した。実施例1と同様にし
て、ジニトロトルエンによる触媒活性試験を行ったとこ
ろ、水素吸収量は496mlであった。
Example 3 3.9 g of platinum was dissolved in aqua regia and concentrated to obtain a 15 wt% chloroplatinic acid solution. 120 g of the particle-size-adjusted activated carbon and 23 g of sodium carbonate used in Example 1 were suspended in 1200 ml of water, and the above chloroplatinic acid solution was dropped therein.
Two hours later, an excess aqueous solution of sodium borohydride was added dropwise to reduce the platinum compound. After filtration, washing with water and drying, a 3% platinum carbon catalyst was prepared. When a catalytic activity test using dinitrotoluene was performed in the same manner as in Example 1, the amount of hydrogen absorbed was 496 ml.

【0037】比較例5 比較例1の活性炭を用いたことを除き、実施例3と同様
にして3%白金炭素触媒を調製した。実施例1と同様に
して、ジニトロトルエンによる触媒活性試験を行ったと
ころ、水素吸収量は446mlであった。
Comparative Example 5 A 3% platinum carbon catalyst was prepared in the same manner as in Example 3 except that the activated carbon of Comparative Example 1 was used. When a catalytic activity test using dinitrotoluene was performed in the same manner as in Example 1, the amount of hydrogen absorbed was 446 ml.

【0038】[0038]

【発明の効果】本発明により触媒活性が高く、しかも濾
過分離にすぐれ、実用上反応効率および生産性が高く、
しかも再使用可能な貴金属炭素触媒が提供される。
According to the present invention, the catalyst activity is high, the filtration efficiency is excellent, and the reaction efficiency and productivity are practically high.
Moreover, a reusable noble metal carbon catalyst is provided.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−19493(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-54-19493 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-37/36

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活性炭粒子からなる担体と、それに担持
されている貴金属触媒成分とを含み、 前記活性炭粒子が、その体積粒度分布における累積90
%が、60μm以下の粒子サイズを有し、かつその個数
粒度分布において、3.3μm以下の粒子サイズを有す
る微粒子の累積値が40%未満であるように粒度調整さ
れていることを特徴とする貴金属炭素触媒。
1. A carrier comprising activated carbon particles and a noble metal catalyst component supported thereon, wherein said activated carbon particles have a cumulative 90% in the volume particle size distribution.
% Has a particle size of 60 μm or less, and the particle size is adjusted such that the cumulative value of the fine particles having a particle size of 3.3 μm or less in the number particle size distribution is less than 40%. Noble metal carbon catalyst.
【請求項2】 前記貴金属触媒成分がパラジウムまたは
白金を含有する請求項1に記載の貴金属炭素触媒。
2. The noble metal carbon catalyst according to claim 1, wherein the noble metal catalyst component contains palladium or platinum.
JP00824595A 1995-01-23 1995-01-23 Precious metal carbon catalyst with adjusted particle size Expired - Fee Related JP3244605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00824595A JP3244605B2 (en) 1995-01-23 1995-01-23 Precious metal carbon catalyst with adjusted particle size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00824595A JP3244605B2 (en) 1995-01-23 1995-01-23 Precious metal carbon catalyst with adjusted particle size

Publications (2)

Publication Number Publication Date
JPH08196905A JPH08196905A (en) 1996-08-06
JP3244605B2 true JP3244605B2 (en) 2002-01-07

Family

ID=11687767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00824595A Expired - Fee Related JP3244605B2 (en) 1995-01-23 1995-01-23 Precious metal carbon catalyst with adjusted particle size

Country Status (1)

Country Link
JP (1) JP3244605B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464171A (en) * 2013-09-23 2013-12-25 中国科学院长春应用化学研究所 Regeneration method of noble metal catalyst
KR20180042524A (en) * 2016-10-18 2018-04-26 희성금속 주식회사 PREPARATION METHOD OF Pd/C CATALYST IMPROVING FILTERING TIME

Also Published As

Publication number Publication date
JPH08196905A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
TW303308B (en)
US3127356A (en) Process for the preparation of hydro-
JP3312342B2 (en) Composite supporting metal particles and / or metal compound particles, and method for producing the same
EP2081683B1 (en) Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
EP1826180A1 (en) A composite material composed of nanoparticles of transition metal and magnetic ferric oxide, a methode of preparing the same, and uses of the same
US3328465A (en) Process for the hydrogenation of nitro compounds
JP3253319B2 (en) Platinum / graphite catalyst and method of using same
JP2008546519A (en) Catalyst and method for producing the same
JPS595012B2 (en) Manufacturing method of platinum catalyst for fuel cell electrodes
CN113477277A (en) Composite material of metal-loaded covalent organic framework and preparation method and application thereof
US5512529A (en) Catalyst for the selective hydrogenation of aromatic halonitro compounds to aromatic haloamines and a process for its production
CN110280239A (en) A kind of synthesis 2,3- dichloropyridine catalyst and its preparation method and application
JPS6319217B2 (en)
US3736266A (en) Preparation of carbon supported palladium catalysts
JPH06106076A (en) Preparation of high-dispersion metal particle carrying catalyst
JP2002508703A (en) Vinyl acetate catalyst containing palladium and gold deposited on copper-containing carrier
JP3244605B2 (en) Precious metal carbon catalyst with adjusted particle size
JPH04227058A (en) Platinum/graphite catalyst and its application method
EP0545871A2 (en) Process of preparing catalyst supporting highly dispersed metal particles
CN113600181A (en) Preparation method of nano palladium supported catalyst
JPH09271667A (en) Production of carbon-containing catalyst carrier
JPS62130208A (en) Production of finely divided metal powder
JPS6193833A (en) Production of double colloid catalyst composition
CN114931946A (en) Pt/C composite catalyst and preparation method and application thereof
JPH01159056A (en) Production of hydroxylammonium salt and catalyst thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees