JPS6323742A - Reduction catalyst - Google Patents

Reduction catalyst

Info

Publication number
JPS6323742A
JPS6323742A JP62147320A JP14732087A JPS6323742A JP S6323742 A JPS6323742 A JP S6323742A JP 62147320 A JP62147320 A JP 62147320A JP 14732087 A JP14732087 A JP 14732087A JP S6323742 A JPS6323742 A JP S6323742A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
cobalt
gas
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62147320A
Other languages
Japanese (ja)
Other versions
JPH0558776B2 (en
Inventor
Yoshinobu Takegami
武上 善信
Satoyuki Inui
智行 乾
Seiji Nishida
清二 西田
Yoshiaki Ishigaki
石垣 喜章
Masanobu Uba
姥 政信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP62147320A priority Critical patent/JPS6323742A/en
Publication of JPS6323742A publication Critical patent/JPS6323742A/en
Publication of JPH0558776B2 publication Critical patent/JPH0558776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prolong the life of reduction catalyst by having catalyst content, consisting of a specific quantity of iron and/or cobalt and manganese oxide and platinum group metal blended, carried on a carrier constituted with silica and/or alumina. CONSTITUTION:First, platinum group metal is carried on a carrier constituted of silica and/or alumina. Next, iron and/or cobalt and manganese oxide are carried simultaneously, and thus prepared ternary composition catalyst is heat treated at a temperature of 500-950 deg.C in the presence of reductive atmosphere, for example, hydrogen, to form a reduction catalyst. At this time, the blending quantity of iron and/or cobalt should be 15-25% based on the whole weight of catalyst including the carrier. Silica carrier having at most 500m<2>/g of specific surface area is suitable, while alumina carrier having at most 380m<2>/g of specific surface area is suitable.

Description

【発明の詳細な説明】 本発明は水素及び−酸化炭素を含むガス、あるいは更に
二酸化炭素を含む低カロリーガスから炭素数1〜4の炭
化水素を含む高カロリーガスを製造するための触媒に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for producing a high-calorie gas containing a hydrocarbon having 1 to 4 carbon atoms from a gas containing hydrogen and carbon oxide, or a low-calorie gas containing carbon dioxide. It is.

都市ガスとしては、従来、コークス炉ガスが主流を占め
てきたが、近年生活環境の保護、供給方式の合理化、無
毒安全性等の観点から見直しが行なわれ、高カロリー天
然ガスへの転換が急ピッチで進められている。そのため
コークス炉ガスは都市ガスとしての用途をせばめられつ
つあるが、製鉄用コークスの生産に伴って膨大な量が副
生ずるので、この有用な用途を開発することが重要な課
題になりている。ところでこのコークス炉ガスを今後と
も燃料用として活用していくためには現在の低カロリー
性を改善し、天然ガスに匹敵し得る様な高カロリーガス
に変換することが必要である。
Traditionally, coke oven gas has been the mainstream source of city gas, but in recent years it has been reviewed from the viewpoints of protecting the living environment, rationalizing supply methods, non-toxic safety, etc., and there is a sudden shift to high-calorie natural gas. Things are progressing on the pitch. For this reason, the use of coke oven gas as a city gas is being limited, but since a huge amount is produced as a by-product in the production of coke for steelmaking, it is important to develop useful uses for this gas. However, in order to continue to utilize this coke oven gas as a fuel, it is necessary to improve its current low calorie property and convert it into a high calorie gas comparable to natural gas.

代替天然ガス(以下SNGという)の製造法としては、
石炭系責源からのガス、例えば石炭ガス化ガスからメタ
ンを合成するか、またはコークス炉ガスに高価なナフサ
やLPGを添加し接触改質してメタン化する方法等が提
案されている。ここで得られる、メタン主体のSNGは
せいぜい8.500 kcal/Nm’ないしそれ以下
のカロリーを有するに過ぎず、天然ガスなみの都市ガス
として供給するためにはLPG等を添加して増熱する必
要がある。本発明者等は上述の事情に鑑み、種々研究の
結果水素および一酸化炭素を含むガス、あるいは更に二
酸化炭素を含むガス(以下、単に低カロリーガスと称す
)例えばコークス炉ガスを高カロリーガスに変換するこ
とのできる三元組成系触媒を見出し、先にその製造方法
につき特許出願を行った(特開昭59−46133号)
The production method for alternative natural gas (hereinafter referred to as SNG) is as follows:
Proposed methods include synthesizing methane from gas from coal-based sources, such as coal gasified gas, or adding expensive naphtha or LPG to coke oven gas and catalytically reforming it to produce methane. The methane-based SNG obtained here has a calorie of at most 8.500 kcal/Nm' or less, and in order to supply it as city gas comparable to natural gas, it must be heated by adding LPG, etc. There is a need. In view of the above-mentioned circumstances, the present inventors have conducted various studies to convert gases containing hydrogen and carbon monoxide, or gases further containing carbon dioxide (hereinafter simply referred to as low-calorie gases), such as coke oven gas, to high-calorie gases. He discovered a ternary composition catalyst that could perform the conversion, and filed a patent application for its manufacturing method (Japanese Patent Application Laid-Open No. 59-46133).
.

すなわち、同出願の発明はシリカおよび/またはアルミ
ナよりなる担体に、触媒基質としての鉄および/または
コバルトにマンガン酸化物と白金族金属とを組合わせて
担持させてなる触媒に上記低カロリーガスを接触させる
と、メタンのほか、□炭素数が2〜4の炭化水素をも含
む高カロリーガスに変換することができるというもので
ある。
That is, the invention of the same application applies the above-mentioned low-calorie gas to a catalyst in which a combination of manganese oxide and platinum group metal is supported on iron and/or cobalt as a catalyst substrate on a carrier made of silica and/or alumina. When brought into contact, it can be converted into a high-calorie gas containing not only methane but also hydrocarbons having 2 to 4 carbon atoms.

本発明者等は、上記三元組成系触媒の高カロリーガス生
成性能を向上させるため、さらに検討をすすめたところ
、触媒基質としての鉄および/またはコバルトの担持量
を、担体を含む全触媒重量に対して5%を超え25%以
下に調製したところ、触媒寿命が改善されることを見出
し本発明を完成した。尚この触媒を製造する方法につい
ては一切限定されないが、特に好ましいのは、シリカお
よび/またはアルミナよりなる担体に、まず、白金族金
属を担持させ、ついで鉄および/またはコバルトと酸化
マンガンを同時に担持させて三元組成系触媒を得、次い
で還元性7囲気下500〜950℃の温度で熱処理する
方法であり、これによって耐熱性および触媒寿命の長い
ものが得られる。以下、本発明をさらに詳細に説明する
In order to improve the high-calorie gas generation performance of the above-mentioned ternary composition catalyst, the present inventors conducted further studies and found that the amount of iron and/or cobalt supported as a catalyst substrate was determined by the total catalyst weight including the carrier. The present invention was completed by discovering that the life of the catalyst was improved when the content of the catalyst was adjusted to more than 5% and less than 25%. The method for producing this catalyst is not limited at all, but it is particularly preferable to first support a platinum group metal on a carrier made of silica and/or alumina, and then simultaneously support iron and/or cobalt and manganese oxide. This is a method of obtaining a ternary composition catalyst, which is then heat-treated at a temperature of 500 to 950°C under a reducing atmosphere, thereby obtaining a catalyst with long heat resistance and catalyst life. The present invention will be explained in more detail below.

本発明において触媒成分の担持される触媒担体は、一般
に市販されたいるシリカまたはアルミナであり、例えば
シリカ担体の場合、比表面積が500m’/g以下のも
の、またアルミナ担体の場合、比表面積が380m’/
g以下のものが好ましい。なおこれら担体は触媒成分の
担持と、反応ガス(未反応ガスと生成ガス)の拡散を改
善する目的で、触媒成分を担持させるに当って、あらか
じめ500〜1100℃の温度で熱処理しておくことが
好ましい。
In the present invention, the catalyst carrier on which the catalyst component is supported is generally commercially available silica or alumina. For example, a silica carrier has a specific surface area of 500 m'/g or less, and an alumina carrier has a specific surface area of 500 m'/g or less. 380m'/
g or less is preferable. In addition, these carriers should be heat-treated at a temperature of 500 to 1100°C in advance to support the catalyst components for the purpose of supporting the catalyst components and improving the diffusion of the reaction gas (unreacted gas and generated gas). is preferred.

上記のような担体に担持させる触媒成分の基質としては
鉄および/またはコバルトが用いられる。そしてこの基
質金属にマンガン酸化物および白金族金属(例えばルテ
ニウム、ロジウム、パラジウム、白金、およびイリジウ
ム等)を組み合わせて前記担体上に担持させたものであ
る。
Iron and/or cobalt is used as a substrate for the catalyst component supported on the carrier as described above. This substrate metal is combined with a manganese oxide and a platinum group metal (for example, ruthenium, rhodium, palladium, platinum, iridium, etc.) and supported on the carrier.

上記組み合わせにおいて、触媒基質となる鉄および/ま
たはコバルトの担持量は全触媒に対し15%を超え25
%以下と定める。これは15%を超えることによって触
媒寿命が長くなるからであり、25%を超えて担持させ
ることは噴霧法を採用するにしても技術的に困難を伴う
。酸化マンガンの担持量は特に制限されないが、鉄およ
び/またはコバルト元素対マンガン元素の原子比が(5
: 1 )〜(5:4)の範囲を満足するように設定す
るのが良い。白金族金属の担持量も限定されないが、鉄
および/またはコバルト元素対白金族金属の原子比が(
30:1)〜(5:2)の範囲を満足するように設定す
るのが好ましい。
In the above combination, the supported amount of iron and/or cobalt as a catalyst substrate exceeds 15% of the total catalyst.
% or less. This is because the life of the catalyst becomes longer when the content exceeds 15%, and it is technically difficult to support more than 25% even if a spraying method is employed. The amount of manganese oxide supported is not particularly limited, but the atomic ratio of iron and/or cobalt elements to manganese elements is (5
:1) to (5:4). The amount of platinum group metal supported is also not limited, but the atomic ratio of iron and/or cobalt elements to platinum group metal is (
It is preferable to set the ratio to satisfy the range of 30:1) to 5:2.

すなわち、触媒を調製するに当っては、上記シリカおよ
び/またはアルミナよりなる担体に、たとえばまず白金
族金属を担持させ、ついで鉄および/またはコバルトと
酸化マンガンとを同時に担持させて得られた三元組成系
触媒を還元性罪囲気例えば水素の存在下500〜950
℃の温度で熱処理する。なお、前記手順にしたがフて得
られる触媒は、前記以外の方法、例えば鉄および/また
はコバルトと酸化マンガンを先に担持させ、そのあとで
白金族金属を担持させて得られる触媒、白金族金属と酸
化マンガンと鉄および/またはコバルトを同時に担持さ
せて得られる触媒および金属触媒を担持させたあと、上
記温度範囲外で熱処理して得られる触媒などとくらべて
、低カロリーガスを炭素数2〜4の炭化水素をも含有す
る高カロリーガスに変換する能力がはるかに有効に発揮
されることが本発明者等によって確認されたが、本発明
の触媒はその製造手順によって技術的範囲が制限される
訳ではない。本発明の触媒は、具体的にはシリカおよび
/またはアルミナよりなる担体に、鉄および/またはコ
バルト、マンガンおよび白金族金属をそれぞれ硝酸塩水
溶液または塩化物水溶液の形で噴震、散布、浸漬等の手
段により含浸させたあと、乾燥、アンモニア処理、熱分
解、還元等の工程を順次流して製造される。尚これに最
終工程としての熱処理を施すことにより更に良い結果、
即ち長寿命触媒が得られる。なお、この調製にあたり、
アンモニア処理工程は省略できる場合もある。本発明の
触媒の製造例をさらに具体的に説明する。
That is, in preparing a catalyst, for example, a platinum group metal is first supported on the carrier made of silica and/or alumina, and then iron and/or cobalt and manganese oxide are simultaneously supported. The original composition of the catalyst is reduced to 500 to 950 in the presence of hydrogen, for example.
Heat treatment at a temperature of °C. Note that the catalyst obtained by following the above procedure may be obtained by a method other than the above, such as a catalyst obtained by first supporting iron and/or cobalt and manganese oxide, and then supporting a platinum group metal, or a catalyst obtained by supporting a platinum group metal after that. Compared to catalysts obtained by simultaneously supporting metals, manganese oxide, iron and/or cobalt, and catalysts obtained by supporting metal catalysts and then heat-treating them outside the above temperature range, low-calorie gases with a carbon number of 2 Although the present inventors have confirmed that the ability to convert ~4 hydrocarbons into high-calorie gas containing them is much more effective, the technical range of the catalyst of the present invention is limited by its manufacturing procedure. That doesn't mean it will happen. Specifically, the catalyst of the present invention is prepared by applying iron and/or cobalt, manganese, and platinum group metals to a carrier made of silica and/or alumina in the form of a nitrate aqueous solution or a chloride aqueous solution, respectively, by squirting, spraying, immersing, etc. After being impregnated by means, it is manufactured by sequentially performing steps such as drying, ammonia treatment, thermal decomposition, and reduction. Furthermore, by applying heat treatment as the final step, even better results can be obtained.
That is, a long-life catalyst can be obtained. In addition, for this preparation,
In some cases, the ammonia treatment step can be omitted. A manufacturing example of the catalyst of the present invention will be explained in more detail.

まず、シリカおよび/またはアルミナよりなる担体また
はこれを500〜1100℃で熱処理した担体に、その
細孔容積と等量の白金族金属硝酸塩または同塩化物の水
溶液を含浸させ、常温でゆるやかに担体を転勤させなが
ら風乾する。なお、この乾燥操作は温度tSO℃までの
乾燥器内で行ってもよい。つぎに上記処理物を、10〜
11容量%アンモニアガスと2〜6容量%水蒸気を含む
雰囲気中に2〜3分間曝露する。その後、空気中で約3
50℃まで加熱し、含浸されている白金族金属硝酸塩ま
たは同塩化物を分解して酸化物とする。これを不活性ガ
スで希釈した水素濃度10〜20容量%の気流中で40
0℃まで昇温し同温度で30分間保持して還元し、再び
同気流中で常温まで冷却する。このようにして得られた
白金族金属担持体に前記と同じ含浸法により、鉄および
/またはコバルト例えば硝酸塩水溶液と、マンガンの例
えば硝酸塩水溶液との混合溶液を含浸させる。ついで前
記白金族金属を担持させる場合と同様に風乾、アンモニ
ア処理、熱分解、水素還元等の操作を施して三元組成系
触媒を調製する。
First, a carrier made of silica and/or alumina or a carrier heat-treated at 500 to 1100°C is impregnated with an aqueous solution of a platinum group metal nitrate or chloride in an amount equal to the pore volume of the carrier, and the carrier is slowly heated at room temperature. Air dry while transferring. Note that this drying operation may be performed in a dryer at a temperature of tSO°C. Next, the above-mentioned treated product was added to
Exposure for 2-3 minutes to an atmosphere containing 11% by volume ammonia gas and 2-6% by volume water vapor. Then, in the air about 3
It is heated to 50°C to decompose the impregnated platinum group metal nitrate or chloride into an oxide. This was diluted with an inert gas for 40 minutes in an air stream with a hydrogen concentration of 10 to 20% by volume.
The temperature is raised to 0°C, maintained at the same temperature for 30 minutes for reduction, and cooled again to room temperature in the same air flow. The platinum group metal support thus obtained is impregnated with a mixed solution of an aqueous solution of iron and/or cobalt, such as a nitrate, and an aqueous solution of manganese, such as a nitrate, by the same impregnation method as described above. Then, as in the case of supporting the platinum group metal, operations such as air drying, ammonia treatment, thermal decomposition, and hydrogen reduction are performed to prepare a ternary composition catalyst.

つぎに、これを還元性雰囲気例えば100%水素気流中
1〜3時間を要して常温から500〜950℃に昇温し
、同温度で保持して熱処理を行い、そのあと同気流中で
常温まで冷却する。この熱処理において、処理温度が5
00℃よりも低いと炭素数2〜4の炭化水素の生成量が
低く、また950℃より高いと一酸化炭素転化活性が低
下するので好ましくない。又熱処理時間については特に
制限はないが、10分〜5時間とすることが好ましく、
より好ましくは30分〜2時間である。このような熱処
理を施すと耐熱性にとみ、寿命のより長い触媒が得られ
るとともに、これに低カロリーガスを接触させた場合、
炭素数が2〜4の炭化水素をより多く含有する高カロリ
ーガスが得られるという利点があり、その経済的効果は
絶大である。
Next, the temperature is raised from room temperature to 500 to 950°C over a period of 1 to 3 hours in a reducing atmosphere, for example, a 100% hydrogen stream, and heat treatment is performed by keeping it at the same temperature. Cool until cool. In this heat treatment, the treatment temperature was 5
If the temperature is lower than 00°C, the amount of hydrocarbons having 2 to 4 carbon atoms produced will be low, and if it is higher than 950°C, the carbon monoxide conversion activity will decrease, which is not preferable. There is no particular restriction on the heat treatment time, but it is preferably 10 minutes to 5 hours.
More preferably, the time is 30 minutes to 2 hours. By applying such heat treatment, a catalyst with improved heat resistance and longer life can be obtained, and when brought into contact with a low-calorie gas,
There is an advantage that a high-calorie gas containing a larger amount of hydrocarbons having 2 to 4 carbon atoms can be obtained, and its economic effect is enormous.

なお、このような効果が得られるのは次のような理由に
よるものと推定される。すなわち、触媒基質である鉄お
よび/またはコバルトがシンタリングによって適当な大
きさの粒子に成長すると共に水素吸着速度が減少し、し
たがって−酸化炭素のメタン化活性は低下するが、吸着
−酸化炭素の活性表面での滞留時間が増すため、炭素重
合が促進され、炭素数2〜4の炭化水素の生成が向上す
る。
In addition, it is presumed that the reason why such an effect is obtained is as follows. That is, as the catalyst substrate iron and/or cobalt grows into particles of appropriate size through sintering, the hydrogen adsorption rate decreases, and therefore the methanation activity of carbon oxide decreases, but the adsorption rate of carbon oxide decreases. The increased residence time on the active surface promotes carbon polymerization and improves the production of C2-C4 hydrocarbons.

本発明の触媒によって、コークス炉ガス、ナフサや重質
油の水蒸気改質ガス更には水性ガスや石炭ガス化ガスの
ような低カロリーガスを炭素数1〜4の炭化水素を含む
高カロリーガスに変換するには、例えばつぎのようにし
て行なうことができる。すなわち、以上のようにして得
られた触媒を反応塔に充填し、触媒層の温度を150〜
400℃、好ましくは200〜350℃に制御しながら
 5〜30kg/cm2:ゲージ圧(以下Gと表わす)
、好ましくは10〜20kg/cm2Gの加圧下に、触
媒容量11当り1〜10m3/hr 、好ましくは2〜
5 m’/hrの低カロリーガスを導入することにより
触媒層内で、炭素数が1〜4の炭化水素を含有する高カ
ロリーガスが生成する。尚シフト反応等によって若干副
生ずるCO2はPSA法等によって除去すれば良い。
By using the catalyst of the present invention, low-calorie gases such as coke oven gas, steam-reformed gas of naphtha and heavy oil, as well as water gas and coal gasification gas are converted into high-calorie gas containing hydrocarbons having 1 to 4 carbon atoms. For example, the conversion can be performed as follows. That is, the catalyst obtained as described above is packed into a reaction tower, and the temperature of the catalyst layer is set to 150~150℃.
5 to 30 kg/cm2: Gauge pressure (hereinafter referred to as G) while controlling at 400°C, preferably 200 to 350°C
, preferably under a pressure of 10 to 20 kg/cm2G, per 11 catalyst capacities, 1 to 10 m3/hr, preferably 2 to
By introducing the low calorie gas at a rate of 5 m'/hr, a high calorie gas containing hydrocarbons having 1 to 4 carbon atoms is generated in the catalyst layer. Incidentally, CO2 produced as a by-product due to the shift reaction may be removed by a PSA method or the like.

以下本発明を実施例によって説明するが、本発明はその
要旨を越えない限り、下記実施例に限定されることはな
い。なお説明中「部」とあるは重量部を表わす。
The present invention will be explained below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. In the description, "parts" represent parts by weight.

実施例1 比表面積約200m’/gの市販アルミナ担体を、空気
中において常温から1060℃まで4〜5時間で昇温し
、同温度で30分間保持し、被熱処理担体を得た。この
担体20部に、RuCl3  ・3H200,1部を水
5.0部に溶解させた水溶液を噴n法により含浸させ、
ついで、ゆるやかに転勤させながら一夜風乾し含浸物を
得た。この含浸物をあらかじめ10〜11容量%のアン
モニアと6容量%水蒸気となる霊囲気に20℃で2分間
曝露し、ついで空気中で約350℃まで加熱してルテニ
ウム金属塩を熱分解して酸化物とした。これを電気炉に
入れて水素濃度20容量%の窒素気流を導通しながら常
温から400℃まで1時間で昇温し、その温度で30分
間保持することによってルテニウム金属酸化物を還元し
てから、同気流中で常温まで冷却し、ルテニウム担持触
媒を得た。このルテニウム担持触媒にCo (NO3)
2 ・6H2026,2部およびMn(NO3) 2 
・6H206,1部を水5.0部に溶解させた溶液を前
記RuCl3  ・3H20含浸の場合と同様の操作法
で含浸させ、同様の条件で乾燥、熱分解および還元処理
を行い、コバルト、酸化マンガン(Mn203 )およ
びルテニウムを担持させた三元組成系触媒を得た。つぎ
に該三元組成系触媒を100%水素気流中常温から85
0℃まで1〜3時間を要して昇温し、そ−の温度で30
分間保持して熱処理を行い、同気流中で常温まで冷却し
、組成割合が20%Co−12%Mn2O3−0,1%
Ruからなる三元組成系触媒26.5部を得た。この触
媒上へ第1表に示す組成よりなる低カロリーの供試ガス
を圧力10kg/cm2G 、  S V 2500h
r−’、温度260℃で1回通過させたところ、c。
Example 1 A commercially available alumina carrier having a specific surface area of about 200 m'/g was heated in air from room temperature to 1060°C over 4 to 5 hours, and held at the same temperature for 30 minutes to obtain a heat-treated carrier. 20 parts of this carrier was impregnated with an aqueous solution in which 1 part of RuCl3.3H200 was dissolved in 5.0 parts of water by the spray method.
Then, the impregnated material was obtained by air-drying it overnight while gently transferring it. This impregnated material was previously exposed to ashes containing 10 to 11% by volume of ammonia and 6% by volume of water vapor at 20°C for 2 minutes, and then heated in air to approximately 350°C to thermally decompose and oxidize the ruthenium metal salt. It became a thing. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream with a hydrogen concentration of 20% by volume, and the ruthenium metal oxide was reduced by holding at that temperature for 30 minutes. The mixture was cooled to room temperature in the same air flow to obtain a ruthenium-supported catalyst. Co (NO3) is added to this ruthenium supported catalyst.
2 ・6H2026, 2 parts and Mn(NO3) 2
・A solution prepared by dissolving 1 part of 6H206 in 5.0 parts of water was impregnated in the same manner as in the RuCl3 ・3H20 impregnation, and dried, thermally decomposed and reduced under the same conditions to remove cobalt, oxidized A ternary composition catalyst supporting manganese (Mn203) and ruthenium was obtained. Next, the ternary composition catalyst was heated to 85°C from room temperature in a 100% hydrogen stream.
It takes 1 to 3 hours to raise the temperature to 0℃, and at that temperature it is heated for 30 minutes.
Heat treatment is performed by holding for a minute, and then cooled to room temperature in the same air flow, and the composition ratio is 20%Co-12%Mn2O3-0.1%
26.5 parts of a ternary composition catalyst consisting of Ru was obtained. A low calorie test gas having the composition shown in Table 1 was poured onto this catalyst at a pressure of 10 kg/cm2G and an SV of 2500 h.
r-', after one pass at a temperature of 260°C, c.

転化率100%で第3表に示す組成よりなる高カロリー
のガスを得た。
A high-calorie gas having the composition shown in Table 3 was obtained at a conversion rate of 100%.

第1表 実施例2 比表面積的500m’/gの市販シリカ担体を空気中に
おいて常温からaootまで4〜6時間で昇温し、同温
度で30分間保持して被熱処理担体を得た。ついでRu
Cl3 ・3H202,5部を水5.0部に溶解して得
た水溶液を、噴震法により上記被熱処理担体20部に含
浸させ、ついで、ゆるやかに転勤させながら一夜風乾し
、含浸物を得た。この含浸物をあらかじめ10〜11容
量%のアンモニアと6容量%の水蒸気を含む雰囲気に2
0℃で2分間曝露し、ついで空気中において約350℃
まで加熱してルテニウム金属塩を熱分解した。これを電
気炉に入れ、水素濃度20容量%の窒素気流を導通しな
がら常温から400℃まで1時間で昇温し、その温度で
30分間保持してルテニウム金属酸化物を還元してから
同気流中で常温まで冷却し、ルテニウム担持触媒を得た
。ついでFe (NO3)2 ・9H2040,5部お
よびMn (NO3)2 ・6H206,4部を水5.
0部に溶解した溶液を、前記RuCl3  ・3H20
を含浸させる場合と同様の操作法で上記ルテニウム担持
触媒に含浸させ、同様の条件で乾燥、熱分解および還元
処理を行い、コバルト、酸化マンガン(Mn20a )
およびルテニウムを担持させた三元組成系触媒を得た。
Table 1 Example 2 A commercially available silica carrier having a specific surface area of 500 m'/g was heated in air from room temperature to aoot over 4 to 6 hours and held at the same temperature for 30 minutes to obtain a heat-treated carrier. Then Ru
An aqueous solution obtained by dissolving 202.5 parts of Cl3.3H in 5.0 parts of water was impregnated into 20 parts of the above-mentioned heat-treated carrier by the jetting method, and then air-dried overnight while being gently transferred to obtain an impregnated product. Ta. This impregnated material was placed in advance in an atmosphere containing 10 to 11% by volume of ammonia and 6% by volume of water vapor.
Exposure for 2 minutes at 0°C, then approximately 350°C in air
The ruthenium metal salt was thermally decomposed by heating to . This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream with a hydrogen concentration of 20% by volume, and the temperature was held at that temperature for 30 minutes to reduce the ruthenium metal oxide, after which the same air stream was passed through. The mixture was cooled to room temperature to obtain a ruthenium-supported catalyst. Next, 5 parts of Fe (NO3)2 .9H2040 and 4 parts of Mn (NO3)2 .6H206 were added to 5.0 parts of water.
The solution dissolved in 0 parts of RuCl3.3H20
Cobalt, manganese oxide (Mn20a) was impregnated into the ruthenium-supported catalyst using the same procedure as in the case of impregnating cobalt, manganese oxide (Mn20a), and dried, thermally decomposed and reduced under the same conditions.
And a ternary composition catalyst supporting ruthenium was obtained.

つぎに該三元組成系触媒を10.094水素気流中、常
温から700℃まで1〜3時間で昇温し、その温度で3
0分間保持して熱処理を行い、同気流中で常温まで冷却
し、組成割合が20%Fe−12%Mn203−4%R
uからなる本発明方法による三元組成系触媒28部を得
た。この触媒上へ第1表に示す組成よりなる低カロリー
の供試ガスを第3表に示す条件で通過させたところ、第
3表に示す組成よりなる高カロリーのガスを得た。
Next, the temperature of the ternary composition catalyst was raised from room temperature to 700°C over 1 to 3 hours in a 10.094 hydrogen stream, and at that temperature
Heat treatment was performed by holding for 0 minutes, cooling to room temperature in the same air flow, and the composition ratio was 20%Fe-12%Mn203-4%R.
28 parts of a ternary composition catalyst according to the method of the present invention consisting of u was obtained. When a low calorie test gas having the composition shown in Table 1 was passed over this catalyst under the conditions shown in Table 3, a high calorie gas having the composition shown in Table 3 was obtained.

実施例3〜6 アルミナ担体を実施例1と同様にして第2表に示す薬品
で処理して同表に示す触媒を得た。これらの触媒に第1
表に示す組成の低カロリーガスを第3表に示す条件で通
過させ同表下欄に示す組成の炭化水素含有ガスを得た。
Examples 3 to 6 An alumina carrier was treated with the chemicals shown in Table 2 in the same manner as in Example 1 to obtain the catalysts shown in Table 2. These catalysts have the first
A low calorie gas having the composition shown in the table was passed under the conditions shown in Table 3 to obtain a hydrocarbon-containing gas having the composition shown in the lower column of the table.

尚第2表および第3表には実施例1および実施例2の結
果も共に併記する。
The results of Examples 1 and 2 are also listed in Tables 2 and 3.

本発明は概略以上の様に構成されており、水素および一
酸化炭素を含むガス、あるいは更に二酸化炭素を含む低
カロリーガス、例えばコークス炉ガスを本発明の触媒に
接触させると、炭素数1〜4特に2〜4の炭化水素をよ
り多く含みSNGとして好適な高カロリーガスを得るこ
とができ、しかも耐熱性にすぐれた寿命の長い触媒であ
る。
The present invention is roughly configured as described above, and when a gas containing hydrogen and carbon monoxide, or a low-calorie gas further containing carbon dioxide, such as coke oven gas, is brought into contact with the catalyst of the present invention, In particular, it is a catalyst that contains a large amount of 2 to 4 hydrocarbons, can obtain a high-calorie gas suitable for SNG, and has excellent heat resistance and a long life.

Claims (1)

【特許請求の範囲】[Claims] (1)触媒基質としての鉄および/またはコバルトに酸
化マンガンと白金族金属とを組み合わせてシリカおよび
/またはアルミナよりなる担体に担持させてなり、前記
鉄および/またはコバルトの配合量を、担体を含む全触
媒重量に対して15%を超え25%以下としてなること
を特徴とする還元触媒。
(1) A combination of iron and/or cobalt as a catalyst substrate, manganese oxide and platinum group metal is supported on a carrier made of silica and/or alumina, and the amount of iron and/or cobalt is adjusted to A reducing catalyst characterized in that it accounts for more than 15% and less than 25% of the total weight of the catalyst.
JP62147320A 1987-06-13 1987-06-13 Reduction catalyst Granted JPS6323742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147320A JPS6323742A (en) 1987-06-13 1987-06-13 Reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147320A JPS6323742A (en) 1987-06-13 1987-06-13 Reduction catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58023619A Division JPS59147641A (en) 1983-02-15 1983-02-15 Preparation of catalyst for manufacturing high-calorie gas

Publications (2)

Publication Number Publication Date
JPS6323742A true JPS6323742A (en) 1988-02-01
JPH0558776B2 JPH0558776B2 (en) 1993-08-27

Family

ID=15427518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147320A Granted JPS6323742A (en) 1987-06-13 1987-06-13 Reduction catalyst

Country Status (1)

Country Link
JP (1) JPS6323742A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102851A (en) * 1988-12-28 1992-04-07 Den Norske Stats Oljeselskap A.S. Supported catalyst for hydrocarbon synthesis
JP2010149109A (en) * 2008-11-18 2010-07-08 Osaka Gas Co Ltd Catalyst for producing high calorie gas, production method therefor, and method for producing high calorie gas using catalyst for producing high calorie gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102851A (en) * 1988-12-28 1992-04-07 Den Norske Stats Oljeselskap A.S. Supported catalyst for hydrocarbon synthesis
JP2010149109A (en) * 2008-11-18 2010-07-08 Osaka Gas Co Ltd Catalyst for producing high calorie gas, production method therefor, and method for producing high calorie gas using catalyst for producing high calorie gas
JP2014073492A (en) * 2008-11-18 2014-04-24 Osaka Gas Co Ltd Catalyst for producing high-calorie gas, method for producing the catalyst, and method for producing high-calorie gas using catalyst for producing high-calorie gas

Also Published As

Publication number Publication date
JPH0558776B2 (en) 1993-08-27

Similar Documents

Publication Publication Date Title
CA2550639A1 (en) Process for autothermal generation of hydrogen
JPH09502414A (en) Process for producing hydrogen / carbon monoxide mixture or hydrogen from methane
KR20070100962A (en) Method for producing syngas with low carbon dioxide emission
KR100612956B1 (en) High Performance Water Gas Shift Catalysts and A Method of Preparing The Same
Younas et al. CO2 methanation over Ni and Rh based catalysts: Process optimization at moderate temperature
Koyano et al. States of Pd in Pd/H–ZSM-5 and Pd/Na–ZSM-5 catalysts and catalytic activity for the reduction of NO by CH4 in the presence of O2
KR20020096932A (en) A process for preparing a low-sulfur reformate gas for use in a fuel cell system
CN112827501A (en) Controllable synthesis of alpha-MoC supported indium and modified catalyst thereof and application of alpha-MoC supported indium in reaction for preparing methanol by carbon dioxide hydrogenation
JPS6323742A (en) Reduction catalyst
JPS6129778B2 (en)
JPH0535018B2 (en)
JPS58120501A (en) Manufacture of synthetic gas
JP2885153B2 (en) Catalyst material for producing SNG and method for producing SNG
JPH0211306B2 (en)
JPS5946133A (en) Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas
JPH0212143B2 (en)
JPH0211305B2 (en)
JPH0212144B2 (en)
McClory et al. Catalytic oxidation of carbon monoxide over ruthenium-rhodium (RuRh) silica bimetallic clusters
JPH01148343A (en) Catalyst for production of synthesis gas
JP3963512B2 (en) Preparation method and apparatus for atmosphere gas in furnace for heat treatment furnace
KR20180099060A (en) Catalyst for reforming of methane, and CO2 reforming of methane
KR102579471B1 (en) System and process for producing syngas and carbon monoxide using dioxide dry sorbents
EP0190307A1 (en) Fischer-tropsch catalyst
JPS593401B2 (en) Kangen gas no seizouhouhou