JPS6133056B2 - - Google Patents

Info

Publication number
JPS6133056B2
JPS6133056B2 JP56179330A JP17933081A JPS6133056B2 JP S6133056 B2 JPS6133056 B2 JP S6133056B2 JP 56179330 A JP56179330 A JP 56179330A JP 17933081 A JP17933081 A JP 17933081A JP S6133056 B2 JPS6133056 B2 JP S6133056B2
Authority
JP
Japan
Prior art keywords
alloy
content
self
wear resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56179330A
Other languages
Japanese (ja)
Other versions
JPS5881954A (en
Inventor
Masayuki Iijima
Masahiro Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP17933081A priority Critical patent/JPS5881954A/en
Publication of JPS5881954A publication Critical patent/JPS5881954A/en
Publication of JPS6133056B2 publication Critical patent/JPS6133056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高強度、並びにすぐれた耐摩耗性
および自己潤滑性を有し、特にこれらの特性が要
求される自動車ドア取付け金具、歯車、カム、お
よびスライドガイド部材などの製造に使用するの
に適した鉄基焼結合金に関するものである。 従来、一般に、この種の部材の製造には、低融
点金属や硫黄化合物などを分散含有せしめた鉄基
焼結合金や、焼入鋼、あるいは肌焼鋼などが使用
されている。しかし前記の鉄基焼結合金は、素地
中に分散した低融点金属や硫黄化合物によつて比
較的良好な自己潤滑性をもつものの、使用条件が
一段と苛酷になつた場合には十分満足する潤滑性
を示ものではなく、しかも前記の潤滑成分が焼結
時に素地の焼結性を阻害するために高強度のもの
を得るのが難しく、また焼入鋼や肌焼鋼は、高い
表面硬さを有するために耐摩耗性にすぐれたもの
になつているが、自己潤滑性が劣るために相手部
材とのなじみ性が悪くなつて、しばしば焼付きな
どの問題が起るものであり、このように強度、耐
摩耗性、および自己潤滑性を兼ね備えた材料は未
だ得られていないのが現状である。 そこで、本発明者は、上述のような観点から、
上記の特性を具備した材料を得るべく、特に鉄基
焼結合金に着目し研究を行なつた結果、鉄基焼結
合金を、C:0.8〜3.5%、Cu:0.5〜10.0%、
Ni:0.5〜20.0%、Mo:0.1〜5.0%、S:0.05〜
2.0%、P:0.6〜2.0%を含有し、さらに必要に応
じてSn:0.05〜3.0%を含有し、残りがFeと不可
避不純物からなる組成(以上重量%)を有すると
共に、素地中に遊離黒鉛と金属硫化物とが均一に
分散した組織を有するもので構成すると、前記素
地のもつ高い強度と硬さによつて合金は高強度と
すぐれた耐摩耗性をもつようになり、かつ前記素
地中に供存する遊離黒鉛と金属硫化物によつて合
金は苛酷な条件下での使用に際してもすぐれた自
己潤滑性を示すばかりでなく、相手部材とのなじ
み性もよく、しかも相手部材を損傷させることも
ないという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成範囲を上記の通りに
限定した理由を説明する。 (a) C C成分には素地に固溶するほか、マルテンサ
イト相および/またはパーライト相を形成して
合金の強度および耐摩耗性を向上させると共
に、微細な遊離黒鉛となつて素地中に分散し、
金属硫化物との共存において自己潤滑性および
相手部材とのなじみ性を著しく向上させる作用
があるが、その含有量が0.8%未満では、相対
的に遊離黒鉛の量が少なすぎて、特に苛酷な条
件下で使用に際して所望のすぐれた自己潤滑性
およびなじみ性を確保することができず、一方
3.5%を越えて含有させると、相対的に遊離黒
鉛の量が多くなりすぎて強度低下をきたすよう
になることから、その含有量を0.8〜3.5%に定
めた。 (b) Cu Cu成分には、C、Ni、およびMo成分と共に
素地に固溶して、素地の耐摩耗性を向上させる
ほか、Sと結合して金属硫化物を形成し、自己
潤滑性およびなじみ性を向上させる作用がある
が、その含有量が0.5%未満では前記作用に所
望の効果が得られず、一方、10.0%を越えて含
有させると、素地中に多量の金属Cuが分散す
るようになつて合金の耐摩耗性が劣化するよう
になることから、その含有量を0.5〜10.0%と
定めた。 (c) Ni Ni成分には、素地に固溶して、これを強化
し、もつて合金の強度および耐摩耗性を向上さ
せる作用があるが、その含有量が0.5%未満で
は、所望の強度および耐摩耗性を確保すること
ができず、一方20.0%を越えて含有させると素
地が軟質化して耐摩耗性が劣化するようになる
ことから、その含有量を0.5〜20.0%と定め
た。 (d) Mo Mo成分には、素地に固溶し、特にCuおよび
Niとの共存において、これを相剰的に強化
し、もつて合金の強度および耐摩耗性を向上さ
せる作用があるが、その含有量が0.1%未満で
は前記作用に所望の効果が得られず、一方5.0
%を越えて含有させると、合金強度が低下する
ようになるばかりでなく、経済的でもないこと
から、その含有量を0.1〜5.0%と定めた。 (e) S S成分には、主としてFeおよびCu成分と反
応して金属硫化物を形成し、合金に自己潤滑性
を付与すると共に、相手部材に対する攻撃性を
著しく緩和する作用があるが、その含有量が
0.6%未満では金属硫化物の形成が少な過ぎて
前記作用に所望の効果が得られず、一方2.0%
を越えて含有させると、金属硫化物の形成量が
多くなり過ぎて強度低下をきたすようになるこ
とから、その含有量を0.6〜2.0と定めた。 (f) P P成分には、焼結を活性化してC、Ni、
Cu、およびMo成分の素地への固溶拡散を促進
するほか、マルテンサイト相などの形成、並び
にPの共晶の析出をもたらし、もつて合金の高
密度化(強化)および耐摩耗性向上に著しく寄
与する作用があるが、その含有量が0.05%未満
では前記作用に所望の効果が得られず、一方
2.0%を越えて含有させると、合金が脆化する
ようになることから、その含有量を0.05〜2.0
%と定めた。 (g) Sn Sn成分には、素地中に固溶して、合金の強
度と硬さを一段と向上させる作用があるので、
これらの特性が特に要求される場合に必要に応
じて含有されるが、その含有量が0.05%未満で
は、前記特性に所望の向上効果が得られず、一
方3.0%を越えて含有させると、素地が硬くな
りすぎて自己潤滑性が劣化するようになること
から、その含有量を0.05〜3.0%と定めた。 つぎに、この発明の鉄基焼結合金を実施例によ
り比較例と対比しながら説明する。 実施例 原料粉末として、粒度:−100meshの鉄粉、同
−350meshのS粉末、同−325meshのCu−P合
金粉末(P:8%含有)、同−325μmのCu粉
末、同3μmのカーボニルNi粉末、同−325mesh
のNi−P合金粉末(P:12%含有)、同−
100meshの天然黒鉛粉末、同3μmのMo粉末、
同−200meshのSn粉末を用意し、これら原料粉
末を第1表に示される配合組成に配合し、V型ミ
キサーにて30分間混合し、5ton/cm2の圧力で圧粉
体を成形し、ついでエンドサーミツクガス雰囲気
中、1000〜1150℃の温度範囲内の所定温度に15分
間保持の条件で焼結することによつて、実質的に
配合組成と同一の最終成分組成をもつた本発明焼
結合金1〜18および比較焼結合金1〜12をそれぞ
れ製造した。なお、本発明焼結合金3、9、およ
び18は、焼結後、400〜450℃の温度に15分間保持
の条件で焼戻し処理を行なつたものであり、その
他の焼結合金は焼結ままの状態とした。また、比
較焼結合金1〜12は、いずれも構成成分のうちの
いずれの成分の含有量(第1表に※印を付して表
示したもの)がこの発明の範囲から外れた組成を
もつものである。
This invention has high strength, excellent wear resistance and self-lubricating properties, and is particularly suitable for use in manufacturing automobile door fittings, gears, cams, slide guide members, etc. that require these characteristics. The present invention relates to suitable iron-based sintered alloys. Conventionally, iron-based sintered alloys containing low melting point metals, sulfur compounds, etc. dispersed therein, hardened steel, case hardened steel, and the like have been used to manufacture this type of member. However, although the above-mentioned iron-based sintered alloy has relatively good self-lubricating properties due to the low melting point metals and sulfur compounds dispersed in the matrix, it is insufficient to provide sufficient lubrication when the usage conditions become more severe. Furthermore, it is difficult to obtain high strength steel because the lubricating components mentioned above inhibit the sinterability of the base material during sintering, and hardened steel and case hardened steel have high surface hardness. However, due to its poor self-lubricating properties, it has poor compatibility with mating parts, often causing problems such as seizure. At present, a material that combines strength, wear resistance, and self-lubricating properties has not yet been obtained. Therefore, from the above-mentioned viewpoint, the present inventors
In order to obtain a material with the above characteristics, we conducted research focusing on iron-based sintered alloys, and found that iron-based sintered alloys were made of iron-based sintered alloys with C: 0.8 to 3.5%, Cu: 0.5 to 10.0%,
Ni: 0.5~20.0%, Mo: 0.1~5.0%, S: 0.05~
2.0%, P: 0.6 to 2.0%, and if necessary, Sn: 0.05 to 3.0%, with the remainder consisting of Fe and unavoidable impurities (weight %), and free in the matrix. If the alloy is composed of a structure in which graphite and metal sulfides are uniformly dispersed, the high strength and hardness of the base material will give the alloy high strength and excellent wear resistance. Due to the free graphite and metal sulfides present in the alloy, the alloy not only exhibits excellent self-lubricating properties even when used under harsh conditions, but also has good compatibility with mating parts, and does not damage the mating parts. I learned that there is no such thing. This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below. (a) C The C component not only forms a solid solution in the base material, but also forms a martensitic phase and/or pearlite phase to improve the strength and wear resistance of the alloy, and also disperses in the base material as fine free graphite. death,
Coexistence with metal sulfides has the effect of significantly improving self-lubricating properties and compatibility with mating parts, but if the content is less than 0.8%, the amount of free graphite is relatively too small, resulting in particularly severe It is not possible to ensure the desired excellent self-lubricity and conformability when used under certain conditions;
If the content exceeds 3.5%, the amount of free graphite becomes relatively too large, resulting in a decrease in strength, so the content was set at 0.8 to 3.5%. (b) Cu The Cu component forms a solid solution in the base material together with C, Ni, and Mo components, improving the wear resistance of the base material, and also combines with S to form metal sulfide, improving self-lubricating properties and improving the wear resistance of the base material. It has the effect of improving conformability, but if the content is less than 0.5%, the desired effect will not be obtained, while if the content exceeds 10.0%, a large amount of metallic Cu will be dispersed in the base material. Since this causes the wear resistance of the alloy to deteriorate, the content was set at 0.5 to 10.0%. (c) Ni Ni has the effect of forming a solid solution in the base material, strengthening it, and improving the strength and wear resistance of the alloy, but if its content is less than 0.5%, the desired strength will not be achieved. On the other hand, if the content exceeds 20.0%, the base material becomes soft and the abrasion resistance deteriorates, so the content was set at 0.5 to 20.0%. (d) Mo The Mo component contains solid solution in the substrate, especially Cu and
When coexisting with Ni, it has the effect of mutually strengthening Ni and improving the strength and wear resistance of the alloy, but if the content is less than 0.1%, the desired effect cannot be obtained. , while 5.0
If the content exceeds 0.1% to 5.0%, the alloy strength not only decreases but also is not economical. Therefore, the content was set at 0.1 to 5.0%. (e) SS The S component mainly reacts with Fe and Cu components to form metal sulfides, which gives the alloy self-lubricating properties and has the effect of significantly mitigating the aggressiveness of mating parts. The content is
If it is less than 0.6%, the formation of metal sulfides is too small to achieve the desired effect, while if it is 2.0%
If the content exceeds 0.6 to 2.0, the amount of metal sulfide formed becomes too large, resulting in a decrease in strength, so the content was set at 0.6 to 2.0. (f) P For the P component, activate sintering to add C, Ni,
In addition to promoting the solid solution diffusion of Cu and Mo components into the matrix, it also causes the formation of martensitic phases and the precipitation of P eutectic, which leads to higher density (strengthening) and improved wear resistance of the alloy. It has an effect that contributes significantly, but if its content is less than 0.05%, the desired effect cannot be obtained;
If the content exceeds 2.0%, the alloy becomes brittle, so the content should be reduced from 0.05 to 2.0%.
%. (g) Sn The Sn component has the effect of forming a solid solution in the matrix and further improving the strength and hardness of the alloy.
It is included as necessary when these properties are particularly required, but if the content is less than 0.05%, the desired effect of improving the above properties cannot be obtained, while if the content exceeds 3.0%, Since the base material becomes too hard and its self-lubricity deteriorates, its content is set at 0.05 to 3.0%. Next, the iron-based sintered alloy of the present invention will be explained using Examples while comparing with Comparative Examples. Example Raw material powders include iron powder with a particle size of -100mesh, S powder with a particle size of -350mesh, Cu-P alloy powder (contains 8% P) with a particle size of -325mesh, Cu powder with a particle size of -325μm, and carbonyl Ni powder with a particle size of -3μm. Powder, 325mesh
Ni-P alloy powder (P: 12% content),
100mesh natural graphite powder, 3μm Mo powder,
200mesh Sn powder was prepared, these raw powders were blended into the composition shown in Table 1, mixed for 30 minutes in a V-type mixer, and molded into a green compact at a pressure of 5ton/ cm2 . Then, by sintering in an endothermic gas atmosphere at a predetermined temperature within the temperature range of 1000 to 1150°C for 15 minutes, the present invention has a final component composition that is substantially the same as the blended composition. Sintered alloys 1-18 and comparative sintered alloys 1-12 were produced, respectively. The sintered alloys 3, 9, and 18 of the present invention were tempered after sintering at a temperature of 400 to 450°C for 15 minutes, and the other sintered alloys were sintered. It was left as is. In addition, Comparative Sintered Alloys 1 to 12 all have compositions in which the content of any of the constituent components (indicated with an asterisk in Table 1) is outside the scope of the present invention. It is something.

【表】【table】

【表】 つぎに、この結果得られた本発明焼結合金1〜
18および比較焼結合金1〜12について、抗折力お
よびビツカース硬さを測定すると共に、試験片寸
法:25mm□×長さ6mm、相手材:JIS・SCM−8
(硬さ:HRC35)、試験面圧:10Kg/cm2、摩擦速
度:6.2m/sec、試験時間:5分、潤滑油:使用
せず(軟式)の条件で、面接触のすべり摩擦形式
の摩耗試験を行ない、試験片および相手材の平均
摩耗深さ(いずれも3本の平均)を測定した。こ
れらの測定結果を第1表に合せて示した。 第1表に示される結果から、本発明焼結合金1
〜18は、いずれも高強度および高硬度を有し、か
つすぐれた耐摩耗性を有すると共に、相手材の摩
耗もきわめて少ないものになつているのに対し
て、比較焼結合金1〜12においては、強度、耐摩
耗性、および自己潤滑性のうちの少なくともいず
れかの特性が劣つたものになつていることが明ら
かである。 上述のように、この発明の鉄基焼結合金は、高
強度、並びにすぐれた耐摩耗性および自己潤滑性
を兼ね備えているので、これらの特性が要求され
る自動車ドア取付金具、歯車、カム、およびスラ
イドガイド部材などの製造に用いた場合、これら
の部材は特に苛酷な条件下での使用に際してもき
わめて長期に亘つてすぐれた性能を安定して発揮
するなど工業上有用な特性を有するのである。
[Table] Next, the resulting sintered alloys of the present invention 1~
18 and comparative sintered alloys 1 to 12, the transverse rupture strength and Vickers hardness were measured, and test piece dimensions: 25 mm x length 6 mm, mating material: JIS/SCM-8
(hardness: H R C35), test surface pressure: 10Kg/cm 2 , friction speed: 6.2m/sec, test time: 5 minutes, lubricant: No use (soft), surface contact sliding friction A type of abrasion test was conducted to measure the average abrasion depth of the test piece and the mating material (average of three pieces in each case). These measurement results are also shown in Table 1. From the results shown in Table 1, the present invention sintered alloy 1
Comparative sintered alloys 1 to 18 all have high strength and hardness, excellent wear resistance, and extremely little wear on the mating material, whereas comparative sintered alloys 1 to 12 It is clear that the properties of at least one of strength, wear resistance, and self-lubricity are inferior. As mentioned above, the iron-based sintered alloy of the present invention has high strength as well as excellent wear resistance and self-lubricating properties, so it can be used in automobile door fittings, gears, cams, etc. that require these properties. When used to manufacture slide guide members, etc., these members have industrially useful properties, such as stably exhibiting excellent performance over an extremely long period of time even when used under particularly harsh conditions. .

Claims (1)

【特許請求の範囲】 1 C:0.8〜3.5%、 Cu:0.5〜10%、 Ni:0.5〜20%、 Mo:0.1〜5%、 S:0.6〜2%、 P0.05〜2%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)、並びに、 素地中に遊離炭素と金属硫化物が均一に分散し
た組織、 を有することを特徴とする耐摩耗性および自己潤
滑性にすぐれた高強度鉄基焼結合金。 2 C:0.8〜3.5、 Cu:0.5〜10%、 Ni:0.5〜20%、 Mo:0.1〜5%、 S:0.6〜2%、 P:0.05〜2%、 を含有し、さらに、 Sn:0.05〜3%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)、並びに、 素地中に遊離炭素と金属硫化物が均一に分散し
た組織、 を有することを特徴とする耐摩耗性および自己潤
滑性にすぐれた高強度鉄基焼結合金。
[Claims] 1 C: 0.8-3.5%, Cu: 0.5-10%, Ni: 0.5-20%, Mo: 0.1-5%, S: 0.6-2 %, P0.05-2%, Abrasion resistance and self-lubricating properties characterized by having a composition (by weight % or more) in which the remainder consists of Fe and unavoidable impurities, and a structure in which free carbon and metal sulfides are uniformly dispersed in the matrix. A high-strength iron-based sintered alloy with excellent properties. 2 Contains C: 0.8 to 3.5, Cu: 0.5 to 10%, Ni: 0.5 to 20%, Mo: 0.1 to 5%, S: 0.6 to 2%, P: 0.05 to 2%, and further Sn: 0.05 to 3%, with the remainder consisting of Fe and unavoidable impurities (weight%), and a structure in which free carbon and metal sulfides are uniformly dispersed in the matrix. A high-strength iron-based sintered alloy with excellent wear resistance and self-lubricating properties.
JP17933081A 1981-11-09 1981-11-09 High strength iron base sintered alloy excellent in wear resistance and self-lubricating property Granted JPS5881954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17933081A JPS5881954A (en) 1981-11-09 1981-11-09 High strength iron base sintered alloy excellent in wear resistance and self-lubricating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17933081A JPS5881954A (en) 1981-11-09 1981-11-09 High strength iron base sintered alloy excellent in wear resistance and self-lubricating property

Publications (2)

Publication Number Publication Date
JPS5881954A JPS5881954A (en) 1983-05-17
JPS6133056B2 true JPS6133056B2 (en) 1986-07-31

Family

ID=16063947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17933081A Granted JPS5881954A (en) 1981-11-09 1981-11-09 High strength iron base sintered alloy excellent in wear resistance and self-lubricating property

Country Status (1)

Country Link
JP (1) JPS5881954A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122462U (en) * 1990-03-26 1991-12-13
KR20220132528A (en) 2020-01-27 2022-09-30 미쓰비시 마테리알 가부시키가이샤 A tin or tin alloy electrolytic plating solution, a method for forming a bump, and a method for manufacturing a circuit board

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244556A (en) * 1985-08-21 1987-02-26 Mitsubishi Metal Corp High density sintered fe alloy having superior wear resistance and fitness
DE3633879A1 (en) * 1986-10-04 1988-04-14 Supervis Ets HIGH-WEAR-RESISTANT IRON-NICKEL-COPPER-MOLYBDAEN-SINTER ALLOY WITH PHOSPHORUS ADDITIVE
JPH04124248A (en) * 1990-09-14 1992-04-24 Isamu Kikuchi Sintered alloy for oilless bearing and its production
JP5485646B2 (en) * 2009-10-14 2014-05-07 ポーライト株式会社 Oil-free sintered gear body
CN103639405A (en) * 2013-12-03 2014-03-19 江苏大学 Metal matrix high temperature self-lubricating composite material and manufacturing method thereof
CN104907554A (en) * 2014-03-12 2015-09-16 北京有色金属研究总院 Powder material for powder metallurgy, preparation method thereof and application thereof
CN108385029A (en) * 2018-01-17 2018-08-10 瑞安市迦勒汽车部件有限公司 A kind of auto pump synchronous pulley production technology of integrated molding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141607A (en) * 1974-10-07 1976-04-08 Sumitomo Electric Industries TAIMAMOSEI JUDOZ AIRYO
JPS5419406A (en) * 1977-07-15 1979-02-14 Teikoku Piston Ring Co Ltd Heattanddwear resistant sintered ferrous alloy for valve seat ring having good processability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141607A (en) * 1974-10-07 1976-04-08 Sumitomo Electric Industries TAIMAMOSEI JUDOZ AIRYO
JPS5419406A (en) * 1977-07-15 1979-02-14 Teikoku Piston Ring Co Ltd Heattanddwear resistant sintered ferrous alloy for valve seat ring having good processability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122462U (en) * 1990-03-26 1991-12-13
KR20220132528A (en) 2020-01-27 2022-09-30 미쓰비시 마테리알 가부시키가이샤 A tin or tin alloy electrolytic plating solution, a method for forming a bump, and a method for manufacturing a circuit board

Also Published As

Publication number Publication date
JPS5881954A (en) 1983-05-17

Similar Documents

Publication Publication Date Title
JP5783303B2 (en) Copper-based sintered sliding member
US4702771A (en) Wear-resistant, sintered iron alloy and process for producing the same
KR940004031B1 (en) Sliding bearing layer composition
JPH0360897B2 (en)
JPS6133056B2 (en)
JPH02107731A (en) Wear-resistant copper-series sintered oiless bearing material
JPS6133054B2 (en)
JP4427410B2 (en) Pb-free copper alloy sliding material with excellent seizure resistance
JPS6117895B2 (en)
JPH0534412B2 (en)
JP2000199028A (en) Self-lubricating sintered composite material
JPS5941451A (en) Anti-wear fe base sintered alloy having self-lubricity
JPS6082646A (en) Sintered alloy and its manufacture
JPS6011100B2 (en) Sintered alloy with excellent wear resistance
JP2517675B2 (en) Sintered copper alloy for high load sliding
JPS5836667B2 (en) Sintered alloy with excellent wear resistance
JPS5919983B2 (en) Sintered alloy with excellent wear resistance
JPS6140027B2 (en)
JPS5852553B2 (en) Manufacturing method for iron-based sliding parts containing free graphite
JPS6154855B2 (en)
JPH0152463B2 (en)
JPS5914537B2 (en) Sintered sliding parts
JPS589826B2 (en) Sintered alloy with excellent wear resistance
JPS5857507B2 (en) Wear-resistant sintered alloy
JPS60200927A (en) Production of sintered alloy