JPS6173795A - Preparation of high-calorie gas - Google Patents

Preparation of high-calorie gas

Info

Publication number
JPS6173795A
JPS6173795A JP19781884A JP19781884A JPS6173795A JP S6173795 A JPS6173795 A JP S6173795A JP 19781884 A JP19781884 A JP 19781884A JP 19781884 A JP19781884 A JP 19781884A JP S6173795 A JPS6173795 A JP S6173795A
Authority
JP
Japan
Prior art keywords
catalyst
iron
hydrogen
methane
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19781884A
Other languages
Japanese (ja)
Other versions
JPH0357954B2 (en
Inventor
Rou Matsumoto
松本  郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19781884A priority Critical patent/JPS6173795A/en
Publication of JPS6173795A publication Critical patent/JPS6173795A/en
Publication of JPH0357954B2 publication Critical patent/JPH0357954B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a high-calorie gas composed mainly of methane using a low-priced catalyst, by allowing coal char to carry iron as catalyst, mixing it with a Ni catalyst, and gasifying it using hydrogen. CONSTITUTION:Coal char is allowed to carry iron as catalyst, is mixed with a Ni catalyst, and is gasified using hydrogen. By the interaction between the Ni catalyst and the iron, the activity to methanization is generated, thereby producing a high-calorie gas composed mainly of methane at a high reaction rate at a relatively low temperature. This method can produce a high-calorie gas by the use of low-priced iron, without using an expensive precious metal catalyst or K salt catalyst.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は石炭チャーのガス化において、鉄を主触媒とし
て用い、メタンを主成分とする高力四り一ガスを製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing high-strength methane-based gas using iron as the main catalyst in the gasification of coal char.

従来の技術 従来、石炭チャーをガス化してメタンを主成分左する高
カロリーガスを製造する方法としては、石炭チャーを水
または水と酸素の混合物を用いて° ガス化し、生成し
た水素と一酸化炭素の混合ガスをさらにメタン化する方
法がある。しか17この方法ではガス化反彪器とメタン
化反応器の2基の反   ゛応器を必要どするt−め、
装置Nが複雑になり、経済的にネ利であるという欠点が
ある。このため1段の反応でメタンを製造する方法の開
発が要望されてiす、そのうちの代表的なものとして、
石炭チャーと水素を直接反応させてメタンを得る直接水
添ガス化法、お゛よび水素まt:は水素と一酸化炭素の
混合ガス雰囲気下、比較的低ンB度で石炭チャーと水と
を反応させ、ガス化反応とメタン化反応を同時におこな
わせてメタンを得る接触ガス化法(Fue1誌、第02
巻、2月号、239〜241ページ、1983年)があ
る。
Conventional technology Conventionally, the method of gasifying coal char to produce a high-calorie gas whose main component is methane is to gasify coal char using water or a mixture of water and oxygen, and then to oxidize the produced hydrogen and monoxide. There is a method to further methanize a carbon gas mixture. However,17 this method requires two reactors, a gasification reactor and a methanation reactor.
This has the disadvantage that the device N becomes complicated and economically disadvantageous. For this reason, there is a demand for the development of a method for producing methane through a one-stage reaction.
The direct hydrogen gasification method, in which coal char and hydrogen are directly reacted to obtain methane, is a method in which coal char and water are directly reacted at a relatively low B degree in a mixed gas atmosphere of hydrogen and carbon monoxide. Catalytic gasification method to obtain methane by simultaneously performing gasification reaction and methanation reaction (Fue 1 magazine, No. 02)
Vol., February issue, pages 239-241, 1983).

しか1ノ、1段の反応でメタンを得る方式のうらまず直
接水添ガス化法では、一般に反応速度が遅く、触媒の使
用が不可欠であり、パラジウムや白金等の高価な資金族
を石炭チャーに担持させて使用しなければならず、工業
化する上で難点があった。このため鉄やニッケル等の遷
移金属を触媒として用いる方法が検討されているが、い
まt!充分な高活性を有する触媒の開発はなされていな
い。
However, in the direct hydrogen gasification method, which obtains methane in one step, the reaction rate is generally slow and the use of catalysts is essential, and expensive materials such as palladium and platinum are used in coal charcoal. It had to be supported on the substrate before use, which posed a problem for industrialization. For this reason, methods using transition metals such as iron and nickel as catalysts are being considered, but currently t! No catalyst with sufficiently high activity has been developed.

他方、接触ガス化法は最近になって提案された方式であ
り、化学平衡上、メタンの生成は低温はど有利であるた
め、触媒の存在下、700℃程度の比較的低温度で反応
を進行せねばならず、そのため高活性なガス化触媒を使
用しなければならない。
On the other hand, the catalytic gasification method is a method that has been proposed recently, and since methane production is advantageous at low temperatures in terms of chemical equilibrium, the reaction is carried out at a relatively low temperature of about 700°C in the presence of a catalyst. Therefore, highly active gasification catalysts must be used.

また、触媒はメタン化反応にも有効でなければならない
。現在のところカリウム塩のみがこれらの両反応に対し
て有効であり、これを触媒として石炭チャーに担持させ
て使用されているが、カリウム塩は比較的高価なため、
反応終了後の残渣圧から回収して再使用する必要がある
。さらに、一部のカリウム塩は石炭中の灰分と結合し、
アルミノシリケ−1・塩となり、約30%は回収不可能
になるという欠点がある。
The catalyst must also be effective for methanation reactions. At present, only potassium salts are effective for both of these reactions, and are used as catalysts supported on coal char; however, potassium salts are relatively expensive;
It is necessary to recover the residual pressure after the reaction and reuse it. In addition, some potassium salts combine with the ash in the coal,
The drawback is that it becomes aluminosilicate-1 salt, and about 30% of it becomes unrecoverable.

このように、直接水添ガス化法と接触ガス化法では、1
段の反応でメタンが得ら第1るという利点はあるが、触
媒に問題が有り、高性能で安価な、場合によっては使い
捨て可能な触媒の開発が待たれている。
In this way, in the direct hydrogen gasification method and the catalytic gasification method, 1
Although the first advantage is that methane is obtained in the step reaction, there are problems with the catalyst, and the development of a high-performance, inexpensive, and possibly disposable catalyst is awaited.

発明が解決17ようとする間+2ff点本発明の目的は
1段の反応により、石炭チャーからメタンを主成分とす
る高カロリーガスを製造するにあたり、高価な資金族触
媒やカリウム塩触媒に代わるものとして、安価である鉄
を用い、可能な限り低い温度で、かつガス化反応速度の
大きい触媒を開発する乙とである。
The purpose of the present invention is to provide a substitute for expensive metal group catalysts and potassium salt catalysts in the production of high-calorie gas containing methane as a main component from coal char through a one-stage reaction. The aim is to develop a catalyst that uses inexpensive iron, operates at the lowest possible temperature, and has a high gasification reaction rate.

問題点を解決するための手段 本発明は鉄を担持させた石炭ヂャーにニッケル触媒を混
合する乙とによって、鉄の直接水添ガス化法、すなわち
石炭チャーと水素の反応によるメタン生成の触媒活性、
t3J:び、水素雰囲気下においては水に対するガス化
触媒活性が飛躍的に増大すること、さらにこれに加えて
、ニッケル触媒と鉄の相互作用により、メタン化反応に
対する活性も現れ、接触ガス化法の触媒としても使用で
きる乙とを見い出すに至ったものである。
Means for Solving the Problems The present invention utilizes a method for direct hydrogen gasification of iron, that is, a catalytic activity for methane production through the reaction of coal char and hydrogen, by mixing a nickel catalyst into a coal jar carrying iron. ,
t3J: In addition, the gasification catalyst activity for water increases dramatically in a hydrogen atmosphere, and in addition to this, the interaction between the nickel catalyst and iron also shows activity for the methanation reaction, making it possible to use the catalytic gasification method. This led to the discovery of a compound that can also be used as a catalyst.

すなわち、本発明は石炭チャーに触媒として鉄を担持さ
せ、さらにこれをニッケル触媒と混合し、ついでガス化
剤として水素または水素と水の混合物を用いてガス化す
る乙とを特徴とするメタンを主成分とする高カロリーガ
スの製造方法を提供するものである。
That is, the present invention provides a method for producing methane, which is characterized in that: (2) iron is supported on coal char as a catalyst, this is further mixed with a nickel catalyst, and then the methane is gasified using hydrogen or a mixture of hydrogen and water as a gasifying agent. The present invention provides a method for producing high-calorie gas as a main component.

本発明において、ガス化剤として水素を用いるか水素と
水の混合物を用いるかでは、反応生成物としてメタンが
得られるということでは同一であるが、その反応経路は
太き(異なる。すなわち、水素を用いる場合は、直接水
添ガス化反応のみがおこり、反応生成物はメタンのみで
ある。一方、水素と水の混合物を用いた場合は、主反応
性ガスは水であるため、まず水素と一酸化炭素が生成し
、この−酸化炭素が水素と反応してメタンが生成する。
In the present invention, whether hydrogen is used as the gasifying agent or a mixture of hydrogen and water is used, methane is obtained as the reaction product, but the reaction route is thick (different; that is, hydrogen When using a mixture of hydrogen and water, only the direct hydrogen gasification reaction occurs and the reaction product is methane.On the other hand, when using a mixture of hydrogen and water, the main reactive gas is water, so the hydrogen and Carbon monoxide is produced and this carbon oxide reacts with hydrogen to produce methane.

一般に石炭チャーは水素よりも水に対してガス化され易
いため、水素と水の混合物をガス化剤=4− とした方が水素のみをガス化剤とするよりメタンの生成
量が多(なる。しかし生成ガス中に未反応の一酸化炭素
や一酸化炭素と水の反応により生成した二酸化炭素が混
入してくる。これ;よ水の混合割合を多くするほど顕著
であり、水だけをガス化剤とした場合はメタンの生成は
ほとんど認められなくなる。
In general, coal char is more easily gasified by water than by hydrogen, so using a mixture of hydrogen and water as a gasifying agent = 4- produces more methane than using only hydrogen as a gasifying agent. However, unreacted carbon monoxide and carbon dioxide produced by the reaction of carbon monoxide and water are mixed into the produced gas. When used as a oxidizing agent, almost no methane production is observed.

石炭ヂャーに担持する鉄触媒としては、金属鉄そのもの
を用いる必要はないが、反応条件下で金属鉄に還元され
るような鉄化合物を担持する必要がある。これは鉄の触
媒活性は金属鉄の状態の時に出現するものであり、酸化
状態では触媒活性を持っていないためである。鉄化合物
としては硝酸鉄などの鉄塩が使用できる。担持方法とし
ては、鉄と石炭チャーとの有効接触面積を大きくするた
め、鉄塩溶液を用い、この中に石炭チャーを浸漬するこ
とによって担持させる方法が好ましい。鉄塩は石炭チャ
ーに直接担持しても良いし、石炭に担持したあと不活性
ガス雰囲気下で乾留し、チャー化したあと使用しても良
い。鉄の担持量は多くするほど反応性が高くなる傾向に
あるが、その差は小さいものであり、石炭チャーに対し
て鉄を0.1重量%以上担持させれば充分である。また
、ヤルーン炭のように石炭中の灰分に鉄を含むものでは
、鉄を担持させることなく使用できるが、鉄の分散が悪
いため、反応性は低く、担持させたものの方が良い結果
を示す。
As the iron catalyst supported on the coal jar, it is not necessary to use metallic iron itself, but it is necessary to support an iron compound that can be reduced to metallic iron under reaction conditions. This is because the catalytic activity of iron occurs when it is in the state of metallic iron, and it does not have catalytic activity in the oxidized state. As the iron compound, iron salts such as iron nitrate can be used. As a supporting method, in order to increase the effective contact area between iron and coal char, it is preferable to use an iron salt solution and to support the coal char by immersing it in this solution. The iron salt may be directly supported on coal char, or may be used after being supported on coal and carbonized under an inert gas atmosphere to form char. As the amount of iron supported increases, the reactivity tends to increase, but the difference is small, and it is sufficient to support 0.1% by weight or more of iron relative to the coal char. In addition, coal containing iron in the ash content, such as Yarun coal, can be used without supporting iron, but due to poor dispersion of iron, the reactivity is low, and better results are obtained with supported coal. .

本発明において用いられるニッケル触媒はラネーニッケ
ル触媒やケイソウ上またはアルミナにニッケルを担持し
た触媒などで、水素添加用触媒として用いられるもので
ある。ニッケル触媒は粒状または粉末状として鉄担持石
炭チャーと混合される。
The nickel catalyst used in the present invention is a Raney nickel catalyst or a catalyst in which nickel is supported on diatomaceous material or alumina, and is used as a hydrogenation catalyst. The nickel catalyst is mixed with the iron-supported coal char in granular or powdered form.

ニッケル触媒の混合割合は鉄担持石炭チャー100重量
部に対して40重量部以上である。混合割合が40重量
部以下であっても効果はあるが充分ではなく、特に水素
と水の混合物をガス化剤とする場合は一酸化炭素の生成
割合が大きくなり、全く加えない場合はメタンの生成は
ほとんど認められなくなる。反対に多く加えてもメタン
の生成割合は一定となるので、200重量部以上加える
ことは無意味である。この最適混合割合はニッケル触媒
の活性および粒度によって°異なってくるが、通常、石
炭チャー100重量部当たす60〜150重量部の範囲
である。
The mixing ratio of the nickel catalyst is 40 parts by weight or more based on 100 parts by weight of the iron-supported coal char. Even if the mixing ratio is 40 parts by weight or less, it is still effective, but it is not sufficient. In particular, when a mixture of hydrogen and water is used as a gasifying agent, the proportion of carbon monoxide produced becomes large, and when it is not added at all, methane is produced. Formation becomes almost unrecognizable. On the other hand, even if a large amount is added, the production rate of methane remains constant, so it is meaningless to add more than 200 parts by weight. The optimum mixing ratio varies depending on the activity and particle size of the nickel catalyst, but is usually in the range of 60 to 150 parts by weight per 100 parts by weight of coal char.

ガス化の際の反応温度(才化学平衡上メタンの生成が低
温はど有利であるため、できるt!け低温であることが
望ましい。しかし反応温度を低くすることによってガス
化反応の速度が遅くなるため、600℃以−トの反応温
度が必要となる。最適反応温度はガス化剤として何を使
う゛かによって異なってくるが、水素を用いる場合は6
50℃以上、水素と水の混合物を用いる場合は、650
〜800℃の反応温度が好ましい。
Reaction temperature during gasification (low temperature is advantageous for methane production due to chemistry equilibrium, so it is desirable to keep it as low as possible. However, by lowering the reaction temperature, the speed of the gasification reaction will slow down. Therefore, a reaction temperature of 600°C or higher is required.The optimal reaction temperature varies depending on what gasifying agent is used, but when hydrogen is used, a reaction temperature of 600°C or higher is required.
650 when using a mixture of hydrogen and water at 50°C or higher
A reaction temperature of ˜800° C. is preferred.

反応圧力は一般にガス化反応速度を大きくし、メタンの
平衡生成濃度を大きくするため、本反応は加圧下で行う
ことが望ましい。
Since reaction pressure generally increases the gasification reaction rate and increases the equilibrium concentration of methane, it is desirable to carry out this reaction under pressure.

前述した、Lうに、反応後のガスは水素をガス化剤とし
t、= tU合、メタンと未反応の水素の混合物であり
、水素と水の混合物をガス化剤とした場合はメタン、水
素、−酸化炭素および二酸化炭素の鹿合ガスとなる。こ
の混合ガスはそのまま高カロリーガスとして使用しても
良いし、適当な方法によりメタンだけを分離して使用し
ても良い。この場合、メタンから分離されtコ水素は再
使用することができる。
As mentioned above, the gas after the reaction is a mixture of methane and unreacted hydrogen when hydrogen is used as a gasifying agent and t = tU, and when a mixture of hydrogen and water is used as a gasifying agent, methane and hydrogen are mixed. , - becomes carbon oxide and carbon dioxide gas. This mixed gas may be used as is as a high-calorie gas, or only methane may be separated and used by an appropriate method. In this case, the hydrogen separated from the methane can be reused.

作用 本発明において主触媒として用いる鉄は、従来から金属
鉄の状態では直接水添ガス化活性および水に対するガス
化活性を持っていることは知られていた。しかしその活
性は大きいものではなく、またメタン化反応に対する活
性は持っていない。
Function: It has been known that the iron used as the main catalyst in the present invention has direct hydrogenation gasification activity and water gasification activity in the state of metallic iron. However, its activity is not large, and it has no activity against methanation reactions.

本発明においては、乙の鉄の触媒作用がニッケル触媒と
混合することによって飛躍的に高くなる乙とを認めたも
のである。これはニッケ、ル触媒によって活性化された
水素が鉄触媒の表面状態を還元状態に保っていることに
よるものと予測される。このため本発明においては水素
雰囲気下で反応を・おこなわせる必要がある。また水素
の存在は化学平衡上からメタンの生成に有利である。な
お、鉄担持石炭チャーはニッケル触媒と分離混合して用
いる必要があり、石炭チャー上に鉄とニッケルを同時に
担持したものでは相乗効果を認めることができなかった
The present invention recognizes the fact that the catalytic action of iron is dramatically increased by mixing it with a nickel catalyst. This is predicted to be because the hydrogen activated by the nickel and nickel catalyst keeps the surface state of the iron catalyst in a reduced state. Therefore, in the present invention, it is necessary to carry out the reaction in a hydrogen atmosphere. Furthermore, the presence of hydrogen is advantageous for the production of methane from the viewpoint of chemical equilibrium. Note that the iron-supported coal char must be used separately and mixed with the nickel catalyst, and no synergistic effect could be observed when iron and nickel were simultaneously supported on the coal char.

実施例 次に、本発明を実施例によって更に詳細に説明する。Example Next, the present invention will be explained in more detail by way of examples.

実施例1 。Example 1.

オーストラリア産褐炭であるヤルーン炭を32〜60メ
ツシユ!こ粉砕し、灰分の影響を除くため塩酸で処理し
て金属分を除いたあと、07モルの硝酸    □第二
鉄溶液に浸し、ろ過乾燥して石炭上に鉄を担持した。こ
れを窒素雰囲気下950℃で1時間乾留して鉄担持石炭
ヂャーを得た。鉄の担持量は石炭チャーに対1)で17
%であった。この石炭チャー05gをケイソウ上の上に
約50%のニッケルを担持した粉末状のニッケル触媒0
.5gと混合し、内径15IIII11の反応管に入れ
、反応温度750℃で100m&’/分の水素を流1ノ
でメタンの生成速度を求めた。メ   ゛タンの生成一
度(f反応開始後すぐに最大値を示し、その後徐々に減
少していったが、30分後の値は、2.7me/分てあ
った。これから石炭チャーのガス化速度を算出すると0
.29g 7100g 7分となる。
32-60 mesh of Australian brown coal! This was pulverized and treated with hydrochloric acid to remove the metal content to remove the influence of ash content, then immersed in 0.7 mol of ferric nitric acid solution, filtered and dried to support iron on the coal. This was carbonized at 950° C. for 1 hour in a nitrogen atmosphere to obtain iron-supported coal jar. The amount of iron supported is 17% compared to coal char.
%Met. A powdered nickel catalyst with approximately 50% nickel supported on diatom is prepared by adding 05 g of this coal char to a diatom layer.
.. The methane production rate was determined by mixing with 5 g of hydrogen and placing it in a reaction tube with an inner diameter of 15III11 at a reaction temperature of 750°C and a flow of hydrogen of 100 m&'/min. Once the methane production (f) showed the maximum value immediately after the reaction started, it gradually decreased, but the value after 30 minutes was 2.7 me/min. Calculating the speed is 0
.. 29g 7100g 7 minutes.

同様に反応温度が700℃では各々、1.6m#/分、
0.17g7100g 7分、650℃では0.4me
 7分、005g / 100g 7分であった。なお
反応生成物としてはメタンのみが検出され、炭素数2以
上の炭化水素は全く認められなかった。
Similarly, when the reaction temperature is 700°C, 1.6 m#/min,
0.17g7100g 7 minutes, 0.4me at 650℃
7 minutes, 005g/100g 7 minutes. Note that only methane was detected as a reaction product, and no hydrocarbons having two or more carbon atoms were observed.

比較例1 実施例1と同し鉄担持石炭チャーを用い、ニッケル触媒
を加えずに同様な反応を行った。反応温度が750℃で
はメタンの生成速度は0.6mj/分で、石炭チャーの
ガス化速度は0.07g / 100g 7分であった
。反応温度が700℃以下ではメタンの生成速度1.t
 0.1ml 7分以下となり、はとんどガス化反応が
起こらなかった。
Comparative Example 1 The same reaction as in Example 1 was carried out using the same iron-supported coal char without adding a nickel catalyst. At a reaction temperature of 750°C, the methane production rate was 0.6 mj/min, and the coal char gasification rate was 0.07 g/100 g 7 min. When the reaction temperature is below 700°C, the methane production rate is 1. t
0.1 ml It took less than 7 minutes, and the gasification reaction hardly occurred.

実施例2 実施例1と同じ鉄担持石炭チャー0.5gとニッケル触
媒0.5g1e混合し、同じ反応装置を用いて、750
℃で5%の水を含む水素を100mN/分で流して石炭
チャーをガス化し、メタンと一酸化炭素の生成速度を求
めた。生成速度は反応開始後15分で最大値を示17、
その後徐々に減少してい−った。最大生成速度はメタン
で6.3m+!/分、−酸化炭素で03mj 7分であ
り、生成ガス中のメタンの割合は95%、石炭チャーの
ガス化速度は0.71g / 100g 7分であった
Example 2 0.5 g of the same iron-supported coal char as in Example 1 and 0.5 g of nickel catalyst were mixed, and using the same reaction apparatus, 750
The coal char was gasified by flowing hydrogen containing 5% water at a rate of 100 mN/min at ℃, and the production rate of methane and carbon monoxide was determined. The production rate reached its maximum value 15 minutes after the start of the reaction17.
After that, it gradually decreased. The maximum production speed is 6.3m+ for methane! /min, -03 mj 7 min with carbon oxide, the proportion of methane in the product gas was 95%, and the gasification rate of coal char was 0.71 g / 100 g 7 min.

次に上記と同じ石炭を用い、鉄の担持量、反応温度、水
素と水の混合割合、鉄担持石炭チャーとニッケル触媒の
混合割合、ニッケル触媒の種類を変更した場合等につい
て、上記と同様な実験をお乙ない、その結果を次表に示
す。
Next, using the same coal as above, the amount of supported iron, reaction temperature, mixing ratio of hydrogen and water, mixing ratio of iron-supported coal char and nickel catalyst, type of nickel catalyst, etc. were changed. The experiment was conducted and the results are shown in the table below.

なお、ガス分析の結果、流出ガス中には水素、メタン、
−酸化炭素が主成分てあり、二酸化炭素は極微旦含まれ
ているだけであった。
Furthermore, as a result of gas analysis, hydrogen, methane,
-The main component was carbon oxide, with only a trace amount of carbon dioxide.

比較例2 実施例1と同し鉄担持石炭チャーを用い、ニッケル触媒
を加えずに、水5%を含む水素でガス化反応を行った。
Comparative Example 2 Using the same iron-supported coal char as in Example 1, a gasification reaction was performed with hydrogen containing 5% water without adding a nickel catalyst.

反応温度が800℃では反応開始後3時間は流出ガス中
に反応生成物は認められず、その後徐々に一酸化炭素が
生成しはじめ、反応開始後6時間以降で定常状態に達し
た。この時の一酸化炭素の生成速度は1.1mfl/分
て、メタンの生成量は極(憩袖であった。反応ン昂度が
750℃す下では、反応開始後10時間経過したあとで
もガス化反応による生成物は認められなかった。
When the reaction temperature was 800° C., no reaction products were observed in the effluent gas for 3 hours after the start of the reaction, and then carbon monoxide gradually began to be produced, reaching a steady state after 6 hours after the start of the reaction. At this time, the production rate of carbon monoxide was 1.1 mfl/min, and the amount of methane produced was extremely low. No products from the gasification reaction were observed.

比較例3 塩酸処理により鉄を除いたヤルン炭チャー05gに実施
例1と同じニッケル触媒0.5gteH合し、実施例2
と同じ条件でガス化反応を行った。反応湿度750℃で
メタンの生成速度は0.1m#/分であり、−酸化炭素
の生成は認められなかった。
Comparative Example 3 0.5gteH of the same nickel catalyst as in Example 1 was added to 05g of Yalung coal char from which iron had been removed by hydrochloric acid treatment, and 0.5gteH of the same nickel catalyst as in Example 1 was added.
The gasification reaction was carried out under the same conditions. At a reaction humidity of 750°C, the methane production rate was 0.1 m#/min, and no -carbon oxide production was observed.

発明の効果 本発明に従うと、石炭チャーからメタンを主成分とする
高カロリーガスを効率良く得ることがてきる上に、安価
な鉄を触媒として使用できるため、従来法の欠点である
触媒の回収や反応にともなって起こる触媒の損失による
コスト増を低下できるため、工業的な高カロリーガスの
製造方法として好適である。
Effects of the Invention According to the present invention, high-calorie gas containing methane as a main component can be efficiently obtained from coal char, and inexpensive iron can be used as a catalyst, thereby eliminating the drawback of catalyst recovery in conventional methods. This method is suitable as an industrial method for producing high-calorie gas because it can reduce the cost increase due to loss of catalyst that occurs with the reaction.

=15− −らへq−=15- -Raheq-

Claims (1)

【特許請求の範囲】 1、石炭チャーに触媒として鉄を担持させ、さらにこれ
をニッケル触媒と混合し、ついでガス化剤として水素を
用いてガス化することを特徴とするメタンを主成分とす
る高カロリーガスの製造方法。 2、石炭チャーに触媒として鉄を担持させ、さらにこれ
をニッケル触媒と混合し、ついでガス化剤として水素と
水の混合物を用いてガス化することを特徴とするメタン
を主成分とする高カロリーガスの製造方法。
[Claims] 1. Methane as the main component, characterized in that iron is supported on coal char as a catalyst, this is further mixed with a nickel catalyst, and then gasified using hydrogen as a gasifying agent. A method for producing high calorie gas. 2. A high-calorie product whose main component is methane, which is characterized by supporting iron on coal char as a catalyst, mixing it with a nickel catalyst, and then gasifying it using a mixture of hydrogen and water as a gasifying agent. Gas production method.
JP19781884A 1984-09-20 1984-09-20 Preparation of high-calorie gas Granted JPS6173795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19781884A JPS6173795A (en) 1984-09-20 1984-09-20 Preparation of high-calorie gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19781884A JPS6173795A (en) 1984-09-20 1984-09-20 Preparation of high-calorie gas

Publications (2)

Publication Number Publication Date
JPS6173795A true JPS6173795A (en) 1986-04-15
JPH0357954B2 JPH0357954B2 (en) 1991-09-03

Family

ID=16380847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19781884A Granted JPS6173795A (en) 1984-09-20 1984-09-20 Preparation of high-calorie gas

Country Status (1)

Country Link
JP (1) JPS6173795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120125151A1 (en) * 2009-05-08 2012-05-24 Jorge Octavio Becerra-Novoa Integrated steel plant with production of hot or cold dri

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714715A (en) * 1980-07-02 1982-01-26 Diesel Kiki Co Ltd Generator for reference position signal
JPS5743117A (en) * 1980-06-30 1982-03-11 Johns Manville Double layer type heat insulating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743117A (en) * 1980-06-30 1982-03-11 Johns Manville Double layer type heat insulating apparatus
JPS5714715A (en) * 1980-07-02 1982-01-26 Diesel Kiki Co Ltd Generator for reference position signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120125151A1 (en) * 2009-05-08 2012-05-24 Jorge Octavio Becerra-Novoa Integrated steel plant with production of hot or cold dri
US8961648B2 (en) * 2009-05-08 2015-02-24 Hyl Technologies, S.A. De C.V. Integrated steel plant with production of hot or cold DRI

Also Published As

Publication number Publication date
JPH0357954B2 (en) 1991-09-03

Similar Documents

Publication Publication Date Title
KR101529906B1 (en) Process for operating hts reactor
Van Barneveld et al. Reactions of CHxCl4− x with hydrogen: Relation to the Fischer-Tropsch synthesis of hydrocarbons
JPH0768171A (en) Catalyst for reduction reaction of carbon dioxide
JPH07144902A (en) Method for steam refoaming of hydrocarbon
JPH02198639A (en) Catalyst for decomposing ammonia
US4242103A (en) Cyclic two step process for production of methane from carbon monoxide
US4242104A (en) Cyclic process for producing methane with catalyst regeneration
US4242105A (en) Process for producing methane from gas streams containing carbon monoxide and hydrogen
JP3512444B2 (en) Method for producing hydrogen and carbon monoxide from methane
EP0004456B1 (en) Methanation of carbon monoxide without prior separation of inert gases
US4309392A (en) Process for removing nitrogen oxides from a gas stream
JPS6173795A (en) Preparation of high-calorie gas
JPS58148829A (en) Manufacture of methane
EP0133778B1 (en) Methanol conversion process
GB802100A (en) Selective hydrogenation of acetylene in ethylene
JPH02245094A (en) Removal of hydrogen cyanide and carbonyl sulfide from gas mixture
JPH02198638A (en) Catalyst for decomposing ammonia
Rahman et al. Investigation of nickel oxide on alumina aerogel catalysts promoted with magnesia or iron oxide for nitroxidation of propylene into acrylo-and acetonitriles
JPS59179154A (en) Catalyst for producing high calory gas and its production and production of high calory gas
SU403427A1 (en) METHOD OF RESTORATION
JPS64440B2 (en)
NL7811278A (en) METHOD FOR PROCESSING NITROGEN CONTAINING NATURAL GAS.
JPH08176557A (en) Reforming of heavy oil
JP4049211B2 (en) Method for producing methanol
JPH0446246B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term