JPS59104577A - Correcting system of estimated error of angle - Google Patents

Correcting system of estimated error of angle

Info

Publication number
JPS59104577A
JPS59104577A JP21397282A JP21397282A JPS59104577A JP S59104577 A JPS59104577 A JP S59104577A JP 21397282 A JP21397282 A JP 21397282A JP 21397282 A JP21397282 A JP 21397282A JP S59104577 A JPS59104577 A JP S59104577A
Authority
JP
Japan
Prior art keywords
error
direction cosine
array
phase response
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21397282A
Other languages
Japanese (ja)
Other versions
JPH0457980B2 (en
Inventor
Masao Igarashi
正夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP21397282A priority Critical patent/JPS59104577A/en
Publication of JPS59104577A publication Critical patent/JPS59104577A/en
Publication of JPH0457980B2 publication Critical patent/JPH0457980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To miniaturize and simplify the device by performing correction using a direction cosine error found beforehand from a constant determined by geometrical form of an array and a phase response error. CONSTITUTION:A direction cosine error DELTAalpha is stored in a register 8, and a direction cosine error is subtracted by an adder 9 from an estimated value of direction cosine before correction outputted by a maximum point detector 6. Thus, the estimated value of direction cosine after correction is outputted to an output terminal 16. When a direction cosine error is found from array constant Pc, H, and phase response errors DELTAphi1, DELTAphi2...DELTAphiM beforehand, the estimated error of direction cosine generated by said phase errors DELTAphi1, DELTAphi2...DELTAphiM can be eliminated by one register 8 and one adder 9.

Description

【発明の詳細な説明】 (技術分野) 本発明は、複数の累子で構成されるアレーを用いて信号
を受信し、位相補償手段によりビームを形成してその最
大点から信号源の方向余弦を推定することにより音源方
向の角度を求める角度測定装置における、アレー各素子
の位相応答誤差によって生ずる該方向余弦の推定誤差の
補正方式に関する。
Detailed Description of the Invention (Technical Field) The present invention receives a signal using an array composed of a plurality of transponders, forms a beam using phase compensation means, and calculates the direction cosine of the signal source from its maximum point. The present invention relates to a method for correcting an error in estimating the direction cosine caused by a phase response error of each element in an array in an angle measuring device that determines the angle in the direction of a sound source by estimating the direction cosine.

(背景技術) ソーナーや音響測位及びレーダでは、空間的に累子 配列された複数舒τらなるアレーと位相補償手段を用い
た狭帯域ビームフォーマか広く用いられ、また該ビーム
フォーマ出力の空間周波数領域における最大点を求める
ための最大点検出手段をイ・」加することにより、前記
アレー上の基準軸に関する信号源方向の方向余弦を推定
することにより信号源方向の角度を求める角度測定装置
も広く用いられている。
(Background Art) In sonar, acoustic positioning, and radar, a narrowband beamformer using an array consisting of a plurality of beams τ spatially arranged in a lattice pattern and a phase compensation means is widely used, and the spatial frequency of the beamformer output is widely used. By adding a maximum point detecting means for determining the maximum point in the area, an angle measuring device that determines the angle in the signal source direction by estimating the direction cosine of the signal source direction with respect to the reference axis on the array is also provided. Widely used.

このような角度測定装置においては、方向余弦はアレー
各素子の出力信号がもつ位相情報に基づいて推定され、
一方、アレー各素子の位相応答に位相応答誤差か存在す
る場合は、該位相情報に誤差を生じることになるため、
該位相応答誤差によって方向余弦の推定に誤差を生じる
ことになる。
In such an angle measuring device, the direction cosine is estimated based on the phase information of the output signal of each element of the array.
On the other hand, if there is a phase response error in the phase response of each element of the array, an error will occur in the phase information.
This phase response error causes an error in the estimation of the direction cosine.

また、アレー各素子には増幅器や帯域フィルタ等が付加
されるのが普通であるから、該増幅器や帯域フィルタ等
の位相応答に位相応答誤差が存在する場合には、該位相
応答誤差もまた方向余弦の推定誤差の原因となり、これ
らの位相応答誤差によって生ずる方向余弦の推定誤差が
無視できない場合には該推定誤差の補正手段が必要とさ
れる。
In addition, since an amplifier, bandpass filter, etc. is usually added to each array element, if there is a phase response error in the phase response of the amplifier, bandpass filter, etc., the phase response error will also be in the direction. If the directional cosine estimation error caused by these phase response errors cannot be ignored, a means for correcting the estimation error is required.

従来、このような補正の方法には、各素子毎に前記位相
応答誤差を取り除く位相誤差補正器を付加する方式が用
いられてきた。
Conventionally, as a method for such correction, a method has been used in which a phase error corrector for removing the phase response error is added to each element.

従来の方向余弦推定誤差の補正方式の一例を第1図に示
す。第1図において、l,,12.・・・・・・,lM
は各々ア1ノ一索子、2,,22.・・・・・・12M
は各々前記累子に付加される増幅器、31+3Hz・・
・・・・,3Mは各々前記素子に付加される帯域フィル
タ、41,4?,・・・・・・,4、,は各々位相誤差
補正器、5は狭帯域ビームフオーマ、6は最大点検出器
、15は方向余弦を角度に変換する変換器、7は角匿推
定値が出力される出力端子である。なお、位相応答誤差
の方向余弦推定誤差に及ぼず影響は、任意に選んだ1つ
の素子の位相応答を基準とした他の素子の相対的な位相
応答誤差で決まるため、第1図の位相誤差補正器の個数
はM−1個でも十分である。空間的に配列されたM個の
素子11r12+・・・・・・+IMに入力される信号
x1(t),x2(t),・・・・・・,xM(t)は
増幅器21+22+”””+2Mで適正なレベルまで増
幅され、帯域通過フイノレタ31,3?,・・・・・・
+3Mで不要な周波数成分が取り除か」tた狭狭帯域信
号y,(11,y2(t+.・・・・・・,yM(1)
に変換され、該狭帯域信号は位相誤差補正器41+42
+・・・・・・4Mを通ることにより、前記素子と増幅
器及び帯域フ4)レタの位相応答誤差によって生じた位
相変位Δφ1,Δφ2,・・・・・・,Δ〜を取り除か
れて信号b,x,(11,b2x2(tl,・・・・・
・,b,xM(11に変換される。ここで、b,,b2
,・・・・・・,1)Mは信号の振幅値に関する定数を
表わすものと1一る。
An example of a conventional correction method for direction cosine estimation error is shown in FIG. In FIG. 1, l,,12. ......, lM
are respectively A1, 2, 22.・・・・・・12M
are amplifiers added to each of the above-mentioned transponders, 31+3Hz...
..., 3M are bandpass filters added to each of the elements, 41, 4? , . This is an output terminal for output. Note that the phase response error does not affect the direction cosine estimation error, and its influence is determined by the relative phase response error of other elements with respect to the phase response of one arbitrarily selected element, so the phase error in Figure 1 It is sufficient that the number of correctors is M-1. Signals x1(t), x2(t),..., xM(t) input to M elements 11r12+...+IM spatially arranged are amplifiers 21+22+""" It is amplified to an appropriate level by +2M, and the bandpass filter 31,3?,...
+3M to remove unnecessary frequency components t narrow band signal y, (11,y2(t+......,yM(1)
The narrowband signal is converted into a phase error corrector 41+42.
+...4M, phase displacements Δφ1, Δφ2,..., Δ~ caused by phase response errors of the elements, amplifiers, and bandpass filters are removed, and the signal is b, x, (11, b2x2(tl,...
・, b, xM (converted to 11. Here, b,, b2
, . . . , 1) M represents a constant regarding the amplitude value of the signal.

該信号1),x,(t),b,,x2(tl,・・・・
・・,bMXM(t)は狭帯域ビームフォーマ5で処理
され、空間周波数領域におけるビーム出力信号として出
力された後、最大点検出器6でビーム出力信号が最大値
をとる空間周波数から方向余弦の推定値αが求められ、
変換器15で方向余弦の推定値αは角度の推定値に変換
される。
The signal 1), x, (t), b,, x2 (tl,...
..., bMXM(t) is processed by the narrowband beamformer 5 and output as a beam output signal in the spatial frequency domain, and then the maximum point detector 6 calculates the direction cosine from the spatial frequency at which the beam output signal takes the maximum value. The estimated value α is determined,
A converter 15 converts the estimated value α of the direction cosine into an estimated value of the angle.

第2図には狭帯域ビームフオーマの説明を、第3図には
アレーが2次元(平面)アレ一の場合の方向余弦αの説
明を示す。第2図の20,,20?,・・・・・・,2
0Mは各々位相誤差補正器4,,421・・・・・・,
4Mの出力が入力される入力端子、21,,212,・
・・・・・,21Mは各々位相補償手段を夷限するため
の位相補償器、22は加算器、23はエンベローブ検出
器、24は最大点検出器6K出力される出力端子、第3
図の30は平面アレー、θ8,θ9は原点0およびX,
Y軸を該平面アレー面上におく直座座標系のX,Y軸に
関する信号源方向の方向余弦角であり、この場合の方向
余弦はα奥(COSθエ,COSθ9〕1である。第3
図には2次元アレーの場合を示したが、1次元(直線)
アレ一の場合はα△COSθエ、3次元アレ一の場合は
α合(cosθX+cosθア,cosθ2〕7と置け
ば基本的に平面アレーと同じに扱えるので、以下では平
面アレ一のみについて説明する。従って、第1図におい
テ’;i.9(cos?,,cosf,)’テhル。ナ
オ、ココテ添字Tはベクトルの転置を示す。
FIG. 2 shows an explanation of the narrow band beamformer, and FIG. 3 shows an explanation of the direction cosine α when the array is a two-dimensional (planar) array. 20,,20 in Figure 2? ,...,2
0M are phase error correctors 4, 421,...
Input terminals to which 4M output is input, 21, 212, .
..., 21M are phase compensators for limiting the phase compensation means, 22 is an adder, 23 is an envelope detector, 24 is a maximum point detector 6K output terminal, and the third
30 in the figure is a plane array, θ8 and θ9 are the origin 0 and X,
This is the direction cosine angle of the signal source direction with respect to the X and Y axes of the rectangular coordinate system where the Y axis is placed on the plane array surface, and the direction cosine in this case is α (COSθ, COSθ9) 1. Third
The figure shows a two-dimensional array, but one-dimensional (straight line)
In the case of a single array, αΔCOSθ is used, and in the case of a three-dimensional array, α is set as (cos θ Therefore, in Fig. 1, the subscript T indicates the transposition of the vector.

第1図に示す従来の方向余弦推定誤差の補正方式では、
アレー素子の数八1に等しいだけの(実際にはM−1に
等しいだけの)位相誤差補正器41,42,・・・・・
・,4Mを必要とするので、装置が複雑化し大型化する
という欠点がある。また、アレー各素子14+12+・
・・・・・,IM,増幅器2,,2?,・・・・・・,
2,1、帯域フィルタ3,,3?.・・・・・・+3M
の位相応答一差Δφ1,Δφ2,・・・・・・,Δφ8
が経年変化等の理由により叢化した場合には、前記位相
誤差補正器41+42+・・・・・・,4Mのうち補正
値の変更を必要とする全ての補正器の位相補正値を再設
定しなければならない。史にまた、受信信号が複数の周
波数からなり、それらいずれの周波数に対しても方向余
弦を推定しようとする場合には、前記アレー素子1,,
12,・・・・・・,IM,増幅器21,2?,・・・
・・・,2Mの位相応答特性が周波数によって変化し、
従って位相応答誤差も周波数によって質化するので、こ
の場合は前記位相誤差補正器4I,42,・・・・・・
,4Mを受信周波数に連動させて切り変えなければなら
ず、従って装置が更K複雑化し大型化するという欠点が
あった。
In the conventional direction cosine estimation error correction method shown in Fig. 1,
Phase error correctors 41, 42, equal to the number 81 of array elements (actually equal to M-1)
・,4M is required, which has the disadvantage that the device becomes complicated and large. In addition, each array element 14+12+・
..., IM, amplifier 2,, 2? ,・・・・・・・・・
2, 1, bandpass filter 3,,3? ..・・・・・・+3M
The phase response difference Δφ1, Δφ2, ..., Δφ8
If the phase error correctors 41+42+, . There must be. Historically, when a received signal consists of a plurality of frequencies and it is desired to estimate the direction cosine for any of these frequencies, the array elements 1, .
12,...,IM, amplifier 21,2? ,...
..., the phase response characteristic of 2M changes depending on the frequency,
Therefore, since the phase response error is also qualitativeized by frequency, in this case, the phase error correctors 4I, 42, . . .
, 4M must be switched in conjunction with the receiving frequency, which has the drawback of making the device even more complex and larger.

(発明の課題) 本発明は、これらの欠点を取り除くため、アレー各素子
の位相応答誤差とアレーの幾可学的形状で決まる定数か
ら該位相応答誤差によって生ずる方向余弦推定誤差を予
め解析的に求めておき、該方向余弦推定誤差をアレー各
累子の位相応答誤差を含んだままの信号から前記狭帯域
ビームフォー下と最大点検出手段により求められた方向
余弦の推定値から差し引《ことによって、該方向余弦の
推定値に含まれる推定誤差を取り除《ものであり、従来
の補正方式で用いられてきた位相誤差の袖正手段を必要
としない特徴を有する。本発明について以下詳細に説明
する。
(Problem to be solved by the invention) In order to eliminate these drawbacks, the present invention analyzes in advance the direction cosine estimation error caused by the phase response error from a constant determined by the phase response error of each element of the array and the geometrical shape of the array. The direction cosine estimation error is subtracted from the estimated value of the direction cosine obtained by the narrow-band beam four and the maximum point detection means from the signal containing the phase response error of each transponder of the array. This method removes the estimation error included in the estimated value of the direction cosine, and has the feature that it does not require a phase error correction means used in conventional correction methods. The present invention will be explained in detail below.

(発明の構成および作用) アレーの幾可学的形状、すなわち第3図のアレー素子加
,,202+・・・・・・,20,,・・・・・・,2
0Mの直角座標X,Yにおける各々の位置ベクトルP,
,P21・・・・・・,P1,・・・・・・,PMが与
えられ、かつ前記位相応答誤差Δφ1,Δφ2,・・・
・・・,Δφ1,・・・・・・,Δφ0が与えられ、1
Δφ+l<1;i−1,・・・・・・,Mであれば、文
献[位相誤差によるSSBL音響測位の側角誤差;電子
通信学会、SANE82−15、1982年7月]で明
らかなように、Δφ,;i=1,・・・・・・,MVL
よって生じる方向余弦誤差Δα△〔Δcosθ8,Δc
osθア〕0はで与えられる。但し、ここで礼は信号の
波長であり、行列H及びベクトルPcは次のように与え
られる定数である。
(Structure and operation of the invention) The geometrical shape of the array, 202+...,20,...2
Each position vector P at 0M rectangular coordinates X, Y,
, P21..., P1,..., PM are given, and the phase response errors Δφ1, Δφ2,...
..., Δφ1, ......, Δφ0 are given, 1
If Δφ+l<1; i-1,...,M, as is clear from the literature [Side angle error in SSBL acoustic positioning due to phase error; Institute of Electronics and Communication Engineers, SANE82-15, July 1982] , Δφ,;i=1,...,MVL
Therefore, the direction cosine error Δα△ [Δcosθ8, Δc
osθa]0 is given by. However, here, the value is the wavelength of the signal, and the matrix H and vector Pc are constants given as follows.

本発明は、式(1)〜(3)で与えられる方向余弦誤差
Δαをアレー素子の位相応答誤差により生ずる方向余弦
推定誤差の補正に用いるものである。
The present invention uses the direction cosine error Δα given by equations (1) to (3) to correct the direction cosine estimation error caused by the phase response error of the array element.

第4図は本発明の第1の実施例であって、8ぱレジスタ
、9は加算器、16は変換器15に出刀される出力端子
である。レジスタ8Vcは前記式(■)〜(3)で求め
られた方向余弦誤差Δαを記憶しておき、最大点検出器
6がら出刃される補正前の方向余弦推定値a△(cos
人,cos7ア〕1がら、加算器9によって前記方向余
弦誤差Δαを差し引くことによって、補正後の方向余弦
推定値α一(cosOx,cosOJを出力端子16に
出カずる。第4図に示す本発明の第1の実施例では、従
来の位相応答誤差の補正用の前記位相誤差補正器411
’2+・・・・・・,4Mを必要とセす、予めアレーの
定数Pc,1{,位相応答誤差Δφ1,Δφ2,・・・
・・・,Δφ?から前記式(IIKより方向余弦誤差Δ
αを求めておけば、1つのレジスタ8と1つの加算器9
のみで、該位相誤差Δφ1,Δφ2,・・曲,Δφ8に
よって生ずる方向余弦推定誤差を取り除くことができる
FIG. 4 shows a first embodiment of the present invention, in which 8 is a register, 9 is an adder, and 16 is an output terminal sent to a converter 15. The register 8Vc stores the direction cosine error Δα determined by the above formulas (■) to (3), and stores the direction cosine estimated value a△(cos
By subtracting the direction cosine error Δα from the adder 9, the corrected direction cosine estimated value α (cosOx, cosOJ) is outputted to the output terminal 16. In a first embodiment of the invention, the phase error corrector 411 for correction of conventional phase response errors
'2+...,4M is required, array constant Pc,1{, phase response error Δφ1, Δφ2,...
..., Δφ? From the above formula (IIK, the direction cosine error Δ
If α is calculated, one register 8 and one adder 9
, the direction cosine estimation error caused by the phase errors Δφ1, Δφ2, . . . , Δφ8 can be removed.

以上説明したように、本実施例では、前記位相応答誤差
Δφ1,Δφ2,・・・・・・,Δφ9によって生ずる
方向余弦の推定誤差を予め解析的な方法で求めておき、
該位相応答誤差Δφ1,Δφ2,・・・・・・,ΔφM
を含む信号y.(t),y2(t),・・・・・・,y
3(t)に対する狭帯域ビームフォーマと最大点検出器
から求めた方向余弦推定値から差し引くことにより、該
位相誤差Δφ1,Δφ2,・・・・・・,ΔφMVCよ
って生ずる方向余弦推定誤差を取り除いてし・るので、
ほぼアレー素子数Mに比例して従来必要としていた前記
位相誤差補正器41.42+・・・・・・,4Mを必要
とセす、1つのレジスタと1つの加算器のみで済むとい
う利点がある。また、該位相応答誤差Δφ,,Δφ2,
・・・・・・,Δφヤの値が変化した場合には、再度前
記式(11によって方向余弦誤差Δαを求め、レジスタ
8の記憶内容を入れ換えるだけでよく、前記アレー素子
11,1?,・・・・・・,IM,増幅器21+22+
・・・・・・,2M、帯域フィルタ3,,3?,・・・
・・・.3Mの経年変化等による特性の変化に対しても
容易に対応する口とができる。
As explained above, in this embodiment, the estimation error of the direction cosine caused by the phase response errors Δφ1, Δφ2, . . . , Δφ9 is obtained in advance by an analytical method,
The phase response error Δφ1, Δφ2, ..., ΔφM
A signal containing y. (t),y2(t),...,y
The direction cosine estimation error caused by the phase errors Δφ1, Δφ2, ..., ΔφMVC is removed by subtracting it from the direction cosine estimate obtained from the narrowband beamformer and maximum point detector for So,
There is an advantage that only one register and one adder are required, instead of the phase error correctors 41,42+, 4M, which were conventionally required in proportion to the number M of array elements. . Moreover, the phase response error Δφ,, Δφ2,
..., when the value of Δφya changes, it is only necessary to calculate the direction cosine error Δα again using the above formula (11) and replace the stored contents of the register 8. ......, IM, amplifier 21+22+
......, 2M, bandpass filter 3,, 3? ,...
・・・. It is possible to easily respond to changes in characteristics due to aging of 3M.

第5図は本発明の第2の実施例であって、81,82,
・・・・・,8Nは各々レジスタ、1oぱマルチプレク
サ、11ぱ周波数可変のローカルオシレータ、12,,
12?,・・・・・・,12Mはかけ算器である。ロー
カルオシレータ月ぱN種類の周波数1,+,.II,,
・・・・・・IN.を発生することができ、該ローカル
オシレータ■1とがけ算器121,122+”””+1
2Mは受信信号x,(111x2(11,++曲1xM
(t)に含まれるN種類の中心周波数f1,f2,・・
・・・・,fNを持つ狭帯域信号の中から1つの信号を
選択するために用いられ、帯域フィルタ3i+:321
・・曲,3Mの出方端には選択され、かつ中心周波数が
周波数■・゛,たけシフトされた信号y+(tl,y2
(11,・曲・,yMfilが出刀される。
FIG. 5 shows a second embodiment of the present invention, in which 81, 82,
..., 8N are registers, 1o is a multiplexer, 11 is a variable frequency local oscillator, 12,...
12? ,...,12M is a multiplier. The local oscillator has N types of frequencies 1, +, . II,,
...IN. can be generated, and the local oscillator ■1 and the multiplier 121, 122+"""+1
2M is the received signal x, (111x2(11,++ song 1xM
N types of center frequencies f1, f2,... included in (t)
..., is used to select one signal from narrowband signals with fN, and the bandpass filter 3i+: 321
... At the output end of the song 3M is a signal y+(tl, y2) which is selected and whose center frequency is shifted by the frequency .
(11,・song・,yMfil is issued.

また、レジスタ81*82e・・曲,8Nには、周波数
f1,前記 f2,・・・・・・,fNKおけ〒ml相応答誤差Δφ
,,Δφ2,・・・・・・,Δ輸の値から前記式(1)
で予め求められた方向余弦誤差Δα1,Δα2,・曲・
,Δα、が記憶され、マルチブレクサ10は該方向余弦
誤差Δα1,Δα2,・・曲,Δα、の中からローカル
オシレータで選択された周波数l′J、すなわち選択さ
れた八カ信号の中心周波数らに対応した方向余弦誤差Δ
α,を選択して加算器9に出力し、以下は本発明の第1
の実施例と同じである。
In addition, registers 81*82e, . . ., songs, 8N have frequencies f1, f2, . . ., fNK, and ml phase response error Δφ
,, Δφ2,..., the above equation (1) is obtained from the value of Δ
Direction cosine errors Δα1, Δα2,・song・
, Δα, are stored, and the multiplexer 10 selects the frequency l'J selected by the local oscillator from among the directional cosine errors Δα1, Δα2, . Corresponding direction cosine error Δ
α, is selected and output to the adder 9, and the following is the first of the present invention.
This is the same as the embodiment.

第5図に示す本発明の第2の実施例は、受信信号が複数
の中心周波数f,,f2,・・・・・・,fNの狭帯域
信号からなり、その中から希望する中心周波数らを選択
して該信号源の方向余弦を推定する場合で、かつ前記位
相応答誤差Δφ1,Δφ2,・・・・・・,Δφ8がr
,,r2,理 ・・・・・・.fNに異なる場合への適用例である。前
記位相誤差補正器41+42+・・・・・・,4Mを用
いる従来方式では、このような場合、位相誤差補正器を
八4XN個必要とするのに対して、本発明ではN個のレ
ジスタ81.8?,・・・・・・,8Nと1つのマルチ
プレタサ10および1つの加算器9を必要とするだけで
ある。従って、本実施例においても第1の実施例と同様
、従来方式と比較して装置の大幅な小型化、単純化がは
かれるという効果がある。
In the second embodiment of the present invention shown in FIG. is selected to estimate the direction cosine of the signal source, and the phase response errors Δφ1, Δφ2, ..., Δφ8 are r
,,r2,ri... This is an example of application to a case where fN is different. In the conventional system using the phase error correctors 41+42+..., 4M, 84XN phase error correctors are required in such a case, whereas in the present invention, N registers 81. 8? , . . . , 8N, one multiplexer 10 and one adder 9 are only required. Therefore, similar to the first embodiment, this embodiment also has the effect of significantly reducing the size and simplifying the device compared to the conventional system.

(発明の効果) 本実施例は、アレー素子の位相応答誤差によって生じる
方向余弦の推定誤差の補市を、アレーの幾可学的形状で
決まる定数と該位相応答誤差から予め求めた方向余弦誤
差を用いて行なうので、ほぼアレー素子数に比例した数
だけ必要とする位相誤差補正器は必要とせず、受信周波
数の数に比例したレジスタと1つの加算器のみで済むの
で、装置を大幅に小型化、単純化できる利点があり、狭
帯域ビームフォーマを用いたソーナー、廿響測位装置、
レーダにおける角度測定装置に利用することができる。
(Effects of the Invention) This embodiment compensates for the estimation error of the direction cosine caused by the phase response error of the array element, using the direction cosine error obtained in advance from a constant determined by the geometrical shape of the array and the phase response error. This eliminates the need for phase error correctors, which are roughly proportional to the number of array elements, and requires only one adder and a register proportional to the number of receiving frequencies, making the device significantly smaller. It has the advantage of being simple and easy to use, sonar using a narrowband beamformer, resonant positioning equipment,
It can be used as an angle measuring device in radar.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は狭帯域ビームフォーマを用いた従来の方向余弦
誤差補正方式の説明図、弟2図は狭帯域ビームフォーマ
の説明図、第3図は2次元(平面)アレーと方向余弦の
説明図、第4図は本発明の第1の実施例の説明図、第5
図は本発明の弟2の実施例の説明図である。 1,,l2,・・・・・・,IM;アレー系子21,2
?.・・・・・・,2M;増幅器31*32+”””1
3M,’帯域フィルタ4,.42,・・・・・・,4M
:位相誤差補正器5;う夾帯」或ビームフォーマ 6;最大点検出器 8;レジスタ 9;加算器 81s82+・・・・・・,8N;レジスタ10;マル
チプレクサ 11;可i周波数ローカルオシレータ 12,,122,・・・・・・,12M;かけ算器l5
;変換器 −433一 −434−
Figure 1 is an explanatory diagram of the conventional direction cosine error correction method using a narrowband beamformer, younger brother Figure 2 is an explanatory diagram of the narrowband beamformer, and Figure 3 is an explanatory diagram of a two-dimensional (planar) array and direction cosine. , FIG. 4 is an explanatory diagram of the first embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the second embodiment of the present invention. 1,,l2,...,IM;Array system child 21,2
? .. ......, 2M; amplifier 31*32+"""1
3M, 'bandpass filter 4, . 42,...,4M
: Phase error corrector 5; Beamformer 6; Maximum point detector 8; Register 9; Adder 81s82+..., 8N; Register 10; , 122, ..., 12M; multiplier l5
;Converter-433-434-

Claims (1)

【特許請求の範囲】[Claims] 空間上に配列された複数の素子及び該素子に伺加される
増幅器及びフィルタを含んで構成されるアレーと、位相
補償手段を用いた該素子出力信号に対するビームフォー
マと、空間周波数領域における該ビームフォーマ出力の
最大点を求めるための最大点検出手段を有し、該最大点
検出手段で求めたビームフォーマ出力の最大点から前記
アレーの基準座標軸に関する信号源方向の方向余弦を推
定することにより信号源方向の角贋を求める狭帯域角度
測定装置において、入カ信号に対する前記各素子の位相
応答特性の位相応答誤差によって生ずる前記方向♀弦の
誤差を前記位相応答誤差とアレーの幾可学的形状で決ま
る定数から予め算出し、該方向余弦推定誤差を前記ビー
ムフォーマと最大点検出手段により推定される方向余弦
値から差し引《ことによって、前記位相応答誤差により
生ずる方向余弦推定誤差を取り除くことを特徴とする角
度推定誤差の補正方式。
An array comprising a plurality of elements arranged in space, an amplifier and a filter added to the elements, a beamformer for the output signal of the element using phase compensation means, and the beam in the spatial frequency domain. It has a maximum point detection means for determining the maximum point of the beam former output, and the signal is detected by estimating the direction cosine of the signal source direction with respect to the reference coordinate axis of the array from the maximum point of the beam former output determined by the maximum point detection means. In a narrowband angle measuring device for determining the angle in the source direction, the error in the direction ♀ chord caused by the phase response error of the phase response characteristics of each element with respect to the input signal is calculated by combining the phase response error and the geometric shape of the array. and subtract the direction cosine estimation error from the direction cosine value estimated by the beamformer and the maximum point detection means to remove the direction cosine estimation error caused by the phase response error. Features a correction method for angle estimation errors.
JP21397282A 1982-12-08 1982-12-08 Correcting system of estimated error of angle Granted JPS59104577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21397282A JPS59104577A (en) 1982-12-08 1982-12-08 Correcting system of estimated error of angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21397282A JPS59104577A (en) 1982-12-08 1982-12-08 Correcting system of estimated error of angle

Publications (2)

Publication Number Publication Date
JPS59104577A true JPS59104577A (en) 1984-06-16
JPH0457980B2 JPH0457980B2 (en) 1992-09-16

Family

ID=16648109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21397282A Granted JPS59104577A (en) 1982-12-08 1982-12-08 Correcting system of estimated error of angle

Country Status (1)

Country Link
JP (1) JPS59104577A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254869A (en) * 1985-05-08 1986-11-12 Oki Electric Ind Co Ltd System for correcting direction estimating error
JP2003038671A (en) * 2001-08-01 2003-02-12 Koatsu Co Ltd Operation box for gas system fire extinguishing equipment
EP2589977A1 (en) * 2011-11-03 2013-05-08 ATLAS Elektronik GmbH Method and apparatus for correcting systematic DF errors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254869A (en) * 1985-05-08 1986-11-12 Oki Electric Ind Co Ltd System for correcting direction estimating error
JP2003038671A (en) * 2001-08-01 2003-02-12 Koatsu Co Ltd Operation box for gas system fire extinguishing equipment
EP2589977A1 (en) * 2011-11-03 2013-05-08 ATLAS Elektronik GmbH Method and apparatus for correcting systematic DF errors

Also Published As

Publication number Publication date
JPH0457980B2 (en) 1992-09-16

Similar Documents

Publication Publication Date Title
US3935575A (en) Circuitry for determining direction of impingement of a received signal
US20200400489A1 (en) Directional acoustic sensor, and methods of adjusting directional characteristics and attenuating acoustic signal in specific direction using the same
KR101815584B1 (en) Compensation method for bias errors in 3D intensity probe used for the source localization in precision
JPS59104577A (en) Correcting system of estimated error of angle
CA2106969A1 (en) A synthetic aperture radar
JP2648110B2 (en) Signal detection method and device
JPS63187181A (en) Holographic radar
JPS6051068B2 (en) receiving device
JPH0457981B2 (en)
JPH06105289B2 (en) Direction estimation device
RU2263926C2 (en) Method of direction finding of radiosignal source
JPS61254869A (en) System for correcting direction estimating error
JP3140899B2 (en) Signal incident direction estimation device
JPH0138270B2 (en)
US3300783A (en) Direction finding
JP2708109B2 (en) Underwater object depth detection method and depth detection device
CN113176533B (en) Direction finding method and device for underwater acoustic communication signals and electronic equipment
JPS6055934A (en) Ultrasonic blood flow meter
JPH0216877B2 (en)
JPH0312710B2 (en)
JP2863414B2 (en) Sound source location estimation device
JPH07107549B2 (en) Ranging device
JP2717331B2 (en) Direction estimation method using narrowband signal
JPH09257901A (en) Angle measuring device
JP3404526B2 (en) Direction finding receiver