JPH0457981B2 - - Google Patents

Info

Publication number
JPH0457981B2
JPH0457981B2 JP21397382A JP21397382A JPH0457981B2 JP H0457981 B2 JPH0457981 B2 JP H0457981B2 JP 21397382 A JP21397382 A JP 21397382A JP 21397382 A JP21397382 A JP 21397382A JP H0457981 B2 JPH0457981 B2 JP H0457981B2
Authority
JP
Japan
Prior art keywords
array
direction cosine
error
estimation error
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21397382A
Other languages
Japanese (ja)
Other versions
JPS59104578A (en
Inventor
Masao Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP21397382A priority Critical patent/JPS59104578A/en
Publication of JPS59104578A publication Critical patent/JPS59104578A/en
Publication of JPH0457981B2 publication Critical patent/JPH0457981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は複数の素子で構成されるアレーを用い
て信号を受信し、位相補償手段によりビームを形
成してその最大点から信号源の方向余弦を推定す
ることにより音源方向の角度を求める角度測定装
置における、アレー各素子の位置誤差によつて生
ずる該方向余弦推定誤差の補正方式に関する。
Detailed Description of the Invention (Technical Field) The present invention receives a signal using an array composed of a plurality of elements, forms a beam using a phase compensation means, and estimates the direction cosine of the signal source from the maximum point of the beam. The present invention relates to a method for correcting a direction cosine estimation error caused by a position error of each array element in an angle measuring device that determines the angle of a sound source direction by doing so.

(背景技術) ソーナーや音響測位及びレーダでは、空間的に
配列されたデイスクリートな素子からなるアレー
と位相補償手段を用いた狭帯域ビーム・フオーマ
が広く用いられ、又該ビーム・フオーマ出力の空
間周波数領域における最大点を求めるための最大
検出手段を付加することにより、前記アレー上の
基準軸に関する信号源方向の方向余弦を推定する
ことにより信号源方向の角度を求める角度測定方
式も広く用いられている。このような角度測定方
式においては、方向余弦はアレー各素子の出力信
号がもつ位相情報に基づいて推定され、一方該ア
レー各素子の位置に定格位置に対する誤差すなわ
ち素子位置誤差が存在する場合には該位相情報に
誤差を生じることになるため、該素子位置誤差に
よつて方向余弦の推定に誤差を生じることにな
る。
(Background Art) In sonar, acoustic positioning, and radar, narrowband beamformers using arrays of spatially arranged discrete elements and phase compensation means are widely used. An angle measurement method is also widely used in which the angle of the signal source direction is determined by estimating the direction cosine of the signal source direction with respect to the reference axis on the array by adding a maximum detection means for determining the maximum point in the frequency domain. ing. In such an angle measurement method, the direction cosine is estimated based on the phase information of the output signal of each element of the array.On the other hand, if there is an error in the position of each element of the array with respect to the rated position, that is, an element position error, Since an error will occur in the phase information, an error will occur in the estimation of the direction cosine due to the element position error.

第1図にはアレーが2次元(平面)アレーであ
るときのアレーの幾何学的説明を、第2図には狭
帯域のビーム・フオーマを用いた角度測定方式の
説明を、第3図には第2図で用いられる狭帯域ビ
ーム・フオーマの説明を示す。第1図において1
,12,……,1i,……,1Mは各々アレー素子、
Piは該アレー素子1iの位置ペクトルでPi=〔xi
yiT、2は該アレー素子で構成される平面アレ
ー、θx,θy,θzは原点0およびX,Y軸を該平面
アレー面上におく直角座標系のX,Y,Z軸に関
する信号源方向の方向余弦角、αは方向余弦で2
次元ペクトルαΔ =〔cosθx、cosθyT、第2図にお
いて101,102,……,10Mは各々増幅器、
111,112,……,11Mは各々帯域フイルタ、
12は狭帯域ビーム・フオーマ、13は最大点検
出器、14は方向余弦を角度に変換する変換器、
15は角度推定値が出力される出力端子、x1(t),
x2(t),……,xM(t)は各々前記アレー素子11,1
,……,1Mの受信信号、y1(t),y2(t),……,yM
(t)は各々前記帯域フイルタ111,122,……,
11Mから出力される信号、α〜は方向余弦αの推
定値、第3図において501,502,……,50
は各々前記帯域フイルタ111,112,……,
11Mの出力される入力端子、511,512,…
…,51Mは各々位相補償手段を実現するための
位相補償器、52は加算器、53はエンベロープ
検波器、54は前記最大点検器13に出力される
出力端子である。ただし、添字Tはベクトルの転
置を表わす。
Fig. 1 shows a geometrical explanation of the array when it is a two-dimensional (planar) array, Fig. 2 shows an explanation of the angle measurement method using a narrowband beam former, and Fig. 3 shows an explanation of the angle measurement method using a narrowband beam former. shows an illustration of the narrowband beamformer used in FIG. In Figure 1, 1
1 , 1 2 , ..., 1 i , ..., 1 M are array elements, respectively;
P i is the position spectrum of the array element 1 i , and P i = [x i ,
y i ] T , 2 is a planar array composed of the array elements, θ x , θ y , θ z are the X, Y, Z coordinates of a rectangular coordinate system with the origin 0 and the X, Y axes on the plane array surface. The direction cosine angle of the signal source direction with respect to the axis, α is the direction cosine of 2
Dimensional spectrum αΔ = [cosθ x , cosθ y ] T , in Fig. 2, 10 1 , 10 2 , ..., 10 M are amplifiers,
11 1 , 11 2 , ..., 11 M are band filters,
12 is a narrowband beam former, 13 is a maximum point detector, 14 is a converter that converts the direction cosine into an angle,
15 is an output terminal to which the estimated angle value is output, x 1 (t),
x 2 (t), ..., x M (t) are the array elements 1 1 and 1, respectively.
2 , ..., 1 M received signals, y 1 (t), y 2 (t), ..., y M
(t) are the band filters 11 1 , 12 2 , . . .
11 The signal output from M , α ~ is the estimated value of the direction cosine α, 50 1 , 50 2 , ..., 50 in Fig. 3
M represents the band filters 11 1 , 11 2 , . . .
11 M output input terminals, 51 1 , 51 2 ,...
..., 51 M are phase compensators for realizing phase compensation means, 52 is an adder, 53 is an envelope detector, and 54 is an output terminal outputted to the maximum checker 13. However, the subscript T represents the transposition of the vector.

第1図には2次元アレーの場合を示したが、1
次元(直線)アレーの場合はαΔ =cosθx,PiΔ =xi
3次元アレーの場合はαΔ =〔cosθx、cosθy
cosθzT、PiΔ =〔xi、yi、ziTと置けば基本的に平
面アレーと同じに扱えるので如何では平面アレー
のみについて説明する。
Figure 1 shows the case of a two-dimensional array;
In the case of a dimensional (linear) array, αΔ = cosθ x , P i Δ = x i ,
In the case of a three-dimensional array, αΔ = [cosθ x , cosθ y ,
cos θ z ] T , P i Δ = [x i , y i , z i ] Since it can basically be treated in the same way as a plane array, only the plane array will be explained below.

第2図において空間的に配列されたM個のアレ
ー素子11,12,……,1Mで受信される信号x1
(t),x2(t),……,xM(t)は増幅器101,102,…
…,10Mで適正なレベルまで増幅され、帯域通
過フイルタ111,112,……,11Mで不要な
周波数成分を取り除かれたせ狭帯域信号y1(t),y2
(t),……,yMTに変換された後、狭帯域ビー
ム・フオーマ12で処理された空間周波数領域に
おけるビーム出力信号として出力され、最大点検
出器13で該ビーム出力信号が最大値をとる空間
周波数から方向余弦αの推定値α〜が求められ、変
換器14で該方向余弦推定値α〜は角度の推定値に
変換されて、出力端子15に出力される。狭帯域
ビーム・フオーマ12は第3図で与えられ、前記
帯域フイルタ111,112,……,11Mから出
力される狭帯域信号y1(t),y2(t),……,yM(t)は位
相補償器511,512,……,51Mで位相補償
を受けた後加算器52で加算された後、エンベロ
ープ検波器53でエンベロープ信号に変換され
て、前記最大点検器13への出力端子54に出力
される。
A signal x 1 received by M array elements 1 1 , 1 2 , . . . , 1 M spatially arranged in FIG.
(t), x 2 (t), ..., x M (t) are amplifiers 10 1 , 10 2 , ...
..., 10 M to an appropriate level, and bandpass filters 11 1 , 11 2 , ..., 11 M remove unnecessary frequency components, resulting in narrowband signals y 1 (t), y 2
(t), ..., y After being converted into M An estimated value α~ of the directional cosine α is determined from the spatial frequency at which the directional cosine α~ is converted into an estimated value of the angle by the converter 14 and outputted to the output terminal 15. The narrowband beamformer 12 is given in FIG. 3, and narrowband signals y 1 (t), y 2 ( t), . . . output from the bandpass filters 11 1 , 11 2 , . y M (t) undergoes phase compensation in phase compensators 51 1 , 51 2 , ..., 51 M , is added in an adder 52 , is converted into an envelope signal in an envelope detector 53 , and is converted into an envelope signal by an envelope detector 53 . It is output to the output terminal 54 to the inspection device 13.

第3図の狭帯域ビーム・フオーマを用いた第2
図に示す角度測定装置においては、狭帯域信号y1
(t),y2(t),……,yMT間に位相変位があると方向
余弦の推定値に誤差を生じることになる。一方、
第1図のアレー素子1iの位置Piに位置誤差ΔPiΔ =
〔△xi、△yi、△ziTが存在する場合には、前記狭
帯域信号の中心周波数の波長をλ0とすれば、該狭
帯域信号yi(t)には等価的に次の位相変位△φiを生
ずる。
The second beamformer using the narrowband beamformer shown in Figure 3.
In the angle measuring device shown in the figure, the narrowband signal y 1
(t), y 2 (t), ..., y M If there is a phase shift between T, an error will occur in the estimated value of the direction cosine. on the other hand,
Position error ΔP i Δ in position P i of array element 1 i in FIG.
[△x i , △y i , △z i ] When T exists, if the wavelength of the center frequency of the narrowband signal is λ 0 , then the narrowband signal y i (t) has an equivalent produces the following phase displacement △φ i .

△φi=2π/λ0△PT iβ (1) ただし、βは方向余弦の3次元ベクトルでβΔ =
〔cosθx、cosθy、cosθzTを表わし、cosθzはcosθ
z
=√1−2 x2 yの関係式から求められ
る。よつて、第1図のアレー素子11,12,…
…,1Mの各位置P1,P2,……,PMに位置誤差△
P1,△P2,……,△PMが存在する場合には、前
記狭帯域信号y1(t),y2(t),……,yM(t)には前記式
(1)で与えられる位相変位△φ1、△φ2,……,△
φMを生じ、従つて該素子位置誤差△P1,△P2
……,△PMにより第2図の方向余弦の推定値α〜
に誤差を生ずることになる。
△φ i =2π/λ 0 △P T i β (1) where β is a three-dimensional vector of direction cosine and βΔ =
[cosθ x , cosθ y , cosθ z ] T , where cosθ z is cosθ
z
It can be found from the relational expression =√1− 2 x2 y . Therefore, the array elements 1 1 , 1 2 , . . . in FIG.
..., 1 M position error △ at each position P 1 , P 2 , ..., P M
When P 1 , △P 2 , ..., △P M exist, the narrowband signal y 1 (t), y 2 (t), ..., y M (t) has the above formula
Phase displacement given by (1) △φ 1 , △φ 2 , ..., △
φ M and therefore the element position errors △P 1 , △P 2 ,
..., △P M gives the estimated value α~ of the direction cosine in Figure 2.
This will result in an error.

従来、アレー素子、増幅器、帯域フイルタ等の
位相応答特性の差異に起因する位相変位により生
じる方向余弦推定誤差は、もし該位相変位が既知
な場合には該位相変位を取り除く位相補正手段を
付加することによつて該方向余弦推定誤差を補正
している。しかしながら、このような補正方式で
は該位相変位△φ1,△φ2,……,△φMは信号源
方向すなわち信号源の方向余弦αに対して一定で
あるという前提を置いており、前記式(1)で与えら
れるように該位相変位△φ1,△φ2,……,△φM
が信号源の方向余弦αに依存して変化する場合に
は、例えアレー素子の位置誤差△P1,△P2,…
…,△PMが予め与えられた場合でも有効な補正
を実行することは困難であつた。
Conventionally, directional cosine estimation errors caused by phase displacements due to differences in phase response characteristics of array elements, amplifiers, bandpass filters, etc., are resolved by adding phase correction means to remove the phase displacements if the phase displacements are known. In this way, the direction cosine estimation error is corrected. However, such a correction method assumes that the phase displacements △φ 1 , △φ 2 , ..., △φ M are constant with respect to the signal source direction, that is, the direction cosine α of the signal source. The phase displacements △φ 1 , △φ 2 , ..., △φ M as given by equation (1)
For example, if the position errors of the array elements △P 1 , △P 2 , ... change depending on the direction cosine α of the signal source,
..., ΔP M was given in advance, it was difficult to perform effective correction.

なお、該アレー素子の位置誤差△P1,△P2
……,△PMは、通常のスケールやレーザ測距装
置を用いてアレー素子の位置座標を測定して、該
位置座標の測定値の定格値からのずれとして求め
られる。また、測定精度を更に上げたい場合は音
響信号を用いて位置座標の測定が行なわれる。
Note that the position errors of the array elements △P 1 , △P 2 ,
. . . , ΔP M is obtained by measuring the position coordinates of the array element using an ordinary scale or a laser distance measuring device, and is determined as the deviation of the measured value of the position coordinates from the rated value. Furthermore, when it is desired to further improve the measurement accuracy, the position coordinates are measured using acoustic signals.

(発明の課題) 本発明はこれらの困難性を解決するため、アレ
ー各素子の位置誤差と信号源の方向余弦とアレー
の幾何学的形状で決まる定数から該素子位置誤差
によつて生じる方向余弦推定誤差を求め、該方向
余弦推定誤差を前記狭帯域ビーム・フオームと最
大点検出手段により求められた方向余弦の設定値
から差し引くことによつて該方向余弦推定値に含
まれる推定誤差を取り除くものであり従来の位相
変位の補正に用いられてきた位相補正手段を必要
としない特徴を有する。
(Problem of the Invention) In order to solve these difficulties, the present invention calculates the direction cosine caused by the element position error from a constant determined by the position error of each element in the array, the direction cosine of the signal source, and the geometrical shape of the array. An estimation error included in the direction cosine estimated value is removed by determining an estimation error and subtracting the direction cosine estimation error from the set value of the direction cosine determined by the narrowband beamform and the maximum point detection means. It has a feature that it does not require a phase correction means that has been used in the conventional correction of phase displacement.

(発明の構成および作用) 第1図のアレー各素子11,12,……,1M
位置ベクトルP1,P2,……,PM、前記位相変位
△φ1,△φ2,……,△φM、アレー素子の振幅に
関する過重b1,b2,……,bMが与えられ、素子位
置誤差△P1,△P2,……,△PMが十分に小さい
場合は、文献「位相誤差によるSSBL音響測位の
測角誤差、電子通信学会、SANE82−15、1982年
7月」と前記式(1)から、第2図における方向余弦
推定値α〜に含まれる方向余弦推定誤差△αΔ =〔△
cosθx、△cosθyTは Δα=(Mi= ||bi2H)-1 Mi= ||bi2(Pi−Pc)・ΔPT iβ (2) で与えられる。但し、ここで行列H及びベクトル
PCは次のように与えられる定数である。
(Structure and operation of the invention) Position vectors P 1 , P 2 , . . . , P M of each array element 1 1 , 1 2 , . . . , 1 M in FIG . , ..., △φ M , overweights b 1 , b 2 , ..., b M regarding the amplitude of the array elements are given, and the element position errors △P 1 , △P 2 , ..., △P M are sufficiently small. If, from the document "Angle measurement error of SSBL acoustic positioning due to phase error, Institute of Electronics and Communication Engineers, SANE82-15, July 1982" and the above equation (1), the direction cosine estimated value α in Fig. 2 includes Direction cosine estimation error △αΔ = [△
cosθ x , △cosθ yT is Δα=( Mi= ||b i2 H) -1 Mi= ||b i2 (P i −P c )・ΔP T i β (2 ) is given by However, here matrix H and vector
P C is a constant given as follows.

PCΔ =Mi=1 |bi2PiM Σi=1 |bi2 (3) HΔ =Mi=1 |bi2PiPT iMi=1 |bi2−PCPT C (4) 本発明は前記方向余弦推定値α〜=〔cosθ〜x、cos
θ〜yTからcosθ〜z=√1−2 x2 y
を算出し
て、方向余弦β〜Δ =〔cosθ〜x、cosθ〜y、cosθ〜zT
作り、該方向余弦β〜を前記式(2)のβと置き換える
ことによつて方向余弦の推定誤差△αを求め、該
推定誤差を用いて前記方向余弦推定値α〜に含まれ
る推定誤差の補正を行なうものである。
P C Δ = Mi=1 |b i2 P iM Σ i=1 |b i2 (3) HΔ = Mi=1 |b i2 P i P T iMi=1 | b i | 2 −P C P T C (4) The present invention provides the direction cosine estimate α~=[cosθ~ x , cos
θ〜 yT to cosθ〜 z =√1− 2 x2 y
By calculating the direction cosine β~Δ = [cosθ~ x , cosθ~ y , cosθ~ z ] T , and replacing the direction cosine β~ with β in the above equation (2), the direction cosine of the direction cosine β~Δ is obtained. An estimation error Δα is obtained, and the estimation error is used to correct the estimation error included in the direction cosine estimated value α˜.

第4図は本発明の実施例であつて、16は方向
余弦のz成分算出器、17はレジスタ、18は加
算器、20は方向余弦の推定誤差算出器である。
前記最大点検出器13から出力される方向余弦α
の推定値α〜=〔〔cosθ〜x、cosθ〜yTはレジスタ
17
に入力されると同時に方向余弦のz成分の算出器
16にも入力され、該z成分算出器16では前記
方向余弦推定値α〜から方向余弦方向のz成分cos
θ〜zが算出され前記レジスタ17に入力される。
レジスタ17には前記α〜と該cosθ〜zが記録され方
向余弦β〜=〔cosθ〜x、cosθ〜y、cosθ〜zTが前
記推定
誤差算出器20に入力される。推定誤差算出器2
0では前記レジスタ17から入力された方向余弦
β〜を用いて前記式(2)に従つて方向余弦推定誤差△
αを算出する。算出された該方向余弦推定誤差△
αは加算器18で前記方向余弦推定値α〜から差し
引かれた補正後の方向余弦の推定値α^Δ =α〜−△α
が前記方向余弦の角度変換器14に入力される。
第5図は前記推定誤差算出器20の詳細な実施例
であり、211,212,……,21Mはレジスタ、
22は前記レジスタ17から入力される入力端
子、231,232,……,23Mは3次元ベクト
ルの内積演算を行なう掛算器、241,242,…
…,24Mはスカラーと2次元ベクトルとの掛算
を行なう掛算器、251,252,……,25M
レジスタ、26は2次元ベクトルの加算を行なう
加算器、27はレジスタ、28は2×2行列と2
次元ベクトルの掛算を行なう掛算器、29は前記
変換器14への出力端子である。レジスタ211
212,……,21Mには前記アレー素子11,1
,……,1Mの位置誤差△P1,△P2,……,△
PMが記憶され、該位置誤差と入力端子22から
入力される方向余弦β〜との内積が掛算器231
232,……,23Mで求められる。又レジスタ2
1,252,……,25Mには前記式3により求
められる定数Pcと前記アレー素子11,12,…
…,1Mの位置△P1,△P2,……,△PM及び振幅
に関する荷重b1,b2,……,bMから予め算出した
定数値|b12(P1−Pc),|b22(P2−Pc),……,
|bM2(PM−P6)が記憶され、該記憶値と前記
掛算器231,232,……,23Mの出力との積
が掛算器241,242,……,24Mで求められ、
該掛算器241,242,……,24Mの出力値は
加算器26でたし合わされた後、前記式(3)により
求められる定数Hと前記荷重b1,b2,……,bM
ら算出した定数値 (Mi= |bi2H)-1 を記憶しているレジスタ27との積が掛算器28
で求められ、該掛算器28の出力が方向余弦推定
誤差△αの算出値として前記可変器14に出力す
るため出力端子29に出力される。
FIG. 4 shows an embodiment of the present invention, in which 16 is a direction cosine z-component calculator, 17 is a register, 18 is an adder, and 20 is a direction cosine estimation error calculator.
Direction cosine α output from the maximum point detector 13
Estimated value α ~ = [[cosθ ~ x , cosθ ~ y ] T is the register 17
At the same time, it is input to the z-component calculator 16 of the direction cosine, and the z-component calculator 16 calculates the z-component cos of the direction cosine from the direction cosine estimated value α~
θ~ z is calculated and input to the register 17.
The register 17 records the α~ and the cosθ~ z, and the direction cosine β~=[cosθ~ x , cosθ~ y , cosθ~ z ] T is input to the estimation error calculator 20. Estimation error calculator 2
0, the direction cosine estimation error △ is calculated according to the equation (2) using the direction cosine β~ input from the register 17.
Calculate α. Calculated direction cosine estimation error △
α is the corrected estimated direction cosine value α^Δ subtracted from the estimated direction cosine value α˜ by the adder 18 = α˜−△α
is input to the direction cosine angle converter 14.
FIG. 5 shows a detailed embodiment of the estimation error calculator 20, in which 21 1 , 21 2 , . . . , 21 M are registers;
22 is an input terminal for inputting from the register 17, 23 1 , 23 2 , . . . , 23 M is a multiplier that performs an inner product operation of three-dimensional vectors;
..., 24 M is a multiplier that multiplies a scalar and a two-dimensional vector, 25 1 , 25 2 , ..., 25 M is a register, 26 is an adder that adds two-dimensional vectors, 27 is a register, and 28 is a 2x2 matrix and 2
A multiplier 29 for multiplication of dimensional vectors is an output terminal to the converter 14. Register 21 1 ,
21 2 , ..., 21 M include the array elements 1 1 , 1
2 , ..., 1 M position error △P 1 , △P 2 , ..., △
P M is stored, and the inner product of the position error and the direction cosine β~ input from the input terminal 22 is calculated by the multiplier 23 1 ,
23 2 , ..., 23 M. Also register 2
5 1 , 25 2 , . . . , 25 M are the constant P c determined by the above equation 3 and the array elements 1 1 , 1 2 , .
Constant values | b 1 | 2 ( P 1 P c ), |b 2 | 2 (P 2 −P c ), ...,
|b M | 2 (P M −P 6 ) is stored, and the product of the stored value and the output of the multipliers 23 1 , 23 2 , . . . , 23 M is the product of the multipliers 24 1 , 24 2 , . ,24 M ,
The output values of the multipliers 24 1 , 24 2 , . . . , 24 M are added together in the adder 26 , and then added to the constant H determined by the equation (3) and the loads b 1 , b 2 , . The constant value calculated from b M ( Mi= | b i | 2 H) is multiplied by the register 27 that stores -1 .
The output of the multiplier 28 is output to the output terminal 29 to be output to the variable device 14 as the calculated value of the direction cosine estimation error Δα.

以上説明したように本実施例では、アレー素子
の位置誤差△P1,△P2,……,△PMによつて生
ずる方向余弦推定誤差を、該位置誤差とアレーの
幾何学的形状で決まるアレー定数及び従来の狭帯
域ビーム・フオーマと最大点検手段によつて求め
られた方向余弦の推定値α〜を用いて解析的に算出
し、算出された方向余弦推定誤差を該方向余弦推
定値α〜から差し引くことにより該位置誤差△P1
△P2,……,△PMによつて生ずる方向余弦推定
誤差を取り除いているので、従来は困難であつた
任意方向に変化する信号源に対しても該方向余弦
推定誤差の補正を容易に行なうことができる。
As explained above, in this embodiment, the direction cosine estimation error caused by the position errors △P 1 , △P 2 , ..., △P M of the array elements is calculated by using the position errors and the geometric shape of the array. It is calculated analytically using the determined array constant, the conventional narrowband beam former, and the estimated value α of the direction cosine obtained by the maximum inspection means, and the calculated direction cosine estimation error is calculated as the estimated value of the direction cosine. By subtracting from α~, the position error △P 1 ,
Since the direction cosine estimation error caused by △P 2 , ..., △P M is removed, it is easy to correct the direction cosine estimation error even for a signal source that changes in an arbitrary direction, which was difficult in the past. can be done.

(発明の効果) 本発明は、アレー素子の位置誤差によつて生ず
る方向余弦推定誤差の補正を、該位置誤差とアレ
ーの幾何学的形状で決まる定数と信号源方向の方
向余弦から算出された方向余弦推定誤差を用いて
行なうので、任意の方向から到達する信号に対し
ても確実な補正を容易に行なうことができるとい
う利点があり、狭帯域ビーム・フオーマを用いた
ソーナー、音響測位装置、レーダにおける角度測
定装置に利用することができる。
(Effects of the Invention) The present invention corrects the direction cosine estimation error caused by the position error of the array element, using a constant determined by the position error and the geometry of the array, and a direction cosine of the signal source direction. Since this is performed using the direction cosine estimation error, it has the advantage of being able to easily perform reliable correction even for signals arriving from any direction, and is useful for sonar, acoustic positioning equipment, etc. using narrowband beamformers. It can be used as an angle measuring device in radar.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2次元(平面)アレーの説明図、第2
図は狭帯域ビーム・フオーマを用いた角度測定装
置の説明図、第3図は狭帯域ビーム・フオーマの
説明図、第4図は本発明の実施例の説明図、第5
図は推定誤差算出器の説明図である。 11,12,……,1M;アレー素子、2:平面
アレー、101,102,……,10M;増幅器、
111,112,……,11M;帯域フイルタ、1
2;狭帯域ビーム・フオーマ、13;最大点検出
器、14;変換器、511,512,……,51
;位相補償器、52;加算器、53;エンベロ
ープ検波器、16;方向余弦のz成分算出器、1
7;レジスタ、18;加算器、211,212,…
…,21M;レジスタ、231,232,……,2
M;掛算器、241,242,……,24M;掛算
器、251,252,……,25M;レジスタ、2
6;加算器、27;レジスタ、28;掛算器。
Figure 1 is an explanatory diagram of a two-dimensional (plane) array;
The figure is an explanatory diagram of an angle measuring device using a narrowband beam former, FIG. 3 is an explanatory diagram of a narrowband beam former, FIG. 4 is an explanatory diagram of an embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the estimation error calculator. 1 1 , 1 2 , ..., 1 M ; array element, 2: planar array, 10 1 , 10 2 , ..., 10 M ; amplifier,
11 1 , 11 2 , ..., 11 M ; Bandwidth filter, 1
2; Narrowband beam former, 13; Maximum point detector, 14; Transducer, 51 1 , 51 2 , ..., 51
M ; Phase compensator, 52; Adder, 53; Envelope detector, 16; Direction cosine z-component calculator, 1
7; Register, 18; Adder, 21 1 , 21 2 ,...
..., 21 M ; register, 23 1 , 23 2 , ..., 2
3 M ; Multiplier, 24 1 , 24 2 , ..., 24 M ; Multiplier, 25 1 , 25 2 , ..., 25 M ; Register, 2
6; adder, 27; register, 28; multiplier.

Claims (1)

【特許請求の範囲】 1 空間上に配列されたM個の素子から構成され
るアレーと、位相補償手段を用いた該素子出力信
号に対するビーム・フアーマと、空間周波数領域
における該ビーム・フオーマ出力の最大点を求め
るための最大点検出手段を有し、該最大点検出手
段で求めたビーム・フオーマ出力の最大点から前
記アレーの基準座標軸に関する信号源方向の方向
余弦を推定することにより信号源方向の角度を求
める狭帯域角度測定装置において、 前記各素子のアレー上の位置の定格位置に対す
る素子位置誤差ΔP1,……,ΔPMによつて生じる
前記方向余弦推定誤差Δαを、該素子位置誤差
ΔP1,……ΔPMと、該アレー幾何学的形状で決ま
るアレー定数と、前記ビーム・フオーマと最大値
検出手段により推定された方向余弦推定値α〜から
算出し、算出された該方向余弦推定誤差Δαを補
正前の前記方向余弦推定値α〜から差し引くことに
よつて、前記素子位置誤差ΔP1,……,ΔPMによ
つて生じる方向余弦推定誤差を取り除き、α^=α〜
−Δαを補正後の方向余弦推定値とすることを特
徴とする角度推定誤差の補正方式。 2 前記方向余弦推定誤差Δαを、素子位置誤差
ΔP1,……,ΔPMと、アレーと幾何学的形状で決
まるアレー定数PC及びHと、方向余弦推定値α
から求められ、素子の位置ベクトルと同一の次元
を持つ方向余弦推定値βか〜ら Δα=(Mi= ||bi2H)-1 Mi= ||b12(Pi−Pc)・ΔPi Tβ〜 なおbiは第i番目の受信感度を示す係数、Piは第
i番目素子の位置ベクトル、PCはbiを質点と想定
したときのアレーの重心位置ベクトルを示し、 PCΔ = Mi= ||bi2PiMi= ||bi2 なおHはアレーの重心の回りの2次モーメント
を示し、 HΔ = Mi= ||bi2PiPi TMi= ||bi2−PCPC T ただし、xTはベクトルxの転置を示し、 のように算出する特許請求の範囲第1項記載の角
度推定誤差の補正方式。
[Claims] 1. An array consisting of M elements arranged in space, a beam former for the output signal of the element using a phase compensation means, and an output of the beam former in the spatial frequency domain. The signal source direction is determined by estimating the direction cosine of the signal source direction with respect to the reference coordinate axis of the array from the maximum point of the beam former output determined by the maximum point detection means. In a narrowband angle measuring device for determining the angle of , the direction cosine estimation error Δα caused by the element position error ΔP 1 , ..., ΔP M with respect to the rated position of each element on the array is calculated as the element position error. The calculated direction cosine is calculated from ΔP 1 , ...ΔP M , the array constant determined by the array geometry, and the estimated direction cosine value α ~ estimated by the beam former and the maximum value detection means. By subtracting the estimated error Δα from the direction cosine estimated value α~ before correction, the direction cosine estimation error caused by the element position errors ΔP 1 , ..., ΔP M is removed, and α^=α~
A method for correcting an angle estimation error, characterized in that −Δα is an estimated value of direction cosine after correction. 2. The direction cosine estimation error Δα is expressed as the element position error ΔP 1 , ..., ΔP M , the array constants P C and H determined by the array and geometrical shape, and the direction cosine estimated value α
Δα=( Mi= |||b i | 2 H) -1 Mi= |||b 1 | 2 ( P i - P c )・ΔP i T β ~ Note that b i is a coefficient indicating the i-th receiving sensitivity, P i is the position vector of the i-th element, and P C is the array value when b i is assumed to be a mass point. P C Δ = Mi= ||b i2 P iMi= ||b i2 where H indicates the second moment around the center of gravity of the array, H Δ = Mi= ||b i2 P i P i TMi= ||b i2 −P C P C T However, x T indicates the transpose of vector x, and it is calculated as follows. An angle estimation error correction method according to claim 1.
JP21397382A 1982-12-08 1982-12-08 Correcting system of estimated error of angle Granted JPS59104578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21397382A JPS59104578A (en) 1982-12-08 1982-12-08 Correcting system of estimated error of angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21397382A JPS59104578A (en) 1982-12-08 1982-12-08 Correcting system of estimated error of angle

Publications (2)

Publication Number Publication Date
JPS59104578A JPS59104578A (en) 1984-06-16
JPH0457981B2 true JPH0457981B2 (en) 1992-09-16

Family

ID=16648125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21397382A Granted JPS59104578A (en) 1982-12-08 1982-12-08 Correcting system of estimated error of angle

Country Status (1)

Country Link
JP (1) JPS59104578A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105289B2 (en) * 1985-05-08 1994-12-21 沖電気工業株式会社 Direction estimation device
JPS62254082A (en) * 1986-04-26 1987-11-05 Teru Hayashi Sound source prober
JP5444589B2 (en) * 2006-06-30 2014-03-19 アイシン精機株式会社 Information processing apparatus, information processing method, and program

Also Published As

Publication number Publication date
JPS59104578A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
Thomas et al. Phase and amplitude gradient method for the estimation of acoustic vector quantities
CN110132308B (en) Attitude determination-based USBL installation error angle calibration method
CN111538027B (en) Laser ranging device and method for high-resolution measurement
CN109975840B (en) Positioning correction method for zero-setting antenna satellite navigation receiver
JPS6329216Y2 (en)
Sun et al. Array geometry calibration for underwater compact arrays
US5528554A (en) Linear array lateral motion compensation method
AU622559B2 (en) Method and device for correcting the signals given by the hydrophones of an antenna
KR101815584B1 (en) Compensation method for bias errors in 3D intensity probe used for the source localization in precision
JPH0457981B2 (en)
AU2019338229A1 (en) Method for determining a depth or a bathymetric profile based on an average sound speed profile, method for determining such a speed profile, and related sonar system
JPH0457980B2 (en)
JPH06105289B2 (en) Direction estimation device
JPS63187181A (en) Holographic radar
Ebaugh et al. The practical application of the reciprocity theorem in the calibration of underwater sound transducers
Hua et al. Efficient two dimensional direction finding via auxiliary-variable manifold separation technique for arbitrary array structure
EP1216422B1 (en) Method and apparatus for extracting physical parameters from an acoustic signal
JP3140899B2 (en) Signal incident direction estimation device
JPH0693014B2 (en) Direction estimation device
CN117784011A (en) Sound source positioning method and related device
KR100462573B1 (en) Method of estimation of steering vector for arbitrary elevation/azimuth using measured steering vector for specified elevation/azimuth
Zhang et al. A Novel Self‐Calibration Method for Acoustic Vector Sensor
JPS60205269A (en) Under water sound detector
JPS63198888A (en) Sounding system for water depth survey system
JP2686809B2 (en) Method of forming receiver directivity