JPS589830B2 - Sintered alloy for corrosion-resistant sliding parts - Google Patents

Sintered alloy for corrosion-resistant sliding parts

Info

Publication number
JPS589830B2
JPS589830B2 JP1446276A JP1446276A JPS589830B2 JP S589830 B2 JPS589830 B2 JP S589830B2 JP 1446276 A JP1446276 A JP 1446276A JP 1446276 A JP1446276 A JP 1446276A JP S589830 B2 JPS589830 B2 JP S589830B2
Authority
JP
Japan
Prior art keywords
corrosion
powder
sintered alloy
sliding parts
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1446276A
Other languages
Japanese (ja)
Other versions
JPS5297311A (en
Inventor
黒石農士
本吉健也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1446276A priority Critical patent/JPS589830B2/en
Publication of JPS5297311A publication Critical patent/JPS5297311A/en
Publication of JPS589830B2 publication Critical patent/JPS589830B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は粉末冶金法による高温での耐摩摺動特性に優れ
た摺動部材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sliding member manufactured by powder metallurgy and having excellent abrasion resistance and sliding properties at high temperatures.

近年、工業の著しい発展と共に、宇宙機器、原子力産業
等を中心に効率の向上と、高速化から潤滑要素は高温化
の傾向にあり、高温軸受など高温摺動性に優れた材料の
要求が高まっている。
In recent years, with the remarkable development of industry, the lubrication elements tend to be hotter due to improvements in efficiency and higher speeds, especially in space equipment, nuclear power industries, etc., and the demand for materials with excellent high-temperature sliding properties, such as high-temperature bearings, has increased. ing.

現在高温軸受などの高温摺動材料として、一般に使われ
ているのは、工具鋼、高融点金属、超合金、サーメット
、セラミック及び黒鉛などであるが、工具鋼、高融点金
属、超合金、サーメットらは耐熱性、耐摩性に優れてい
るが、加工性が著しく悪く、材料的にも高級である為、
価格的に高く又セラミックは、価格的には比較的安価で
あるが、衝撃に弱い欠点があり黒鉛の場合強度的な問題
と、500゜C以上の酸化性雰囲気中での耐摩性が劣化
するという問題を有している。
Currently, tools commonly used as high-temperature sliding materials such as high-temperature bearings include tool steel, high-melting point metals, superalloys, cermets, ceramics, and graphite. Although they have excellent heat resistance and abrasion resistance, they have extremely poor workability and are made of high-grade materials.
Although ceramic is relatively inexpensive, it has the disadvantage of being weak against impact, and graphite has strength problems and deteriorates wear resistance in an oxidizing atmosphere at temperatures above 500°C. There is a problem.

本発明はこれらの欠点を改善し、耐熱性、耐酸化性、耐
摩性、強度特性に優れ、しかも価格的には比較的安価な
高温耐食性摺動部材用焼結合金を提供せんとするもので
ある。
The present invention aims to improve these drawbacks and provide a high-temperature corrosion-resistant sintered alloy for sliding members that has excellent heat resistance, oxidation resistance, abrasion resistance, and strength characteristics, and is relatively inexpensive. be.

かかる材料は例えば以下の様な方法で製造される。Such materials are manufactured, for example, by the following method.

(以下の%は何れも重量%を現わす。)5〜11%のN
i粉末と4〜9%のCr粉末(又はCrとしてのFe−
Cr粉末)と、3〜8%のCo粉末、Mo及びFe−M
o粉末をMoとして5〜20及びPb,Sb,Bi,S
n,Agの低融点金属のうち少なくとも一つを合計で1
〜15%、残り鉄粉とを混合して100%とし、まず冷
間で80〜90%の密度にプレン成形し、1200’C
以上の還元性の雰囲気(H2又は真空)で約1時間焼結
する。
(All percentages below indicate weight percentages.) 5-11% N
i powder and 4-9% Cr powder (or Fe- as Cr)
Cr powder), 3-8% Co powder, Mo and Fe-M
5 to 20 with o powder as Mo and Pb, Sb, Bi, S
At least one of the low melting point metals n, Ag in total 1
~15%, mixed with the remaining iron powder to make 100%, first cold-formed to a density of 80-90%, and then heated at 1200'C.
Sintering is performed in the above reducing atmosphere (H2 or vacuum) for about 1 hour.

得られた焼結体は密度80〜85%のものであるが、こ
の状態では金属マトリックスは溶体化軟化の状態にあり
、硬さはmHv 3 0 0以下で切削加工も含めて加
工は極めて容易である。
The obtained sintered body has a density of 80 to 85%, but in this state, the metal matrix is in a state of solution softening, and the hardness is less than mHv 300, making it extremely easy to process, including cutting. It is.

この状態では硬さが低い為、耐摩性は十分と言えないが
、この後500〜650°Cで1時間程度の時効処理を
施こすことにより、マトリックスはビツカース硬さで5
00〜600まで硬化し、耐摩性が向上する。
In this state, the hardness is low, so the wear resistance cannot be said to be sufficient, but by aging at 500 to 650°C for about 1 hour, the matrix has a Vickers hardness of 5.
It hardens from 00 to 600, improving wear resistance.

なお、粉末配合の際、MOないしはCrは、硬い鉄化合
物の形で配合し焼結で硬質の分散相として残す方法をと
れば更に耐摩性は改善される。
In addition, when blending the powder, MO or Cr may be blended in the form of a hard iron compound and left as a hard dispersed phase by sintering to further improve the wear resistance.

構成成分中、Niは耐食、耐熱性の改善の役目をするも
のであるが5%以下では効果が小さく、11%以上とな
ると耐食性は増すが、オーステナイトが安定し、析出硬
化性が低下するので5〜11%とした。
Among the constituent components, Ni plays a role in improving corrosion resistance and heat resistance, but if it is less than 5%, the effect is small, and if it is more than 11%, corrosion resistance increases, but austenite becomes stable and precipitation hardenability decreases. It was set at 5 to 11%.

Crも耐食性、耐熱性、耐酸化性を向上させる元素であ
り、4%以下では効果が小さく、9%以上となると焼結
での溶体化軟化の状態が得られにくくなり加工が困難と
なるので4〜9%とする。
Cr is also an element that improves corrosion resistance, heat resistance, and oxidation resistance, and if it is less than 4%, the effect is small, and if it is more than 9%, it becomes difficult to obtain a state of solution softening during sintering, making processing difficult. 4 to 9%.

Coはマトリックスの耐熱性の改善とマトリツクスから
のFeMo2の析出を促進する効果があり、3%以下で
は効果が小さく、逆に8%以上となっても効果は変らず
価格を考慮して3〜8%とする。
Co has the effect of improving the heat resistance of the matrix and promoting the precipitation of FeMo2 from the matrix. If it is less than 3%, the effect is small, and even if it is more than 8%, the effect remains unchanged. It shall be 8%.

Moも耐熱性と耐酸化性の改善に寄与し、時効処理によ
りマトリックスからFe2Moの形で析出し硬化の主役
をなすものであるが5%以下では硬化が不十分である。
Mo also contributes to the improvement of heat resistance and oxidation resistance, and is precipitated from the matrix in the form of Fe2Mo by aging treatment and plays a major role in hardening, but if it is less than 5%, hardening is insufficient.

Moの一部を硬質のFe−Mo化合物で残す場合もある
が、この場合に於ても最低5%のMoのマトリツクス中
への固溶が必要である。
In some cases, a portion of Mo may be left as a hard Fe-Mo compound, but even in this case, it is necessary to dissolve at least 5% Mo in the matrix.

しかしながら20%以上のMo量となっても、硬化量は
変らず、材質的な脆さのみ増加するので5〜20%とし
tモPb,Sb,Sn,Bt,Agらの低融点金属は上
記の金属マトリツクス中に1〜15%含有分布するもの
で高温雰囲気ないしは摺動中の温度上昇により溶融状態
となって空孔を介して摺動面に浸出し、潤滑の役割を演
ずる。
However, even if the amount of Mo exceeds 20%, the amount of hardening will not change and only the brittleness of the material will increase. It is present in a metal matrix of 1 to 15%, and becomes molten in a high-temperature atmosphere or due to a temperature rise during sliding, and leaches into the sliding surface through pores, playing the role of lubrication.

含有量が1%以下ではこの潤滑機能が不十分であり、又
15%以上となっても全体の強度を低下させる結果とな
るので1〜15%とした。
If the content is less than 1%, this lubricating function will be insufficient, and if the content is more than 15%, the overall strength will be reduced, so it is set at 1 to 15%.

以上に述べた様に本発明材の特徴は時効硬化性を有する
、耐食、耐摩性の金属マトリックスと高温で溶融状態と
なって優れた潤滑性を発揮する低融点金属成分より成り
、これにより潤滑油による潤滑が期待出来ない高温酸化
性雰囲気でも優れた耐摩摺動特性を発揮するものである
As mentioned above, the characteristics of the material of the present invention are that it consists of a metal matrix that is age hardenable, corrosion resistant, and wear resistant, and a low melting point metal component that becomes molten at high temperatures and exhibits excellent lubricity. It exhibits excellent wear and sliding properties even in high-temperature oxidizing atmospheres where oil lubrication cannot be expected.

以下実施例にて更に詳細に述べる。This will be described in more detail in Examples below.

実施例 −325メッシュのカーボニルニッケル粉、Fe−Cr
粉末、金属コバルト粉末、及びFe−Mo粉末と−25
0メッシュのPb,Sb,Sn,Bi,Agを下記組成
に配合し、混合後85%の密度に成形し、その後126
0℃で1時間焼結した。
Example-325 mesh carbonyl nickel powder, Fe-Cr
powder, metallic cobalt powder, and Fe-Mo powder and -25
0 mesh Pb, Sb, Sn, Bi, and Ag were blended into the following composition, and after mixing, molded to a density of 85%, and then 126
Sintering was performed at 0°C for 1 hour.

得られた焼結材に対し、350゜Cでの摩耗試験を実施
した。
The obtained sintered material was subjected to an abrasion test at 350°C.

(下記の組成中の数字は%を示す) A Fe− 8Ni−6Cr−7Co− 8Mo− 5
PbB Fe− 8Ni−6Cr−7Co− 8Mo−
5Pb−3SbC Fe− 8Ni−6Cr−7Co
− 8Mo− 5Pb−3SnD Fe− 8Ni−6
Cr−7Co− 8Mo− 5Pb−IAgE Fe−
10Ni−9Cr−3Co−10Mo− 5Pb−3B
iF Fe− 5Ni−9Cr−8Co−10Mo−1
0PbG Fe− 8Ni−3Cr−7Co− 8Mo
−10PbH Fe− 8Ni−6Cr−7Co−15
Mo− 5Pb−3Sn− 2Bi 2 高温摩耗試験 (テスト条件) (1)温度350゜C(気中) (2)接触圧力 2kg/cm2 (3)摩擦速度 1.5m/sec (4)摩擦距離 300m (5)相手材 SUH3B(硬さHRC40)(比較
材) 21−4N鋼 硬さHRC40 ステライトNo.6 硬さHRC48 以上の実施例にて判る様に本発明材は3000G以上の
温度雰囲気でステライト鋼に匹適する耐摩性を有し、高
温、酸化性雰囲気で使用される様な摺動部材、例えば高
温軸受、種々シール材として最適である。
(Numbers in the composition below indicate %) A Fe- 8Ni-6Cr-7Co- 8Mo- 5
PbB Fe- 8Ni-6Cr-7Co- 8Mo-
5Pb-3SbC Fe- 8Ni-6Cr-7Co
- 8Mo- 5Pb-3SnD Fe- 8Ni-6
Cr-7Co- 8Mo- 5Pb-IAgE Fe-
10Ni-9Cr-3Co-10Mo-5Pb-3B
iF Fe-5Ni-9Cr-8Co-10Mo-1
0PbG Fe- 8Ni-3Cr-7Co- 8Mo
-10PbH Fe- 8Ni-6Cr-7Co-15
Mo- 5Pb-3Sn- 2Bi 2 High temperature wear test (test conditions) (1) Temperature 350°C (in air) (2) Contact pressure 2kg/cm2 (3) Friction speed 1.5m/sec (4) Friction distance 300m (5) Compatible material SUH3B (hardness HRC40) (comparison material) 21-4N steel Hardness HRC40 Stellite No. 6 Hardness HRC48 As can be seen from the above examples, the material of the present invention has wear resistance comparable to Stellite steel in a temperature atmosphere of 3000 G or more, and is suitable for sliding members used in high temperature and oxidizing atmospheres, such as Ideal for high temperature bearings and various sealing materials.

なおこの材料の製造に於て、実施例で述べた様な製造法
以外に、あらかじめマトリックス組成の粉末をアトマイ
ズ法により調製しておけば、71〜リツクスの組織が均
質化され、時効硬化性、耐熱、耐酸化性が改善される。
In the production of this material, in addition to the production method described in the examples, if a powder with a matrix composition is prepared in advance by the atomization method, the structure of 71 to 1000x will be homogenized, and the age hardenability and Heat resistance and oxidation resistance are improved.

又潤滑成分を含有させる方法は焼結前に粉末で混合する
方法以外に焼結、熱処理後含浸させても全く同じ効果が
得られる。
In addition to the method of incorporating a lubricating component in the form of powder before sintering, the same effect can be obtained by impregnating it after sintering and heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%でNi5〜11%、Cr4〜9%、Co3〜
8%、MO5〜20%、残り鉄の組成よりなる析出硬化
性を有する金属マトリックス中に、Pb、Sb,Bi,
Sn,Agの低融点金属のうち少なくとも一つを合計重
量%で1〜15%含有する高温での摺動特性に優れた耐
食性摺動部材用焼結合金。
1% by weight: Ni5-11%, Cr4-9%, Co3-
Pb, Sb, Bi,
A sintered alloy for a sliding member having excellent corrosion resistance and excellent sliding properties at high temperatures, containing at least one of low melting point metals such as Sn and Ag in a total weight percent of 1 to 15%.
JP1446276A 1976-02-13 1976-02-13 Sintered alloy for corrosion-resistant sliding parts Expired JPS589830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1446276A JPS589830B2 (en) 1976-02-13 1976-02-13 Sintered alloy for corrosion-resistant sliding parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1446276A JPS589830B2 (en) 1976-02-13 1976-02-13 Sintered alloy for corrosion-resistant sliding parts

Publications (2)

Publication Number Publication Date
JPS5297311A JPS5297311A (en) 1977-08-16
JPS589830B2 true JPS589830B2 (en) 1983-02-23

Family

ID=11861709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1446276A Expired JPS589830B2 (en) 1976-02-13 1976-02-13 Sintered alloy for corrosion-resistant sliding parts

Country Status (1)

Country Link
JP (1) JPS589830B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241072Y2 (en) * 1983-11-17 1990-11-01

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4068627B2 (en) 2005-04-25 2008-03-26 大同メタル工業株式会社 High temperature sliding alloy
CN103406535A (en) * 2013-07-02 2013-11-27 安徽瑞泰汽车零部件有限责任公司 Powder metallurgy brake caliper iron alloy and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241072Y2 (en) * 1983-11-17 1990-11-01

Also Published As

Publication number Publication date
JPS5297311A (en) 1977-08-16

Similar Documents

Publication Publication Date Title
US4702771A (en) Wear-resistant, sintered iron alloy and process for producing the same
JPS6038461B2 (en) Sintered alloy with excellent wear resistance
JPS5822359A (en) Iron base sintered alloy for structural member of fuel supply apparatus
JPH04320494A (en) Self-lubricating material and its preparation
JP4170195B2 (en) Cu-based alloy for sliding members
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
JPS589830B2 (en) Sintered alloy for corrosion-resistant sliding parts
US3793691A (en) Thermal and abrasion resistant sintered alloy
JP2001073099A (en) Sintered alloy and bearing material
JPS6352081B2 (en)
JPS6133056B2 (en)
JP5079417B2 (en) Manufacturing method of high temperature corrosion resistant wear resistant sintered parts
US3715792A (en) Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
JPS6117895B2 (en)
JPH0116905B2 (en)
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JPH046786B2 (en)
JPS5839223B2 (en) Sintered sliding parts
JPS6164855A (en) Iron compound sintered alloy for valve seat
JPS5919983B2 (en) Sintered alloy with excellent wear resistance
JPS6133054B2 (en)
JPS6011100B2 (en) Sintered alloy with excellent wear resistance
JPS61117254A (en) Ferrous sintered alloy for valve seat
JPH07109024B2 (en) Sintered alloy for valve seat of internal combustion engine
JPS6140027B2 (en)