JPS59116102A - Production of reducing gas using ruthenium catalyst - Google Patents

Production of reducing gas using ruthenium catalyst

Info

Publication number
JPS59116102A
JPS59116102A JP57230134A JP23013482A JPS59116102A JP S59116102 A JPS59116102 A JP S59116102A JP 57230134 A JP57230134 A JP 57230134A JP 23013482 A JP23013482 A JP 23013482A JP S59116102 A JPS59116102 A JP S59116102A
Authority
JP
Japan
Prior art keywords
reducing gas
gas
reaction
ruthenium
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57230134A
Other languages
Japanese (ja)
Other versions
JPH0236522B2 (en
Inventor
Mitsuya Yamada
山田 光矢
Masamichi Ipponmatsu
正道 一本松
Osamu Okada
治 岡田
Susumu Takami
晋 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP57230134A priority Critical patent/JPS59116102A/en
Publication of JPS59116102A publication Critical patent/JPS59116102A/en
Publication of JPH0236522B2 publication Critical patent/JPH0236522B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a reducing gas consisting essentially of CO, H2, and N2 with high work efficiency while inhibiting the deposition of carbon by bringing town gas or the like into a reaction at a specified temp. in a specified air ratio using a ruthenium catalyst. CONSTITUTION:Town gas or 1-4C aliphatic hydrocarbon is brought into a reaction at 800-900 deg.C in 0.8-1.1 air ratio (the theoretical volume or air in a partial combustion reaction is considered to be 1) using a catalyst prepd. by supporting ruthenium on alumina or the like. In this method, a reducing gas having a uniform composition consisting essentially of CO, H2 and N2 is obtd. The reducing gas is suitable for use in the heat treatment of carbon steel accompanied by no oxidation.

Description

【発明の詳細な説明】 本発明はCO%H2及びN2を主成分とする還元性ガス
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a reducing gas containing CO%H2 and N2 as main components.

従来部分燃焼反応による還元性ガスの製造方法としては
例えばニッケル触媒を用いる方法が知られている。しか
しながらニッケル触媒を用いる方法では、1000℃以
下の温度条件下ではニッケル触媒層上に多量のカーポジ
が析出するため、1100℃以上の高温下に部分燃焼反
応させる必要があり、従ってレトルト材質には特殊な耐
熱鋼が要求される。しかも該方法において1100℃以
上の高温下に部分燃焼反応させた場合でもカーボンの析
出を完全に抑制し得す、一定期間ごとに触媒層内のカー
ポジ焼きの工程が必要とされている。
As a conventional method for producing reducing gas by partial combustion reaction, for example, a method using a nickel catalyst is known. However, in the method using a nickel catalyst, a large amount of carposi is deposited on the nickel catalyst layer at temperatures below 1000°C, so it is necessary to carry out a partial combustion reaction at a high temperature above 1100°C. A heat-resistant steel is required. Moreover, in this method, even when a partial combustion reaction is carried out at a high temperature of 1100° C. or higher, carbon precipitation is completely suppressed, and a process of carbonizing the inside of the catalyst layer is required at regular intervals.

本発明者らは斯かる現状に鑑み上記欠点のない還元性ガ
スの製造方法を開発すべく鋭意研究を重ねた結果、ルテ
ニウム触媒を用いることにより所期の目的を達成し得る
ことを見い出し、ここに本発明を完成するに至った。
In view of the current situation, the inventors of the present invention have conducted intensive research to develop a method for producing reducing gas without the above-mentioned drawbacks, and have discovered that the intended purpose can be achieved by using a ruthenium catalyst. The present invention was finally completed.

即ち本発明は、ルテニウム触媒を用い、都市ガス又はC
□〜4の脂肪族炭化水素を反応温度800〜900℃、
空気比(部分燃焼反応の理論空気量を1とする)0.8
〜1.1で反応させることを特徴とするC01H2及び
N2を主成分とする還元性ガスの製造方法に係る。
That is, the present invention uses a ruthenium catalyst and uses city gas or C
□~4 aliphatic hydrocarbons at a reaction temperature of 800~900℃,
Air ratio (the theoretical air amount for partial combustion reaction is 1) 0.8
The present invention relates to a method for producing a reducing gas containing C01H2 and N2 as main components, characterized in that the reaction is carried out at a rate of 1.1.

ルテニウム触媒を用いる本発明の方法によれば、部分燃
焼反応温度が低い場合においてもカーポジの析出をほぼ
完全に抑制し得る。それ故800〜900℃という比較
的低温において反応させることが可能となり、レトルト
材質は市販のステシレス鋼で十分であり特殊な耐熱鋼は
必要とされない。
According to the method of the present invention using a ruthenium catalyst, carposi precipitation can be almost completely suppressed even when the partial combustion reaction temperature is low. Therefore, it is possible to carry out the reaction at a relatively low temperature of 800 to 900°C, and commercially available steelless steel is sufficient as the material for the retort, and no special heat-resistant steel is required.

また触媒層内のカーボン焼きの工程も不必要となり、作
業性も著しく向上し得る。
Furthermore, the step of burning carbon in the catalyst layer becomes unnecessary, and workability can be significantly improved.

本発明で用いられるルテニウム触媒としては、例えばル
テニウムがアルミナ、シリカ、マタネシア等の担体に担
持されたものを挙げることができる。担体に担持される
ルテニウムの量としては特に限定されず広い範囲内で適
宜選択できるが、通常担体に対して0.5〜3wt%程
度のルテニウムを担持させるのがよい。
Examples of the ruthenium catalyst used in the present invention include those in which ruthenium is supported on a carrier such as alumina, silica, matanesia, or the like. The amount of ruthenium supported on the carrier is not particularly limited and can be appropriately selected within a wide range, but it is usually preferable to support about 0.5 to 3 wt% of ruthenium on the carrier.

本発明で処理されるものは都市ガス又はC□〜4の脂肪
族炭化水素である。C□〜4の脂肪族炭化水素としては
、メタシ、エタシ、づロパシ、づタシ、づチレシ等やこ
れらの混合物、具体的には液化石油ガス、石油オフガス
等を例示できる。また本発明ではC□〜4の脂肪族炭化
水素に水素ガス等のガスが混入されていてもよい。
What is treated in the present invention is city gas or C□-4 aliphatic hydrocarbons. Examples of the aliphatic hydrocarbons C□ to 4 include metal, ethyl, zuropashi, zutashi, zuchireshi, and mixtures thereof, specifically liquefied petroleum gas, petroleum off-gas, and the like. Further, in the present invention, a gas such as hydrogen gas may be mixed into the C□-4 aliphatic hydrocarbon.

本発明では部分燃焼反応の際の反応温度を800〜90
0℃とするのがよい。800℃より低い温度ではカーポ
ジ析出が著るしく、900℃より高い温度ではルテニウ
ムの昇華が著るしい。また本発明では空気比を0.8〜
1.1とするのがよい。
In the present invention, the reaction temperature during the partial combustion reaction is set at 800-900°C.
It is preferable to set the temperature to 0°C. At temperatures lower than 800°C, carposi precipitation is significant, and at temperatures higher than 900°C, ruthenium sublimation is significant. In addition, in the present invention, the air ratio is 0.8~
It is better to set it to 1.1.

0.8より低い空気比ではカーポジ析出が著るしく、1
.1より高い空気比では反応温度が上昇してルテニウム
の昇華が著るしくなるため不都合である。
At air ratios lower than 0.8, carposi precipitation becomes significant;
.. An air ratio higher than 1 is disadvantageous because the reaction temperature increases and the sublimation of ruthenium becomes significant.

本発明の方法で得られる還元性ガスの代表的なものとし
ては例えば金属の熱処理用雰囲気ガス(RXカス)が挙
げられ、これは例えば一般炭素鋼の無酸化焼入や浸炭用
として用いられる。
A typical reducing gas obtained by the method of the present invention includes, for example, an atmospheric gas for heat treatment of metals (RX dregs), which is used, for example, for non-oxidative quenching and carburizing of general carbon steel.

以下に実施例を挙げる。Examples are given below.

実施例 γ−アルミナ上にルテニウム2wt%を担持させた触媒
を用い、+3,4都市ガス〔組成C11L、88voL
 %、C2R66υOt%、C3H84voLl、C4
H工。
Example Using a catalyst in which 2 wt% of ruthenium was supported on γ-alumina, +3,4 city gas [composition C11L, 88voL
%, C2R66υOt%, C3H84voLl, C4
H engineering.

2voL%〕を反応温度850℃、空気比lで反応させ
、下記第1表組成のガスを得た。このガスは炭素鋼の無
酸化熱処理に良好に使用できた。
2voL%] was reacted at a reaction temperature of 850° C. and an air ratio of 1 to obtain a gas having the composition shown in Table 1 below. This gas could be successfully used for non-oxidation heat treatment of carbon steel.

第  1  表 一上記反応を1500時間連続して行なったが、触媒層
へのカーボンの付着は約1.Owt% (触媒重量に対
して)と極めて少なく、触媒の活性は変わらなかった。
Table 1: The above reaction was carried out continuously for 1,500 hours, but the amount of carbon attached to the catalyst layer was approximately 1. Owt% (relative to the weight of the catalyst) was extremely small, and the activity of the catalyst did not change.

また生成するガスの組成も一定であつた。The composition of the gas produced was also constant.

Claims (1)

【特許請求の範囲】[Claims] ■ ルテニウム触媒を用い、都市ガス又はC□〜4の脂
肪族炭化水素を反応温度800〜900℃、空気比(部
分燃焼反応の理論空気量を1とする)0.8〜1.1で
反応させることを特徴とするC01H2及びN2を主成
分とする還元性ガスの製造方法O
■Using a ruthenium catalyst, city gas or C□~4 aliphatic hydrocarbons are reacted at a reaction temperature of 800~900°C and an air ratio (assuming the theoretical air amount for partial combustion reaction is 1) of 0.8~1.1. A method for producing a reducing gas mainly composed of C01H2 and N2, characterized in that
JP57230134A 1982-12-22 1982-12-22 Production of reducing gas using ruthenium catalyst Granted JPS59116102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230134A JPS59116102A (en) 1982-12-22 1982-12-22 Production of reducing gas using ruthenium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230134A JPS59116102A (en) 1982-12-22 1982-12-22 Production of reducing gas using ruthenium catalyst

Publications (2)

Publication Number Publication Date
JPS59116102A true JPS59116102A (en) 1984-07-04
JPH0236522B2 JPH0236522B2 (en) 1990-08-17

Family

ID=16903108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230134A Granted JPS59116102A (en) 1982-12-22 1982-12-22 Production of reducing gas using ruthenium catalyst

Country Status (1)

Country Link
JP (1) JPS59116102A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934164A (en) * 1972-08-02 1974-03-29
JPS5075590A (en) * 1972-07-17 1975-06-20
JPS50126005A (en) * 1974-03-25 1975-10-03
JPS5654204A (en) * 1979-10-12 1981-05-14 Kanto Yakin Kogyo Kk Atmospheric gas generator for heat treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075590A (en) * 1972-07-17 1975-06-20
JPS4934164A (en) * 1972-08-02 1974-03-29
JPS50126005A (en) * 1974-03-25 1975-10-03
JPS5654204A (en) * 1979-10-12 1981-05-14 Kanto Yakin Kogyo Kk Atmospheric gas generator for heat treatment

Also Published As

Publication number Publication date
JPH0236522B2 (en) 1990-08-17

Similar Documents

Publication Publication Date Title
JP2634717B2 (en) Method for producing atmosphere for heat treatment and heat treatment apparatus
CN109126845B (en) Supported transition metal carbide catalyst and one-step synthesis method thereof
GB1471794A (en) Process for regenerating a solid reactant
JPH02198639A (en) Catalyst for decomposing ammonia
US1134677A (en) Process of producing propylene from acetylene and methane.
JPH0615172A (en) Steam reforming catalyst and its production
CA1138410A (en) Metal catalyst without carrier for the partial soot-free oxidation of liquid hydrocarbons with air
JPS59116102A (en) Production of reducing gas using ruthenium catalyst
JPH02227133A (en) Producing method of heat-treatment atmosphere by air separation due to adsorption
JPS58120501A (en) Manufacture of synthetic gas
JP2004523459A (en) How to use molybdenum carbide catalyst
EP0133778B1 (en) Methanol conversion process
US4216033A (en) Method of nitriding steel
JPH08269598A (en) Oxidation catalyst for gaseous sulfur compound
JPH06104837B2 (en) Ammonia treatment method
EP0190307A1 (en) Fischer-tropsch catalyst
JPS56108538A (en) Catalyst for preparing methane and preparation thereof
JPS593401B2 (en) Kangen gas no seizouhouhou
JPS6323742A (en) Reduction catalyst
JPH1043594A (en) Amorphous alloy catalyst for conversion of carbon dioxide into methane
JPS5916968A (en) Synthesis of metal carbide or carbonitride
JPS5946133A (en) Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas
JPS6173795A (en) Preparation of high-calorie gas
JPS63170207A (en) Production of high-purity silicon carbide powder
KR20240030569A (en) Catalyst for hydrogenation reaction of carbon dioxide, method of manufacturing the catalyst, and method of synthesizing liquid hydrocarbon compound using the catalyst