JPS5866305A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS5866305A
JPS5866305A JP56164826A JP16482681A JPS5866305A JP S5866305 A JPS5866305 A JP S5866305A JP 56164826 A JP56164826 A JP 56164826A JP 16482681 A JP16482681 A JP 16482681A JP S5866305 A JPS5866305 A JP S5866305A
Authority
JP
Japan
Prior art keywords
permanent magnet
zirconium
less
coercive force
energy product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56164826A
Other languages
Japanese (ja)
Other versions
JPH0252413B2 (en
Inventor
Shinichi Yamashita
信一 山下
Mutsuo Ishikawa
石川 六夫
Yoshio Kato
良雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP56164826A priority Critical patent/JPS5866305A/en
Publication of JPS5866305A publication Critical patent/JPS5866305A/en
Publication of JPH0252413B2 publication Critical patent/JPH0252413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a high energy product by a method wherein phases having excessive Zr are made to exist in parallel with the C plane of an intermetallic compound crystal at predetermined intervals or less in a permanent magnet composing rare earth Co as a main body. CONSTITUTION:In a permanent magnet containing an intermetallic compound and composing rare earth Co as a main body, the intervals between phases having excessive Zr located in parallel with the C plane of the intermetallic compound crystal are maintained at 5,000Angstrom or less. The intermetallic compound contains Ce of 20-30%, Cu of 3-9%, Zr of 1-5%, and Fe of 10-30% by weight percent and the residual is composed of Co. In this way, a permanent magnet having high energy product and coercive force can be obtained.

Description

【発明の詳細な説明】 本発明は、希土類スパルト磁石に関するもので、ありさ
らに詳しく述べるならば、七すウムーコパルF金属間化
合物を主体とするC・−Co−Cu−F・系及びCI−
all−C・−Cm−F・系析出硬化型永久磁石の改嵐
に関するものである・ ” 希土類としてセリウムを使用した析出硬化型希土類ブパ
ルト磁石は、従来の高価なすマリラム及びコバルトを大
量に使用しているSmCog系磁石忙比べ、資源原料コ
ストの面からも優位で69、工業的に注i!されてきた
が、実用的な磁気特性としては不十分なものであった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to rare earth spult magnets, and more specifically, the present invention relates to rare earth spult magnets, and more specifically, C.--Co--Cu--F. system and CI-
This article concerns the improvement of all-C/-Cm-F system precipitation-hardening permanent magnets.'' Precipitation-hardening rare earth Bupart magnets that use cerium as the rare earth element do not use conventional expensive marillam and cobalt in large quantities. Compared to other SmCog-based magnets, it is advantageous in terms of resource and raw material costs69, and has been noted industrially, but its magnetic properties are insufficient for practical use.

例えば、1977年63「ムpplisd Physl
es L@tt@rs J第30巻、ム12p6119
〜o670の記載あるいは特公昭5G−39375の記
載によるとCo−Co−Cm−Fe系ではエネルギ積(
BH)工@z 131[GO@且つ保磁力IHc6,1
00〜6.9000o程度であシ、その組成は鋼9饅以
上且つ鉄12チ以下を指向していた。
For example, 1977 63 “Mupplisd Physl.
es L@tt@rs J Volume 30, Mu 12 p6119
According to the description in ~o670 or the description in Japanese Patent Publication No. 5G-39375, in the Co-Co-Cm-Fe system, the energy product (
BH) Engineering@z 131 [GO@and coercive force IHc6,1
It was about 0.00 to 6.9000 degrees, and its composition was oriented to more than 9 degrees of steel and less than 12 degrees of iron.

さらに、セリウムの一部をサマリウムで置換したC・−
am−C6−C1−p・系析出硬化型永久磁石は例えば
1979年5月r Pr@@ssding of th
@Fourth’ Int@rnatlonal Wo
rkshop on Rar・*arth −Coba
lt P@rmanent Magn@ts Jの記載
によるとCI/C@ +11mm 0.5近傍では、エ
ネルギ積(IH)wax19MGO・保持力負H・、7
,0000・程度であシ、やは)銅9饅以上、鉄12饅
以下を指向していた。
Furthermore, C・− in which a part of cerium was replaced with samarium
For example, the am-C6-C1-p precipitation hardening type permanent magnet was published in May 1979 at Pr@@ssding of th
@Fourth' Int@rnatlonal Wo
rkshop on Rar・*arth-Coba
According to the description of lt P@rmanent Magn@ts J, in the vicinity of CI/C@+11mm 0.5, the energy product (IH) wax19MGO・Retention force negative H・,7
,0,000,000,000,000,000,000,000,000,000,000,000,000,000,000, or more)) He was aiming for more than 9 pieces of copper and less than 12 pieces of iron.

これらの析出硬化型磁石ては、鋼過剰な相が微細組織の
セル構造を呈し、保磁力を向上させるtのである。また
これらの従来の永久磁石に−おいては、保持力維持の観
点から比較的高い鋼含有量及び低い含有量を指向してい
るのである。
In these precipitation hardening magnets, the steel-rich phase exhibits a microstructural cell structure, which improves the coercive force. In addition, these conventional permanent magnets are directed toward relatively high and low steel contents from the viewpoint of maintaining coercive force.

本発明の目的とするところは従来のC・−C・−C11
−F・系、及びC・−1i1m−Co−C菟−r・系永
久磁石よ〉着しく磁気特性を向上させると共に、特に低
い銅含有量の組成及び高い鉄含有量の組成に$P%Aて
もなおかつ高保持力を維持し、その結果、エネルギー積
(ita )m□、保持力l−等の磁気特性が極めて優
れてお〕、シかもセリウムの使用にょシ安価な永久磁石
を提供することにある。
The object of the present invention is to use the conventional C・-C・-C11
-F-based and C-1i1m-Co-C菟-r-based permanent magnets, the magnetic properties are significantly improved, and $P% is especially applied to compositions with low copper content and compositions with high iron content. As a result, the magnetic properties such as energy product (ita)m and coercive force l- are extremely excellent, and the use of cerium also provides an inexpensive permanent magnet. It's about doing.

本発明の基本的思想は、従来の析出硬化型磁石の微細組
織に、)られるC−過剰相のセル構造の他忙、セリウム
を必須成分とする希土類コバルト金属間化合物結晶の0
面に平行にジルコニウム過剰相を析出させて、銅過剰相
であるセル境界による磁壁のピンニング効果のみならず
ジルコニウム過剰相による磁壁のピンニング効果を追加
し、低い鋼含有量、高い鉄含有量忙於いてもなおかつ高
保磁カ會維持し、同時に高エネルプー積を可能ならしめ
るものである0本発明は鋭意研究の結果、上記金属間化
合物の結晶のCIiに平行なりルコニウ五過剰相を析出
させる一連の熱II&sYt見出し且つジルコニウム過
刺相(面)間隔と磁気特性の因果関係を確証することに
よ)完成したものである。
The basic idea of the present invention is that in the microstructure of conventional precipitation hardening magnets, there is a cell structure of a C-excess phase, which is formed in the microstructure of a conventional precipitation hardening magnet, and a zero-cell structure of a rare earth cobalt intermetallic compound crystal containing cerium as an essential component.
By precipitating the zirconium-excess phase parallel to the plane, the pinning effect of the domain wall due to the zirconium-excess phase is added as well as the domain wall pinning effect due to the cell boundary, which is the copper-excess phase. As a result of intensive research, the present invention has developed a series of heat waves parallel to the CIi of the crystals of the intermetallic compound to precipitate a luconium-5-excess phase. II&sYt and was completed by confirming the causal relationship between the zirconium superimposed phase (planar) spacing and magnetic properties.

すなわち、本発明は、重量百分率で、2oないし30%
のセリウム、3ないし9−の銅、1ないし5饅のジルコ
ニウム及び10ないし30−の鉄を含有し、残[lがコ
バルトからなる希土類コバルトを主体とする金属間化合
物を含んでなる永久磁石において、該金属間化合物結晶
の0面に平行にジルコニウム過剰なる相が相互の間隔が
soo。
That is, the present invention provides 2o to 30% in weight percentage.
In a permanent magnet comprising an intermetallic compound mainly containing rare earth cobalt, containing 3 to 9 parts of cerium, 3 to 9 parts of copper, 1 to 5 parts of zirconium, and 10 to 30 parts of iron, with the balance [l being cobalt] , the mutual spacing between the zirconium-excess phases parallel to the zero plane of the intermetallic compound crystal is so large.

l以下にて存在し、エネルギ積及び保磁力が高いことを
特徴とする。
It is characterized by a high energy product and coercive force.

本発明においては、従来のC・−C・−C1l−FI系
及びC・−am−Co−Cu−F・系祈出硬化製永久磁
石には存在しなかったジルコニウム過剰相を希土類コバ
ルト結晶の0面と実質的な意味で平行に析出させ、前者
の系では保磁力iHe 4 G 00以上、好ましくは
70000・以上、且つエネルギ積(紐)、、Xl 5
 MGO*以上、好ましく Fi 16 MGO@以上
を、また後者の系で社、重量百分率の含有量で、1it
re/C・十8mの比率が0.5の場合に、保磁力lH
e120000・以上且つエネルギ積(BH)wax 
23MGO・以上で代表される高い保磁力及びエネルギ
積を可能にしたものである。而して、cmtc平行な面
状のジルコニウム過剰相の間隔が50001を越えると
磁気特性が従来の上記析出硬化型永久磁石と大差ないの
で、5000Xを上脹として限定している。なおこの好
ましい間隔は20001である。
In the present invention, the zirconium-excess phase, which did not exist in conventional C・-C・-C1l-FI system and C・-am-Co-Cu-F system permanent magnets, is replaced with a rare earth cobalt crystal. In the former system, the coercive force iHe 4 G 00 or more, preferably 70000 or more, and the energy product (string), Xl 5
MGO* or more, preferably Fi 16 MGO@ or more, and in the latter system, the content in weight percentage is 1 it
When the ratio of re/C・18m is 0.5, the coercive force lH
e120000 or more and energy product (BH) wax
This enables a high coercive force and energy product represented by 23 MGO· or more. If the spacing between the cmtc-parallel plane zirconium-excessive phases exceeds 50,001, the magnetic properties are not much different from those of the conventional precipitation hardening type permanent magnet, so 5,000X is defined as the upper expansion. Note that this preferred interval is 20001.

本発明の永久磁石においてセリウムの含有量が2011
未満、鋼含有量が3g1未満、または鉄含有量が304
f越えると、保磁力及びエネルギ積が低下する。セリウ
ム含有量が3011を越え、銅含有量7bj9饅を越え
、または鉄含有量が1oチ未満であると、残留磁束密度
nrまたは減磁曲線の角型性が低下し、さらにエネルギ
積(BH)、。も低下する。ジルコニウムの含有量が1
饅未満であると、後述の発明の熱処mを行なってもジル
コニウム過剰相の間隔が5ooolを越えその効果が期
待されず、一方5嘩を越えると残留磁束密度及びエネル
ギ積が低下する。上記組成において、セリウム28饅未
満、また高い磁束密度をもたらす鉄12饅以上が411
K好ましい。
The content of cerium in the permanent magnet of the present invention is 2011
less than 3g, steel content less than 3g1, or iron content less than 304
If f is exceeded, the coercive force and energy product decrease. If the cerium content exceeds 3011, the copper content exceeds 7bj9, or the iron content is less than 1o, the residual magnetic flux density nr or the squareness of the demagnetization curve will decrease, and the energy product (BH) will decrease. ,. also decreases. Zirconium content is 1
If the spacing is less than 5mm, the spacing of the excess zirconium phase will exceed 5mm and no effect can be expected even if heat treatment according to the invention described below is performed, while if the spacing exceeds 5mm, the residual magnetic flux density and energy product will decrease. In the above composition, less than 28 pieces of cerium and 12 pieces or more of iron, which brings about high magnetic flux density, are 411
K is preferred.

本発明においては、ジルコニウムの他にハフニウム、チ
タン、バナジウム、ニオブ及びタンタルの少なくとも1
種をジルコニウムとの合計量でl〜5−(但しジルコニ
ウムの下@1ll)添加しても、ジルコニウム単独添加
の場合と同様の効果を生じる。
In the present invention, in addition to zirconium, at least one of hafnium, titanium, vanadium, niobium, and tantalum is used.
Even if the seeds are added in a total amount of 1 to 5 - (but below zirconium @ 1 1 l), the same effect as when zirconium is added alone is produced.

マタ、ハフニウム、チタン、バナジウム、ニオブ及びタ
ンタル単独添加の場合もジルコニウムの場合と同様に各
元素の過剰相が析出し、同様な効また、セリウムの80
慢以下(0を含まず)會サマリウムで置換すること、す
なわちO(1!!m(16)/Sm(%)+C・(饅)
≦80優の関係でサマリウムを当該永久磁石に加えるこ
と、−可能である。上記比率が80−を超えると、高価
なサマリウムが多くな夛、資源、原料コストの面からの
工業的価値が低下する。さらに鉄の一部t−8016(
01含まず)以下のマンガン、ニッケル及びクロムの一
種一以上で置換しても、同様な効果が得られる。置換量
が80−を越えると残留磁束密度Brが低下し、エネギ
ル積(nu)m。も低下する。
Even when cerium, hafnium, titanium, vanadium, niobium, and tantalum are added alone, an excess phase of each element precipitates as in the case of zirconium, and the same effect is obtained.
Replacement with samarium (not including 0), that is, O(1!!m(16)/Sm(%)+C・(饅)
- It is possible to add samarium to the permanent magnet in the relationship ≦80 well. When the above ratio exceeds 80, the industrial value in terms of the cost of expensive samarium, resources, and raw materials decreases. Furthermore, some iron T-8016 (
The same effect can be obtained even if one or more of the following manganese, nickel, and chromium is substituted. When the amount of substitution exceeds 80-, the residual magnetic flux density Br decreases, and the energy product (nu)m decreases. also decreases.

本発lIl!O永久磁石社従来のC・−Co −Css
 −Fe系、又はCI −8m −Co −Cu −F
e  系と比較して、磁束の可逆温度変化及び不可逆減
磁等析出硬化型永久磁石の温度特性も着しく教養されて
いる。
This is the real deal! O Permanent Magnet Co., Ltd. Conventional C・-Co-Css
-Fe-based or CI -8m -Co -Cu -F
Compared to e-type magnets, the temperature characteristics of precipitation hardening permanent magnets, such as reversible temperature change in magnetic flux and irreversible demagnetization, have also been well studied.

本発明によるC・−C・−Cm−F・系及びC・−8■
−C・−Cu−F−系析出硬イtJIl永久磁石の製造
方法は以下の通りである。tず、原料金属を所望の比率
に配合し、真空中又は非酸化性雰囲気中で高周波溶解を
行ない合金化する。この時、ジルコニウム勢の添加金属
はフェロアロイの状態で用いても何等差し支えない・さ
らに溶解は他の方法、例えば抵抗加熱炉、赤外線イメー
ジ炉、アーク溶解炉等によってもよい、所定組成のイン
ゴットは、スタングミル、ジョークラ、シャー等で粗粉
砕を行ない合金粉末にする。ζζまでの過程で、還元抗
散法等の処理で合金粉末を得ても差し支えない、得られ
た合金粉末は、さらに、/7! y )ミル、アトライ
ター、?−ルきル等で約3〜6JIのサイ、e□粒子に
微粉砕する。その後、微粉末は〆イブレス、静水圧ブレ
ス等で所望の形状に磁場中で圧縮成形する。以上の工程
は従来の永久磁石製造方法と特に相違していない。
C・-C・-Cm-F・system and C・-8■ according to the present invention
The manufacturing method of the -C.-Cu-F- based precipitation hard JIl permanent magnet is as follows. First, raw metals are blended in a desired ratio and alloyed by high-frequency melting in vacuum or in a non-oxidizing atmosphere. At this time, there is no problem even if the additive metal of the zirconium group is used in the state of ferroalloy.Furthermore, the melting may be done by other methods, such as a resistance heating furnace, an infrared image furnace, an arc melting furnace, etc.The ingot of the predetermined composition is Coarsely grind it using a stang mill, jaw mill, shear, etc. to make an alloy powder. In the process up to ζζ, there is no problem in obtaining alloy powder by treatment such as reduction anti-dispersion method, and the obtained alloy powder further has /7! y) Mill, attritor, ? - Pulverize to particles of about 3 to 6 JI with a grinder or the like. Thereafter, the fine powder is compressed into a desired shape in a magnetic field using a final press, a hydrostatic press, or the like. The above steps are not particularly different from conventional permanent magnet manufacturing methods.

以下、ジルコニウム過剰相を析出させる熱処理を行う。Hereinafter, heat treatment is performed to precipitate the zirconium-excess phase.

成形体は真空中、非酸化雰囲気中、又は還元雰囲気中勢
で1000℃〜1150℃Oamで焼結と同時に溶体化
処理を行ない、次に950℃以下の温度例えば室温まで
に急冷する。溶体化処理された焼結体(上述の場合は焼
結と溶体化が一段階の操作で行なわれる)を、その後、
750”〜900℃の温度で15分間以上、等温時効を
行ない、次に2 t、/mln 〜10 C/winの
速度で650℃以下の温度まで冷却する。さらに500
〜650℃の温度範囲から2℃/win以下の冷却速度
で400℃以下の温度まで連続的にまたは段階的に徐冷
する。
The compact is sintered and simultaneously subjected to solution treatment at 1000 DEG C. to 1150 DEG C. Oam in a vacuum, non-oxidizing atmosphere, or reducing atmosphere, and then rapidly cooled to a temperature of 950 DEG C. or less, for example, room temperature. The solution-treated sintered body (in the case described above, sintering and solutionization are carried out in one step) is then
Isothermal aging is performed at a temperature of 750" to 900°C for 15 minutes or more, and then cooled to a temperature of 650°C or less at a rate of 2 t,/mln to 10 C/win. Further, 500"
Slow cooling is performed continuously or stepwise from a temperature range of ~650°C to a temperature of 400°C or less at a cooling rate of 2°C/win or less.

本発明の永久磁石は、時計、電動モーター、計器、通信
機、コンピュータ一端末器、スピーカー、ビデオディス
ク、その他各種部品に広く利用することができる。
The permanent magnet of the present invention can be widely used in watches, electric motors, meters, communication devices, computer terminals, speakers, video discs, and various other parts.

寮施例1 所定組成となるように原料金属を配合・混合し、この混
合金属をアルf :/f!ス中で高周波加熱によル溶解
し、インプットを得た。仁のインゴットをスタンクンル
で粗粉砕し、さらにジェット2ルで平均粒径4μ@度に
微粉砕した。得られた微粉末を磁場中で圧縮成形し前述
の本発明の熱処理を以下の各組成について行な−)た。
Dormitory Example 1 Raw metals are blended and mixed to have a predetermined composition, and this mixed metal is made into Alf:/f! The input was obtained by melting the mixture in a bath using high-frequency heating. The kernel ingot was coarsely pulverized with a Stankunlu, and further finely pulverized with a jet 2l to an average particle size of 4 μm. The obtained fine powder was compression molded in a magnetic field, and the heat treatment of the present invention described above was carried out for each of the following compositions.

各供試材の保磁力曙C1残留磁束密度11r及びエネル
ギ積(81)□8をそれぞれの図面に示す。百分率I/
i特記しない限シ重量百分率である。
The coercive force Akebono C1 residual magnetic flux density 11r and energy product (81)□8 of each sample material are shown in each drawing. Percentage I/
i is a weight percentage unless otherwise specified.

(1)  71gCl、14%F・、2.4%Zr及び
19〜3l−11C・の組成−第1図 第1図により分かるように、エネルギ積(BH−〇及び
保磁力lH@は約26sにて最大になり、また2ないし
301Gのセリクム含有量の範囲で、良好な磁気特性、
特にエネルギ積”H>Wa&X及び保磁力1H−1が得
られる。
(1) Composition of 71gCl, 14%F・, 2.4%Zr and 19~3l-11C・Figure 1 As can be seen from Figure 1, the energy product (BH-〇 and coercive force lH@ , and in the range of Sericum content from 2 to 301G, good magnetic properties,
In particular, the energy product "H>Wa&X" and the coercive force 1H-1 are obtained.

(2)  261GC@、1411GFe、2.51G
Zr及び2〜10チCmの組成−第2図 第2図よシ3〜9%の銅含有量の範囲で良好なエネルギ
積(BH)!1m、x及び保磁力IHeが得られる。
(2) 261GC@, 1411GFe, 2.51G
Composition of Zr and 2 to 10 cm - Figure 2 Figure 2 Good energy product (BH) in the copper content range of 3 to 9%! 1 m, x and coercive force IHe are obtained.

なお、第2図のエネルギ積(BH)。□Oグラフは、従
来の析出硬化型永久磁石でれ特性値が低下するといわれ
ている銅含有量範囲にて極大のエネルギ積(BE )m
、工が得られていることが注目される。
In addition, the energy product (BH) in FIG. □The O graph shows the maximum energy product (BE) m in the copper content range where it is said that the wear characteristics of conventional precipitation hardening permanent magnets decrease.
It is noteworthy that the results obtained are as follows.

(3)  26SCe、7%Cu、’2.61sZr及
び6〜35−F・の組成−第3図 93図に見られるよ5がエネルdf覆(8H)、□及び
保磁力IHcの傾向よシ本発明で杜、鉄含有量を10な
いし30チの範囲とした。なお、第3図で、エネルギ積
(BH)ffla!及び保磁力の極大値は従来の析出硬
化型永久磁石ではこれらの値が低下している高い鉄含有
量にて得られている。
(3) Composition of 26SCe, 7% Cu, '2.61sZr and 6~35-F. - As seen in Figure 3, 5 shows the trend of energy df cover (8H), □ and coercive force IHc. In the present invention, the Du and Iron content is set in the range of 10 to 30 Ti. In addition, in FIG. 3, the energy product (BH) ffla! The maximum values of coercivity and coercive force are obtained at high iron contents, where these values are reduced in conventional precipitation hardening permanent magnets.

(4)26*C・、7.1チC11,141F−及び0
.5〜6%Zr−第4図 エネルギ積(aH)   、磁束密度Br及び保磁力m
&X lHeが極大となる約3%ジルコニウムを中心として1
〜5−のジルコニウム含有量を本発明の範囲とした。
(4) 26*C・, 7.1ch C11, 141F- and 0
.. 5-6% Zr - Figure 4 Energy product (aH), magnetic flux density Br and coercive force m
&X 1 centered on about 3% zirconium where lHe is maximum
The zirconium content of ~5- was defined as the range of the present invention.

実施例2 第1に示す組成の供試材を実施例1と同様の手順により
調製した。なお、磁場中圧縮成形体を1000〜115
0℃の温度で真空中1時間焼結・溶体化処理し、その談
アルプンガスにて室温まで急冷し、更に750〜900
℃の温度範囲で15分分間上*m時効を行表い、次に2
℃/分〜10℃/分の速度で600℃まで冷却、引き続
き1℃/分の冷却速度で300″Ctで徐冷した。この
ようにして得られた永久磁石の磁気特性を第1PK*す
・               64.下余白供試材
1〜3は希土類元素セリウムの例であシ、15、0 M
GO・以上のエネルギ積(B”III!及び40000
6以上の保磁力IHcを示している。
Example 2 A test material having the composition shown in the first example was prepared by the same procedure as in Example 1. In addition, the compression molded product in a magnetic field is 1000 to 115
Sintered and solution treated in vacuum for 1 hour at a temperature of 0℃, then rapidly cooled to room temperature with alponic gas, and further heated to 750~900℃.
Aging was performed for 15 minutes at a temperature range of °C, then 2 m
It was cooled to 600°C at a rate of 10°C/min to 10°C/min, and then slowly cooled to 300"Ct at a cooling rate of 1°C/min. The magnetic properties of the permanent magnet thus obtained were determined by the first PK*.・ 64. Lower margin test materials 1 to 3 are examples of rare earth element cerium, 15.0 M
Energy product of GO・(B”III! and 40000
It shows a coercive force IHc of 6 or more.

供試材4〜10はジルコニウムに加えてハフニウム、チ
タン、ニオブ、タンタル又はパナゾウムを添加し且り/
又はセリウムの一部をサマリヮムで置き換えたものであ
る・これらの供試材も良好な磁気特性を示して込る。
Sample materials 4 to 10 had hafnium, titanium, niobium, tantalum, or panazoum added in addition to zirconium and/
Or, some of the cerium was replaced with Samarimu.These test materials also show good magnetic properties.

実施例3 所定組成となるように原料金属を配合し、この混合金属
を実施例2と同様の方法で、溶解、粉砕。
Example 3 Raw metals were blended to have a predetermined composition, and the mixed metal was melted and pulverized in the same manner as in Example 2.

焼結、溶体化、熱処理を行ない第2表のような磁気特性
を得た。
After sintering, solution treatment, and heat treatment, the magnetic properties shown in Table 2 were obtained.

以下余白 第2表の供試材は、鉄の一部を同表中のマンfン、二、
ケル及びクロムで置換したものであり、歳好な磁気特性
を示している。
The test materials in Table 2 in the margin below are a portion of the iron listed in the same table.
It is substituted with Kel and chromium and shows good magnetic properties.

実施例4 走査型透過型電子顧黴鏡にエネルギ分散識X@分光形を
附設して本発明の組成範囲のCl−8EW−C(1−F
・系析出硬化截永久磁石における保磁力IHeの異なる
供試材の微細組織を観察し、zr過過剰管同定しその間
隔を測定した。観察面祉金属間化合物結晶の1面とした
。結果を第3表に示す。
Example 4 A scanning transmission type electronic mirror was equipped with an energy dispersion type
・We observed the microstructures of specimens with different coercive forces IHe in precipitation-hardened cut permanent magnets, identified ZR excess tubes, and measured their intervals. The observation surface was taken as one surface of the intermetallic compound crystal. The results are shown in Table 3.

第3表 上記第3表より、ジルコニウム過剰相の平均間隔(a)
が小さくなるとともに保磁力IHcが高くなる関係がd
とlHe0間にあることが分かる。十分に高い保磁力I
H1!が得られるように、本発明ではdを50001以
下、好1しくn2oooX以下とした。
Table 3 From Table 3 above, average spacing of zirconium-excess phase (a)
As d becomes smaller, the coercive force IHc increases.
It can be seen that it is between and lHe0. Sufficiently high coercive force I
H1! In the present invention, d is set to 50001 or less, preferably n2oooX or less so that the following can be obtained.

実施例5 実施例1と同様の手順により、本発明の組成の供試材を
調製する際に、26 To Cs、? To Cu 、
14チF−及び2.4%Zrの組成につき各段階の熱処
理条件を変化させ保磁力IHeを測定した。
Example 5 When preparing a test material having the composition of the present invention by the same procedure as in Example 1, 26 To Cs, ? To Cu,
The coercive force IHe was measured by changing the heat treatment conditions at each stage for compositions of 14% F- and 2.4% Zr.

(1)  等温時効温度(700,750,850゜9
00℃)及び時間−第5図 第5図より、等温時効温度が700℃では、最終的に処
理された供試材の保磁力IHeが低く以降の熱jiJI
I11を前述の如く行なってもジルコニウム過剰相は生
成されない。次に、岬温時効温度が750℃又は850
℃の場合は保磁力に二つのピークが発生するが、従来の
等温時効法では低温側のピークが処理温度として使用さ
れていた。本発明では高温側のピークを等温時効処理温
度として使用し、他の段階の適切な熱処理と相まってゾ
ル;ニウム過刹相を最終製品中に存在せしめる。
(1) Isothermal aging temperature (700, 750, 850°9
00℃) and time - Figure 5 From Figure 5, when the isothermal aging temperature is 700℃, the coercive force IHe of the final treated specimen is low and the subsequent heat jiJI
Even if I11 is carried out as described above, no zirconium-rich phase is produced. Next, the Cape temperature aging temperature is 750℃ or 850℃.
In the case of ℃, two peaks occur in the coercive force, but in the conventional isothermal aging method, the peak on the low temperature side was used as the processing temperature. In the present invention, the peak on the high temperature side is used as the isothermal aging treatment temperature, and in combination with appropriate heat treatments in other stages, the sol;nium pertemporal phase is caused to exist in the final product.

(2)850℃、100分の等温時効より0.1〜、 
 30度/分の冷却速度で600.650又は700C
との温度まで冷却する熱処理−第6図第6図に見られる
ように、尋温時効温度からの冷却降下温度及び速度条件
は600℃且つ5℃/分が最良であり、また650℃以
下の温度に2〜lO℃/分の冷却速度で冷却する条件に
より良好な保磁力IHeが得られることが分る。
(2) From isothermal aging at 850°C for 100 minutes,
600.650 or 700C at a cooling rate of 30 degrees/min
Heat treatment for cooling to a temperature of It can be seen that a good coercive force IHe can be obtained under the conditions of cooling at a cooling rate of 2 to 10° C./min.

(3)  450 、500 、600又は650℃か
ら300℃までO,1〜b −第7図 第7図に見られる熱処理が保磁力に及ぼす影響  。
(3) Effect of heat treatment on coercivity from 450, 500, 600 or 650°C to 300°C.

より、2℃/分以下の冷却速度及び500〜650℃の
温度範囲を本発明の時効処理温度範囲とする。
Therefore, the aging treatment temperature range of the present invention is a cooling rate of 2° C./min or less and a temperature range of 500 to 650° C.

実施例6 本発明による永久磁石の微細組織写真(結晶の鼻面)の
−例を第8図に示す。
Example 6 An example of a microstructure photograph (crystal nose surface) of a permanent magnet according to the present invention is shown in FIG.

ジルコニウム過剰相がC軸方向に直角にすなわち0面と
平行に多数存在している。上記微細組織にてジルコニウ
ム過剰相が存在していない部分のエネルギ分散Wlxi
s分光測定結果を第10図に示す。同図の実機はam(
CbCu)s、点線はSm2(CoF@Cu)17であ
ル、ジルコニウム過剰相が存在したいところからはジル
コニウムは検出されない。第11図にはジルコニウム過
剰相が存在する部分の微細組織を示し、Sm2(CoF
*Ca)17相及びSm2(CoF*C’uZr)ty
相が検出される。
A large number of zirconium-excess phases exist perpendicularly to the C-axis direction, that is, parallel to the 0-plane. Energy dispersion Wlxi in the part where the zirconium-excess phase does not exist in the above microstructure
The results of the s spectroscopic measurements are shown in FIG. The actual machine in the same figure is am (
CbCu)s, the dotted line is Sm2(CoF@Cu)17, and zirconium is not detected where a zirconium-excess phase is expected to exist. Figure 11 shows the microstructure of the part where the zirconium-excess phase exists.
*Ca)17 phase and Sm2(CoF*C'uZr)ty
phase is detected.

なお、比較のために1.51GZrを含有する8m 2
 (C’o Fs Cu ) 1 y型磁石を850℃
×10分間の等温時効処理を行ない、その他の熱処理は
本発明の条件範囲内にて処理をした供試材の電子顕微鏡
組織を第11図に示す。この組織では銅過剰相のセル構
造のみが存在しゾルコニウム過剰相は全くない。
For comparison, 8m2 containing 1.51GZr
(C'o Fs Cu) 1 Y type magnet at 850℃
FIG. 11 shows an electron microscope structure of a sample material subjected to isothermal aging treatment for 10 minutes and other heat treatments within the range of conditions of the present invention. In this structure, only the cell structure of the copper-rich phase exists, and there is no zolconium-rich phase at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図扛それぞれセリウム、銅、鉄及びジ
ルコニウムの含有量を変化させた場合の磁気特性を示す
グラフ、 第5図ないし第7図はそれぞれ等温時効処理、勢温時効
からの冷却及び時効処理の条件を変化させた場合の保磁
力の変化を示すグラフ、第8図は本発明の永久磁石の走
査型電子顕微鏡写真、 第9図及び第10図は永久磁石のセル構造内部及びジル
コニウム過剰相のエネルギ分散分光図、第11図は従来
の永久磁石の電子顕微鏡写真である。 特許出願人 東京電気化学工業株式会社 特許出願代理人 弁理士  育 木   朗 弁理±  7!l1II  和 之 弁理士  尉 井 卓 雄 弁理士  山 口 昭 之 第1回 Ce (wt @1.) 第2図 Cu (wt ”10) 第3図 第4図 第5図 等温時効時間 (MIN) 第6図 冷却速度(DEG/MIN ) 第7図 冷却速度(DEG/MIN) 固 粉 手続補正書(方式) 昭和57年3月を日 特許庁長官 島 1)春樹殿 1、事件の表示 昭和56年特許願 第164826号 2、発明の名称 永久磁石 3、補正をする者 事件との関係  特許出願人 名 称 (306)東京電気化学工業株式会社4、代理
人 & 補正命令の日付 6和57年2月23日(発送日) 6、補正の対象 明細書の「図面の簡単な説明」の欄 ?、  [正の内容 tl+  第20員、1行の「永久磁石の」の次にr金
属組織を表わすj會加入する。′ t2+  [20頁、第9行の「永久磁石の」の次にr
金属!ll織を表わす」を加入する。 なお、補正指令事項第2番目の「適正な図面」に関しま
しては、上記「図面の簡単な説明」の補正に伴い、その
不備は解消したものと思料致しますO
Figures 1 to 4 are graphs showing the magnetic properties when the contents of cerium, copper, iron, and zirconium are varied, respectively. Figures 5 to 7 are graphs showing isothermal aging treatment and cooling from hot aging, respectively. Figure 8 is a scanning electron micrograph of the permanent magnet of the present invention; Figures 9 and 10 are graphs showing the inside of the cell structure of the permanent magnet; The energy dispersion spectrogram of the zirconium-excess phase, FIG. 11, is an electron micrograph of a conventional permanent magnet. Patent applicant: Tokyo Denki Kagaku Kogyo Co., Ltd. Patent attorney: Akira Ikuki ± 7! l1II Kazuyuki, Patent Attorney, Takashi Yoshii, Patent Attorney, Akira Yamaguchi 1st Ce (wt @1.) Fig. 2 Cu (wt ”10) Fig. 3 Fig. 4 Fig. 5 Isothermal aging time (MIN) Fig. 6 Figure Cooling Rate (DEG/MIN) Figure 7 Cooling Rate (DEG/MIN) Solid Powder Procedure Amendment (Method) March 1980, Japan Patent Office Commissioner Shima 1) Haruki-dono 1, Indication of the Case 1988 Patent Application No. 164826 2, Name of the invention Permanent magnet 3, Relationship with the case of the person making the amendment Name of patent applicant (306) Tokyo Denki Kagaku Kogyo Co., Ltd. 4, Agent & Date of amendment order 6 February 23, 1957 Date (shipment date) 6. “Brief explanation of drawings” column of the specification subject to amendment? , [Positive content tl+ 20th member, after "of permanent magnet" in the 1st line, r joins the j group representing the metal structure. ′ t2+ [Page 20, line 9, after “permanent magnet”, r
metal! Add ``I represent the weave''. Regarding the second amendment directive, "appropriate drawings," we believe that the deficiencies have been resolved as a result of the amendment to the "brief explanation of the drawings" mentioned above.

Claims (1)

【特許請求の範囲】 16  重量百分率で、20ないし30%のセリウム、
3な′いし991の鋼、工ないし5チのジルコニウム及
び1071tnL30−の鉄を含有し、残部がコバルト
からなる希土類=パル)l主体とする余興間化合物を含
んでなる永久磁石において、該金属間化合物結晶の0面
に平行にジルコニウム過剰なる相が相互の間隔が500
01以下にて存在し、エネルギ積及び保磁力が高−こと
を特徴とする永久磁石。 2 前′記ゾルコニウムの他にハフニウム、チタン、バ
ナジウム、ニオブ及びタンタルからなる群の少なくとも
1種を合計で1ないし5−を含有することを特徴とする
請求の範囲111項記載の永久磁石。 3、前記セリウムの801以下をサマリウムで置換した
ことYt特徴とする請求の範II第1項又は第2項記載
の永久磁石。 4、前記鉄の80嘔以下をマンガレ、ニッケル及びクロ
ムからなる群め少なくとも1種で置換したことを特徴と
する特許請求“の範囲$1項ないし“s3項の込ずれか
に記載の永久磁石。
[Claims] 16. 20 to 30% cerium by weight percentage;
In a permanent magnet comprising an entertainment compound mainly containing a rare earth element (pal)l, which contains steel of 3 to 991, zirconium of 1 to 5, and iron of 1071tnL30, the balance being cobalt, the intermetallic The phase with excess zirconium parallel to the zero plane of the compound crystal has a mutual spacing of 500
01 or less, and has a high energy product and coercive force. 2. The permanent magnet according to claim 111, further comprising 1 to 5 in total of at least one member of the group consisting of hafnium, titanium, vanadium, niobium, and tantalum in addition to the zorconium. 3. The permanent magnet according to claim II, item 1 or 2, characterized in that 801 or less of the cerium is replaced with samarium. 4. A permanent magnet according to any one of claims $1 to s3, characterized in that less than 80% of the iron is replaced with at least one member of the group consisting of mangale, nickel, and chromium. .
JP56164826A 1981-10-15 1981-10-15 Permanent magnet Granted JPS5866305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164826A JPS5866305A (en) 1981-10-15 1981-10-15 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164826A JPS5866305A (en) 1981-10-15 1981-10-15 Permanent magnet

Publications (2)

Publication Number Publication Date
JPS5866305A true JPS5866305A (en) 1983-04-20
JPH0252413B2 JPH0252413B2 (en) 1990-11-13

Family

ID=15800648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164826A Granted JPS5866305A (en) 1981-10-15 1981-10-15 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS5866305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331517A2 (en) * 1988-03-04 1989-09-06 Shin-Etsu Chemical Co., Ltd. Method for manufacture of rare earth permanent magnet
JP2013072097A (en) * 2011-09-27 2013-04-22 Toshiba Corp Permanent magnet, method for producing the same, and motor and generator using the same
JP2014156656A (en) * 2014-03-14 2014-08-28 Toshiba Corp Permanent magnet and motor and power generator using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331517A2 (en) * 1988-03-04 1989-09-06 Shin-Etsu Chemical Co., Ltd. Method for manufacture of rare earth permanent magnet
JP2013072097A (en) * 2011-09-27 2013-04-22 Toshiba Corp Permanent magnet, method for producing the same, and motor and generator using the same
JP2014156656A (en) * 2014-03-14 2014-08-28 Toshiba Corp Permanent magnet and motor and power generator using the same

Also Published As

Publication number Publication date
JPH0252413B2 (en) 1990-11-13

Similar Documents

Publication Publication Date Title
US4171978A (en) Iron/chromium/cobalt-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
Menth et al. New high-performance permanent magnets based on rare earth-transition metal compounds
CN107004478B (en) Magnetic material, preparation method and the motor with magnetic material
JP4863377B2 (en) Samarium-iron permanent magnet material
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS62244105A (en) Rare earth magnet
JPS6017905A (en) Permanent magnet alloy powder
JPS5866305A (en) Permanent magnet
CN104867645B (en) A kind of nanocrystalline hot-pressed magnets of high-coercive force and preparation method thereof
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH1070023A (en) Permanent magnet and manufacture thereof
JPH01175705A (en) Manufacture of rare earth magnet
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPH03180450A (en) Fe, nd and b type alloy for use for permanent magnet, sintered permanent magnet and its manufacture
JPH06188113A (en) Manufacture of permanent magnet composed mainly of ndfeb
JPS608297B2 (en) magnet alloy
JP7021577B2 (en) Manufacturing method of RTB-based sintered magnet
JPH0146574B2 (en)
JPH01225101A (en) Rare earth permanent magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPS6180805A (en) Permanent magnet material
JP3672238B2 (en) Method for producing magnetostrictive material
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPS6053107B2 (en) Rare earth magnet manufacturing method