JPH0252413B2 - - Google Patents

Info

Publication number
JPH0252413B2
JPH0252413B2 JP56164826A JP16482681A JPH0252413B2 JP H0252413 B2 JPH0252413 B2 JP H0252413B2 JP 56164826 A JP56164826 A JP 56164826A JP 16482681 A JP16482681 A JP 16482681A JP H0252413 B2 JPH0252413 B2 JP H0252413B2
Authority
JP
Japan
Prior art keywords
zirconium
less
permanent magnet
intermetallic compound
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56164826A
Other languages
Japanese (ja)
Other versions
JPS5866305A (en
Inventor
Shinichi Yamashita
Mutsuo Ishikawa
Yoshio Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP56164826A priority Critical patent/JPS5866305A/en
Publication of JPS5866305A publication Critical patent/JPS5866305A/en
Publication of JPH0252413B2 publication Critical patent/JPH0252413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、垌土類コバルト磁石に関するもので
あり、さらに詳しく述べるならば、セリりム−コ
バルト金属間化合物を䞻䜓ずするCe−Co−Cu−
Fe系及びセリりム・サマリりム−コバルト金属
間化合物を䞻䜓ずするCe−Sm−Co−Cu−Feç³»
析出硬化型氞久磁石の改良に関するものである。 垌土類ずしおセリりムを䜿甚した析出硬化型垌
土類コバルト磁石は、埓来の高䟡なサマリりム及
びコバルトを倧量に䜿甚しおいるSmCo5系磁石
に比べ、資源、原料コストの面からも優䜍であ
り、工業的に泚目されおきたが、実甚的な点で磁
気特性が䞍十分であ぀た。䟋えば、1977幎月
「Applied Physics Letters」第30巻、No.12、第
669〜670頁の蚘茉、あるいは特公昭56−39375号
公報の蚘茉によるずCe−Co−Cu−Fe系の最倧゚
ネルギ積BHnaxは13MGOe残留磁束密床Brは
7kG皋床、䞔぀保磁力iHcは6100〜6900Oe皋床で
あり、たたその組成は銅以䞊䞔぀鉄12以䞋
を指向しおいたこずが分かる。さらに、セリりム
の䞀郚をサマリりムで眮換したCe−Sm−Co−
Cu−Fe系析出硬化型氞久磁石に぀いおは䟋えば
Proceeding of the Fourth International
Workshop on Rare earth Cobalt Permanent
Magnets1979幎の蚘茉によるず、CoCe
Sm0.5近傍で最倧゚ネルギ積BHnax
19MGOe及び保磁力iHc7000Oe皋床が埗られ、た
たその組成は、銅以䞊、鉄12以䞋を指向し
おいたこずが分かる。これらの析出硬化型磁石で
は、銅含有盞が埮现組織のセル構造を呈し、保磁
力を向䞊させるのであるから、保磁力維持の芳点
から比范的高い銅含有量を指向しおいるのであ
る。たた、鉄含有量も保磁力の芳点から䜎目を指
向しおいる。 本発明の目的ずするずころは、Ce−Co−Cu−
Fe系、及びCe−Sm−Co−Cu−Fe系氞久磁石が
埓来のものず比范しお、䜎い銅含有量の組成及び
高い鉄含有量の組成においおもなお高い保磁力を
維持するこずによ぀お、䜎Cu、高Fe組成の利点
である高い残留磁束密床の利点を掻甚し、以぀お
最倧゚ネルギ積及び保磁力の䞡磁気特性が優れお
おり、しかも垌土類元玠の䞻䜓を安䟡なセリりム
ずする氞久磁石を提䟛するこずにある。 本発明は、埓来の析出硬化型磁石の埮现組織に
みられるCu含有盞のセル構造の他に、セリりム
を必須成分ずする垌土類コバルト金属間化合物の
結晶の面に平行にゞルコニりム含有盞を析出さ
せお、銅含有盞のセル境界による磁壁のピンニン
グ効果のみならずゞルコニりム含有盞による磁壁
のピンニング効果を远加し、䜎い銅含有量、高い
鉄含有量に斌いおもなおか぀高い保磁力を維持
し、同時に高い最倧゚ネルギ積を可胜ならしめる
ものである。本発明者は鋭意研究の結果、䞊蚘金
属間化合物の結晶の面に平行なゞルコニりム含
有盞を析出させる䞀連の熱凊理を芋出し䞔぀ゞル
コニりム含有盞間の䞡間隔ず磁気特性の因果関係
を確蚌するこずにより本発明を完成したものであ
る。 すなわち、本発明は、重量癟分率で、20ないし
30のセリりム、ないしの銅、ないし
のゞルコニりム及び10ないし30の鉄を含有
し、残郚がコバルトからなり、垌土類コバルトを
䞻䜓ずする金属間化合物を含んでなる氞久磁石に
おいお、該金属間化合物の結晶の面に平行にゞ
ルコニりム含有盞が盞互の平均間隔が5000Å以䞋
にお存圚するこずを特城ずする。 本発明においおは、埓来のCe−Co−Cu−Feç³»
及びCe−Sm−Co−Cu−Fe系析出硬化型氞久磁
石には存圚しなか぀た、結晶の面ず実質的な意
味で平行に析出したゞルコニりム含有盞によ぀
お、前者の系では保磁力iHc4000Oe以䞊、奜たし
くは7000Oe以䞊、䞔぀最倧゚ネルギBHnax
15MGOe以䞊、奜たしくは16MGOe以䞊を、た
た埌者の系では、重量癟分率の含有量で、Sm
CeSmの比率が0.5の堎合に、
保磁力iHc12000Oe以䞊䞔぀最倧゚ネルギ積
BHnax23MGOe以䞊で代衚される高い保磁力及
び最倧゚ネルギ積を可胜にしたものである。而し
お、金属間化合物の結晶の面に平行なゞルコニ
りム含有盞の平均面間隔が5000Åを越えるず磁気
特性が埓来の䞊蚘析出硬化型氞久磁石ず倧差なく
なるので、5000Åを䞊限ずしお限定しおいる。こ
の奜たしい平均間隔は2000Å以䞋である。 本発明の氞久磁石においおセリりムの含有量が
20未満、銅含有量が未満ずなり、あるいは
鉄含有量が30を越えるず、保磁力及び最倧゚ネ
ルギ積が䜎䞋する。セリりム含有量が30を越
え、銅含有量がを越え、あるいは鉄含有量が
100未満であるず、残留磁束密床たたは枛磁曲
線の角型性が䜎䞋し、さらに最倧゚ネルギ積も䜎
䞋する。ゞルコニりムの含有量が未満である
ず、埌述する本発明の熱凊理を行な぀おもゞルコ
ニりム含有盞の平均間隔が5000Åを越えその効果
が期埅されず、䞀方を越えるず残留磁束密床
及び最倧゚ネルギ積が䜎䞋する。䞊蚘組成におい
お、セリりム28未満、たた高い磁束密床をもた
らす鉄12以䞊が特に奜たしい。 本発明においおは、ゞルコニりムの他にハフニ
りム、チタン、バナゞりム、ニオブ及びタンタル
の少なくずも皮をゞルコニりムずの合蚈量で
を越え以䞋䜆しゞルコニりムの䞋限
添加しおも、ゞルコニりム単独添加の堎合ず
同様の効果を生じる。 たた、ハフニりム、チタン、バナゞりム、ニオ
ブ及びタンタル単独添加の堎合もゞルコニりムの
堎合ず同様に各元玠を含有する盞が析出し、同様
な効果が期埅できる。 たた、セリりムの80以䞋を含たずをサ
マリりムで眮換するこず、すなわちSm
SmCe≊80の関係でサマリ
りムを圓該氞久磁石に加えるこず、も可胜であ
る。䞊蚘比率が80を越えるず、高䟡なサマリり
ムが倚くなり、資源、原料コストの面からの工業
的䟡倀が䜎䞋する。さらに鉄の䞀郚を80を
含たず以䞋のマンガン、ニツケル及びクロムの
䞀皮以䞊で眮換しおも、同様な効果が埗られる。
眮換量が80を越えるず残留磁束密床が䜎䞋し、
最倧゚ネルギ積も䜎䞋する。 本発明の析出硬化型氞久磁石は埓来のCe−Co
−Cu−Fe系、又はCe−Sm−Co−Cu−Fe系ず比
范しお、磁束の可逆枩床倉化及び䞍可逆枛磁等の
枩床特性を著しく改善されおいる。 本発明によるCe−Co−Cu−Fe系及びCe−Sm
−Co−Cu−Fe系析出硬化型氞久磁石の補造方法
は以䞋の通りである。たず、原料金属を所望の比
率に配合し、真空䞭又は非酞化性雰囲気䞭で高呚
波溶解を行ない合金化する。この時、ゞルコニり
ム等の添加金属はプロアロむの状態で甚いおも
䜕等差し支えない。さらに溶解は他の方法、䟋え
ば抵抗加熱炉、赀倖線むメヌゞ炉、アヌク溶解炉
等によ぀おもよい。所定組成のむンゎツトは、ス
タンプミル、ゞペヌクラシダヌ等で粗粉砕を行な
い合金粉末にする。ここたでの過皋で、還元拡散
法等の凊理で合金粉末を埗おも差し支えない。埗
られた合金粉末は、さらに、ゞ゚ツトミル、アト
ラむタヌ、ボヌルミル等で玄〜6Όのサむズの
粒子に埮粉砕する。その埌、埮粉末はダむプレ
ス、静氎圧プレス等で所望の圢状に磁堎䞭で圧瞮
成圢する。以䞊の工皋は埓来の氞久磁石補造方法
ず特に盞違しおいない。 以䞋、ゞルコニりム含有盞を析出させる熱凊理
を行う。成圢䜓は真空䞭、非酞化雰囲気䞭、又は
還元雰囲気䞭等で1000℃〜1150℃の枩床で焌結ず
同時に溶䜓化凊理を行ない、次に950℃以䞋の枩
床䟋えば宀枩たでに急冷する。溶䜓化凊理された
焌結䜓䞊述の堎合は焌結ず溶䜓化が䞀段階の操
䜜で行なわれるを、その埌、750℃〜900℃の枩
床で15分間以䞊等枩時効を行ない、次に℃分
〜10℃分の速床で650℃以䞋の枩床たで冷华す
る。さらに500℃〜650℃の枩床範囲から℃分
以䞋の冷华速床で400℃以䞋の枩床たで連続的に
たたは段階的に埐冷する。 本発明の氞久磁石は、時蚈、電動モヌタヌ、蚈
噚、通信機、コンピナヌタヌ端末噚、スピヌカ
ヌ、ビデオデむスク、その他各皮郚品に広く利甚
するこずができる。 実斜䟋  所定組成ずなるように原料金属を配合・混合
し、この混合金属をアルゎンガス䞭で高呚波加熱
により溶解し、むンゎツトを埗た。このむンゎツ
トをスタンプミルで粗粉砕し、さらにゞ゚ツトミ
ルで平均粒埄4Ό皋床に埮粉砕した。埗られた埮
粉末に順次、磁堎䞭で圧瞮圢成し、磁堎䞭圧瞮圢
成䜓を1000〜1150℃の枩床で真空䞭時間焌結・
容䜓化凊理し、その埌アルゎンガスにお宀枩たで
急冷し、曎に750〜900℃の枩床範囲で15分間以䞊
等枩時効を行ない、次に℃分〜10℃分の速
床で600℃たで冷华し、匕き続き℃分の冷华
速床で300℃たで埐冷する凊理を斜した。各䟛詊
材の保磁力、残留磁束密床及び最倧゚ネルギ積を
それぞれの図面に瀺す。以䞋に瀺す、䟛詊材粉末
の癟分率は重量癟分率である。 (1) Cu、14Fe、2.4Zr及び19〜31Ceの
組成−第図 第図により分かるように、最倧゚ネルギ積
BHnax及び保磁力iHcはCeが玄26にお最倧
になり、たた20ないし30のセリりム含有量の
範囲で、良奜な磁気特性、特に、良奜な最倧゚
ネルギ積BHnax及び保磁力iHcが埗られる。 (2) 26Ce、14Fe、2.5Zr及び〜10Cuの
組成−第図 第図より〜の銅含有量の範囲で良奜
な最倧゚ネルギ積BHnax及び保磁力iHcが
埗られるこずが分かる。なお、第図の最倧゚
ネルギ積BHnaxのグラフは、埓来の析出硬
化型氞久磁石では特性倀が䜎䞋するずいわれお
いる銅含有量範囲内で最倧゚ネルギ積BHn
が極倧にな぀おおり、ゞルコニりム含有盞の
顕著な圱響があるこずが泚目される。 (3) 26Ce、Cu、2.6Zr及び〜35Feの
組成−第図 第図に芋られるような最倧゚ネルギ積
BHnax及び保磁力iHcの傟向より本発明で
は、鉄含有量を10ないし30の範囲ずした。な
お、第図で、最倧゚ネルギ積BHnax及び
保磁力iHcの極倧倀は、埓来の析出硬化型氞久
磁石ではこれらの倀が䜎䞋しおいる高い鉄含有
量にお埗られおいるこずも泚目される。 (4) 26Ce、7.1Cu、14Fe及び0.5〜Zr
−第図 最倧゚ネルギ積BHnax、残留磁束密床Br
及び保磁力iHcが極倧ずなる玄ゞルコニり
ムを䞭心ずしお〜のゞルコニりム含有量
を本発明の範囲ずした。 実斜䟋  第衚に瀺す組成の䟛詊材を実斜䟋ず同様の
手順により調補した。䜆し、焌結及び熱凊理条件
に぀いおは、実斜䟋ず同䞀条件ずした。このよ
うにしお埗られた氞久磁石の磁気特性を第衚に
瀺す。
The present invention relates to rare earth cobalt magnets, and more specifically, the present invention relates to rare earth cobalt magnets, and more specifically, the present invention relates to rare earth cobalt magnets.
This invention relates to the improvement of Ce-Sm-Co-Cu-Fe precipitation-hardening permanent magnets, which are mainly composed of Fe-based and cerium-samarium-cobalt intermetallic compounds. Precipitation hardening rare earth cobalt magnets that use cerium as the rare earth element are superior in terms of resources and raw material costs compared to conventional SmCo 5 magnets that use large amounts of expensive samarium and cobalt, and are industrially viable. Although it has been attracting attention, its magnetic properties have been insufficient from a practical point of view. For example, June 1977 "Applied Physics Letters" Volume 30, No. 12, No.
According to the description on pages 669 to 670 or the description in Japanese Patent Publication No. 56-39375, the maximum energy product (BH) of the Ce-Co-Cu-Fe system nax is 13MGOe the residual magnetic flux density B r is
It can be seen that the coercive force iHc was about 7 kG and about 6100 to 6900 Oe, and the composition was oriented to 9% or more copper and 12% or less iron. Furthermore, Ce−Sm−Co− in which part of cerium was replaced with samarium
For example, regarding Cu-Fe precipitation hardening permanent magnets,
Proceeding of the Fourth International
Workshop on Rare earth Cobalt Permanent
According to Magnets (1979 5#), Co/Ce
Maximum energy product (BH) near +Sm=0.5 nax
It can be seen that 19 MGOe and coercive force iHc of about 7000 Oe were obtained, and the composition was oriented to 9% or more copper and 12% or less iron. In these precipitation hardening type magnets, the copper-containing phase exhibits a fine cell structure and improves the coercive force, so a relatively high copper content is desired from the viewpoint of maintaining the coercive force. In addition, the iron content is also low from the viewpoint of coercive force. The object of the present invention is to
Compared to conventional magnets, Fe-based and Ce-Sm-Co-Cu-Fe-based permanent magnets maintain high coercive force even in compositions with low copper content and high iron content. By taking advantage of the high residual magnetic flux density, which is an advantage of a low Cu and high Fe composition, it has excellent magnetic properties of both maximum energy product and coercive force, and also uses inexpensive cerium as the main rare earth element. Our goal is to provide permanent magnets. In addition to the cell structure of the Cu-containing phase seen in the microstructure of conventional precipitation-hardened magnets, the present invention precipitates a zirconium-containing phase parallel to the c-plane of the crystal of a rare earth cobalt intermetallic compound containing cerium as an essential component. In addition to the domain wall pinning effect due to the cell boundaries of the copper-containing phase, the domain wall pinning effect due to the zirconium-containing phase is added, and a high coercive force is maintained even at low copper content and high iron content. At the same time, a high maximum energy product is possible. As a result of intensive research, the present inventor discovered a series of heat treatments that precipitate zirconium-containing phases parallel to the c-plane of the crystals of the intermetallic compound, and confirmed the causal relationship between the spacing between the zirconium-containing phases and magnetic properties. This completes the present invention. That is, the present invention has a weight percentage of 20 to 20%.
30% cerium, 3 to 9% copper, 1 to 5
% zirconium and 10 to 30% iron, the balance being cobalt, and a permanent magnet comprising an intermetallic compound mainly composed of rare earth cobalt, in which zirconium is parallel to the c-plane of the crystal of the intermetallic compound. It is characterized in that the contained phases exist with an average spacing of 5000 Å or less. In the present invention, the magnetic field is parallel to the c-plane of the crystal, which did not exist in conventional Ce-Co-Cu-Fe system and Ce-Sm-Co-Cu-Fe system precipitation hardening permanent magnets. Due to the precipitated zirconium-containing phase, in the former system, the coercive force iHc is 4000 Oe or more, preferably 7000 Oe or more, and the maximum energy (BH) nax
Sm
When the ratio of (%)/Ce (%) + Sm (%) is 0.5,
This enables a high coercive force and maximum energy product represented by a coercive force iHc of 12000 Oe or more and a maximum energy product (BH) of nax 23 MGOe or more. However, if the average interplanar spacing of the zirconium-containing phase parallel to the c-plane of the crystal of the intermetallic compound exceeds 5000 Å, the magnetic properties will not be much different from those of the conventional precipitation hardening type permanent magnet, so 5000 Å is the upper limit. There is. This preferred average spacing is 2000 Å or less. In the permanent magnet of the present invention, the cerium content is
When the copper content is less than 20%, the copper content is less than 3%, or the iron content is more than 30%, the coercive force and the maximum energy product decrease. The cerium content exceeds 30%, the copper content exceeds 9%, or the iron content
If it is less than 100%, the residual magnetic flux density or the squareness of the demagnetization curve will decrease, and the maximum energy product will also decrease. If the zirconium content is less than 1%, the average spacing of the zirconium-containing phase will exceed 5000 Å even if the heat treatment of the present invention described below is performed, and no effect can be expected. On the other hand, if the zirconium content exceeds 5%, the residual magnetic flux density and Maximum energy product decreases. In the above composition, less than 28% cerium and 12% or more iron, which provides a high magnetic flux density, are particularly preferred. In the present invention, in addition to zirconium, at least one of hafnium, titanium, vanadium, niobium, and tantalum is added in a total amount of 1
% but not more than 5% (however, the lower limit of zirconium is 1
%), the same effect as when adding zirconium alone is produced. Further, when hafnium, titanium, vanadium, niobium, and tantalum are added alone, phases containing each element precipitate as in the case of zirconium, and the same effect can be expected. In addition, replacing 80% or less of cerium (not including 0) with samarium, that is, 0<Sm
It is also possible to add samarium to the permanent magnet in the relationship of (%)/Sm (%) + Ce (%)≩80%. When the above ratio exceeds 80%, expensive samarium increases, and the industrial value in terms of resources and raw material costs decreases. Furthermore, the same effect can be obtained even if part of the iron is replaced with 80% or less (not including zero) of one or more of manganese, nickel, and chromium.
When the amount of substitution exceeds 80%, the residual magnetic flux density decreases,
The maximum energy product also decreases. The precipitation hardening type permanent magnet of the present invention is a conventional Ce-Co permanent magnet.
- Compared to the Cu-Fe system or the Ce-Sm-Co-Cu-Fe system, temperature characteristics such as reversible temperature change in magnetic flux and irreversible demagnetization are significantly improved. Ce-Co-Cu-Fe system and Ce-Sm according to the present invention
The method for manufacturing the -Co-Cu-Fe precipitation hardening permanent magnet is as follows. First, raw metals are mixed in a desired ratio and alloyed by high-frequency melting in vacuum or in a non-oxidizing atmosphere. At this time, there is no problem in using the additive metal such as zirconium in the form of a ferroalloy. Furthermore, the melting may be performed by other methods, such as a resistance heating furnace, an infrared imaging furnace, an arc melting furnace, and the like. An ingot having a predetermined composition is coarsely pulverized using a stamp mill, a geocrusher, etc. to form an alloy powder. In the process up to this point, alloy powder may be obtained by a process such as a reduction diffusion method. The obtained alloy powder is further pulverized into particles having a size of about 3 to 6 Όm using a jet mill, an attritor, a ball mill, or the like. Thereafter, the fine powder is compression molded into a desired shape using a die press, isostatic press, etc. in a magnetic field. The above steps are not particularly different from conventional permanent magnet manufacturing methods. Hereinafter, a heat treatment is performed to precipitate a zirconium-containing phase. The molded body is sintered and simultaneously subjected to solution treatment at a temperature of 1000° C. to 1150° C. in a vacuum, a non-oxidizing atmosphere, or a reducing atmosphere, etc., and then rapidly cooled to a temperature of 950° C. or lower, for example, to room temperature. The solution-treated sintered body (in the case described above, sintering and solutioning are carried out in one step) is then subjected to isothermal aging at a temperature of 750°C to 900°C for at least 15 minutes, and then Cool to a temperature below 650°C at a rate of 10°C/min to 10°C/min. Further, it is slowly or gradually cooled from a temperature range of 500°C to 650°C to a temperature of 400°C or less at a cooling rate of 2°C/min or less. The permanent magnet of the present invention can be widely used in watches, electric motors, meters, communication devices, computer terminals, speakers, video disks, and various other parts. Example 1 Raw metals were blended and mixed to have a predetermined composition, and this mixed metal was melted by high frequency heating in argon gas to obtain an ingot. This ingot was coarsely ground with a stamp mill, and further finely ground with a jet mill to an average particle size of about 4 Όm. The obtained fine powder was sequentially compressed in a magnetic field, and the compacted body in the magnetic field was sintered in vacuum at a temperature of 1000 to 1150°C for 1 hour.
Container treatment, then quenching to room temperature with argon gas, further isothermal aging in the temperature range of 750 to 900°C for 15 minutes or more, and then cooling to 600°C at a rate of 2°C/min to 10°C/min. Then, the sample was gradually cooled down to 300°C at a cooling rate of 1°C/min. The coercive force, residual magnetic flux density, and maximum energy product of each sample material are shown in each drawing. The percentages of the sample material powder shown below are weight percentages. (1) Composition of 7% Cu, 14% Fe, 2.4% Zr and 19-31% Ce - Figure 1 As shown in Figure 1, the maximum energy product (BH) nax and coercive force iHc are approximately 26 %, and in the range of 20 to 30% cerium content good magnetic properties, in particular good maximum energy product (BH) nax and coercive force iHc, are obtained. (2) Composition of 26% Ce, 14% Fe, 2.5% Zr and 2 to 10% Cu - Figure 2 From Figure 2, good maximum energy product (BH) nax in the range of 3 to 9% copper content. It can be seen that the coercive force iHc is obtained. The graph of maximum energy product (BH) nax in Figure 2 shows that the maximum energy product (BH) n
It is noted that ax is at a maximum and there is a significant influence of the zirconium-containing phase. (3) Composition of 26% Ce, 7% Cu, 2.6% Zr and 6-35% Fe - Figure 3 Based on the trends of maximum energy product (BH) nax and coercive force iHc as seen in Figure 3, the present invention In this case, the iron content was set in the range of 10 to 30%. In addition, in Figure 3, the maximum values of the maximum energy product (BH) nax and coercive force iHc are obtained at high iron contents, where these values decrease in conventional precipitation hardening permanent magnets. is also attracting attention. (4) 26%Ce, 7.1%Cu, 14%Fe and 0.5~6%Zr
-Figure 4 Maximum energy product (BH) nax , residual magnetic flux density B r
The range of the present invention is a zirconium content of 1 to 5%, centering on about 3% zirconium at which the coercive force iHc becomes maximum. Example 2 Test materials having the compositions shown in Table 1 were prepared in the same manner as in Example 1. However, the sintering and heat treatment conditions were the same as in Example 1. The magnetic properties of the permanent magnet thus obtained are shown in Table 1.

【衚】 䟛詊材〜はCe−Zr系の䟋であり、
15.0MGOe以䞊の最倧゚ネルギ積BHnax及び
4000Oe以䞊の保磁力iHcを瀺しおいる。 䟛詊材〜はCe−Zr䞀郚眮換系の䟋であ
り、䟛詊材〜10はCe䞀郚Smで眮換−Zr䞀
郚眮換系の䟋である。これらの䟛詊材〜10は
䟛詊材〜ず同等以䞊の磁気特性を瀺しおい
る。䟛詊材11〜14はSmのCe眮換量を倚くした堎
合の磁気特性向䞊を瀺しおいる。 実斜䟋  所定組成ずなるように原料金属を配合し、この
混合金属を実斜䟋ず同様の方法で、溶解、粉
砕、焌結、溶䜓化、熱凊理を行ない第衚のよう
な磁気特性を埗た。
[Table] Sample materials 1 to 3 are examples of Ce-Zr type.
Maximum energy product (BH) nax and over 15.0MGOe
It shows a coercive force iHc of 4000Oe or more. Sample materials 4 to 7 are examples of the Ce-Zr (partially substituted) system, and test materials 8 to 10 are examples of the Ce (partially substituted with Sm)-Zr (partially substituted) system. These specimens 4 to 10 exhibit magnetic properties equal to or higher than those of specimens 1 to 3. Sample materials 11 to 14 show improvement in magnetic properties when the amount of Ce substituted for Sm is increased. Example 3 Raw metals were mixed to have a predetermined composition, and this mixed metal was melted, crushed, sintered, solutionized, and heat treated in the same manner as in Example 2 to obtain magnetic properties as shown in Table 2. Obtained.

【衚】 第衚の䟛詊材は、鉄の䞀郚を同衚に瀺すマン
ガン、ニツケル及びクロムで眮換したものであ
り、良奜な磁気特性を瀺しおいる。 実斜䟋  走査型透過型電子顕埮鏡に゚ネルギ分散型線
分光蚈を附蚭しお本発明の範囲内の組成を有し、
保磁力iHcが異なるCe−Sm−Co−Fe系析出硬化
型氞久磁石䟛詊材の埮现組織を芳察し、Zr含有
盞を同定しその間隔を枬定した。芳察面は金属間
化合物の結晶の面ずした。なお、熱凊理条件は
実斜䟋ず同様であるが、等枩時効枩床を850℃
ずしお、等枩時効時間を最短分、最長1000分の
間で倉化させるこずによ぀お、保磁力iHcを換え
た。結果を第衚に瀺す。
[Table] The test materials in Table 2 have some of the iron replaced with manganese, nickel, and chromium shown in the table, and exhibit good magnetic properties. Example 4 An energy dispersive X-ray spectrometer was attached to a scanning transmission electron microscope, and the composition was within the scope of the present invention.
The microstructures of Ce-Sm-Co-Fe precipitation-hardened permanent magnet specimens with different coercive forces iHc were observed, Zr-containing phases were identified, and their spacing was measured. The observation plane was the a-plane of the intermetallic compound crystal. The heat treatment conditions were the same as in Example 1, but the isothermal aging temperature was changed to 850°C.
The coercive force iHc was changed by changing the isothermal aging time from a minimum of 3 minutes to a maximum of 1000 minutes. The results are shown in Table 3.

【衚】 第衚より、ゞルコニりム含有盞の平均間隔
が小さくなるずずもに保磁力iHcが高くなる関係
があるこずが分かる。よ぀お、本発明では十分に
高い保磁力が埗られるようにゞルコニりム含有盞
の平均間隔を5000Å以䞋、奜たしくは2000Å以
䞋、ずした。 実斜䟋  実斜䟋ず同様の手順により、本発明の組成
26Ce、Cu、14Fe及び2.4Zrの䟛詊
材を調補する際に、各段階の熱凊理条件を倉化さ
せ保磁力iHcを枬定した。 (1) 等枩時効枩床700750850900℃及び
時間−第図 第図より、等枩時効枩床が700℃では、最
終的に凊理された䟛詊材の保磁力iHcが䜎く、
以降の熱凊理を前述の劂く行な぀おもゞルコニ
りム含有盞は生成されない。次に、等枩時効枩
床が750℃又は850℃の堎合は保磁力に二぀のピ
ヌクが発生する。埓来の等枩時効法では短時間
偎のピヌクが等枩時効凊理時間ずしお䜿甚され
おいた。本発明では長時間偎のピヌクを等枩時
効凊理時間ずしお䜿甚し、他の段階の適切な熱
凊理ず盞た぀おゞルコニりム含有盞を最終補品
䞭に存圚せしめる。 (2) 850℃、100分の等枩時効凊理埌0.1〜30分
℃分の冷华速床で600650又は700℃の枩床
たで冷华する熱凊理−第図 第図に芋られるように、等枩時効凊理枩床
からの冷华降䞋枩床及び速床はそれぞれ600℃
䞔぀℃分が最良であり、たた650℃に〜
10℃分の冷华速床で冷华しおも良奜な保磁力
iHcが埗られるこずが分る。 (3) 450500600又は650℃から300℃たで0.1〜
30℃分で冷华する熱凊理−第図 第図に芋られる、熱凊理が保磁力iHcに及
がす圱響より、℃分以䞋の冷华速床及びこ
の冷华速床を適甚する枩床範囲ずしお500〜650
℃で良奜な保磁力iHcが埗られる。 実斜䟋  本発明による氞久磁石の埮现組織写真結晶の
面の䞀䟋を第図に瀺す。 ゞルコニりム含有盞が軞方向に盎角にすなわ
ち面ず平行に倚数存圚しおいる。ゞルコニりム
含有盞の間にあるセル構造内郚の゚ネルギ分散型
線分光枬定を行な぀た結果を第図に瀺す。同
図の実線はCoCu5、点線はR2CoFeCu17で
ある。第図に瀺すように、ゞルコニりム含有盞
が存圚しない郚分ではゞルコニりムは怜出され
ず、たた皮の結晶が存圚しおいる。ゞルコニり
ム含有盞が存圚する郚分からは第図に瀺すよ
うに、R2CoFeCu17盞実線及びR2
CoFeCuZr17盞点線が怜出されるなお
は垌土類元玠を瀺す。よ぀お、ZrはR2Co17盾侭
にCuずずもに含有されおいるこずが分か぀た。
なおR2CoFeCu17盞はR2CoFeCuZr17盞ず別
個に線分光では怜出されるが電子顕埮鏡第
図では䞡盞は区別しお怜出されない。 比范のために1.5Zrを含有するSm2
CoFeCu17型磁石を850℃×10分間の等枩時効凊
理第図に瀺したように第のピヌク近傍の条
件を行ない、その他の熱凊理は本発明の䞊述の
条件範囲内にお凊理をした䟛詊材の電子顕埮鏡組
織を第図に瀺す。この組織では銅含有盞のセ
ル構造のみが存圚しゞルコニりム含有盞は怜出さ
れない。
[Table] From Table 3, the average spacing d of zirconium-containing phases
It can be seen that there is a relationship in which as the coercive force iHc becomes smaller, the coercive force iHc becomes higher. Therefore, in the present invention, the average spacing d of the zirconium-containing phase is set to 5000 Å or less, preferably 2000 Å or less, in order to obtain a sufficiently high coercive force. Example 5 When preparing a test material with the composition of the present invention (26% Ce, 7% Cu, 14% Fe, and 2.4% Zr) using the same procedure as in Example 1, the heat treatment conditions at each stage were changed. The coercive force iHc was measured. (1) Isothermal aging temperature (700, 750, 850, 900℃) and time - Figure 5 From Figure 5, when the isothermal aging temperature is 700℃, the coercive force iHc of the final treated specimen is low. ,
Even if the subsequent heat treatment is performed as described above, no zirconium-containing phase is produced. Next, when the isothermal aging temperature is 750°C or 850°C, two peaks occur in the coercive force. In the conventional isothermal aging method, the peak on the short time side was used as the isothermal aging treatment time. In the present invention, the longer peak is used as the isothermal aging treatment time, and in conjunction with other appropriate heat treatments, the zirconium-containing phase is present in the final product. (2) Heat treatment at 850℃ for 100 minutes followed by cooling to a temperature of 600, 650 or 700℃ at a cooling rate of 0.1 to 30 minutes℃/minute - Figure 6 As seen in Figure 6, isothermal aging treatment The cooling drop temperature and speed from the aging treatment temperature are each 600℃
And 5℃/min is the best, and 2~650℃
Good coercive force even when cooled at a cooling rate of 10℃/min
It can be seen that iHc can be obtained. (3) 0.1~ from 450, 500, 600 or 650℃ to 300℃
Heat treatment with cooling at 30℃/min - Figure 7 From the effect of heat treatment on the coercive force iHc shown in Figure 7, the cooling rate of 2℃/min or less and the temperature range to which this cooling rate is applied are 500 to 650.
A good coercive force iHc can be obtained at ℃. Example 6 An example of a microstructure photograph (crystal a-plane) of a permanent magnet according to the present invention is shown in FIG. A large number of zirconium-containing phases exist perpendicularly to the c-axis direction, that is, parallel to the c-plane. FIG. 9 shows the results of energy dispersive X-ray spectroscopy measurements inside the cell structure between the zirconium-containing phases. The solid line in the figure is R(CoCu) 5 and the dotted line is R 2 (CoFeCu) 17 . As shown in FIG. 9, zirconium is not detected in areas where no zirconium-containing phase exists, and two types of crystals are present. As shown in Figure 10, from the part where the zirconium-containing phase exists, R 2 (CoFeCu) 17 phase (solid line) and R 2
(CoFeCuZr) 17 phases (dotted line) are detected (note that R
indicates a rare earth element). Therefore, it was found that Zr was contained together with Cu in the R 2 Co 17 phase.
Note that the R 2 (CoFeCu) 17 phase is detected separately from the R 2 (CoFeCuZr) 17 phase in X-ray spectroscopy, but
In Figure), both phases are not detected separately. Sm2 containing 1.5% Zr for comparison
(CoFeCu) A 17 -type magnet was subjected to isothermal aging treatment at 850°C for 10 minutes (conditions near the first peak as shown in Figure 5), and other heat treatments were performed within the above-mentioned condition range of the present invention. FIG. 11 shows the electron microscope structure of the treated sample material. In this structure, only the cell structure of the copper-containing phase exists, and no zirconium-containing phase is detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第図ないし第図はそれぞれセリりム、銅、
鉄及びゞルコニりムの含有量を倉化させた堎合の
磁気特性を瀺すグラフ、第図ないし第図はそ
れぞれ等枩時効凊理、等枩時効からの冷华及び時
効凊理の条件を倉化させた堎合の保磁力iHcの倉
化を瀺すグラフ、第図は本発明の氞久磁石の金
属組織を衚わす走査型電子顕埮鏡写真、第図及
び第図は氞久磁石のセル構造内郚及びゞルコ
ニりム含有盞の゚ネルギ分散分光図、第図は
埓来の氞久磁石の金属組織を衚わす電子顕埮鏡写
真である。
Figures 1 to 4 show cerium, copper,
Graphs showing the magnetic properties when the iron and zirconium contents are changed. Figures 5 to 7 show the coercive force iHc when the conditions of isothermal aging treatment, cooling from isothermal aging, and aging treatment are changed, respectively. FIG. 8 is a scanning electron micrograph showing the metal structure of the permanent magnet of the present invention; FIGS. 9 and 10 are energy dispersion spectrograms of the inside of the cell structure of the permanent magnet and the zirconium-containing phase; FIG. 11 is an electron micrograph showing the metal structure of a conventional permanent magnet.

Claims (1)

【特蚱請求の範囲】  重量癟分率で、20ないし30のセリりム、
ないしの銅、ないしのゞルコニりム及
び10ないし30の鉄を含有し、残郚がコバルトか
らなり、垌土類コバルトを䞻䜓ずする金属間化合
物を含んでなる氞久磁石においお、該金属間化合
物の結晶の面に平行にゞルコニりム含有盞が盞
互の平均間隔が5000Å以䞋にお存圚するこずを特
城ずする氞久磁石。  重量癟分率で、20ないし30のセリりム、
ないしの銅、を越え以䞋のハフニり
ム、チタン、バナゞりム、ニオブ及びタンタルか
らなる矀の少なくずも皮の金属ずゞルコニりム
䜆し、ゞルコニりムは以䞊未満存圚す
る、及び10ないし30の鉄を含有し、残郚がコ
バルトからなり、垌土類コバルトを䞻䜓ずする金
属間化合物を含んでなる氞久磁石においお、該金
属間化合物の結晶の面に平行にゞルコニりムお
よび前蚘少なくずも皮の金属を含有する盞が盞
互の平均間隔が5000Å以䞋にお存圚するこずを特
城ずする氞久磁石。  重量癟分率で、20ないし30のセリりム、及
びサマリりム䜆しセリりムずサマリりムの合蚈
重量の80以䞋を含たずサマリりムが存圚
する、ないしの銅、ないしのゞル
コニりム及び10ないし30の鉄を含有し、残郚が
コバルトからなり、垌土類コバルトを䞻䜓ずする
金属間化合物を含んでなる氞久磁石においお、該
金属間化合物の結晶の面に平行にゞルコニりム
含有盞が盞互の平均間隔が5000Å以䞋にお存圚す
るこずを特城ずする氞久磁石。  重量癟分率で、20ないし30のセリりム、及
びサマリりム䜆しセリりムずサマリりムの合蚈
重量の80以䞋を含たずサマリりムが存圚
する、ないしの銅、を越え以䞋
のハフニりム、チタン、バナゞりム、ニオブ及び
タンタルからなる矀の少なくずも皮の金属ずゞ
ルコニりム䜆し、ゞルコニりムは以䞊
未満存圚する、及び10ないし30の鉄を含有し、
残郚がコバルトからなり、垌土類コバルトを䞻䜓
ずする金属間化合物を含んでなる氞久磁石におい
お、該金属間化合物の結晶の面に平行にゞルコ
ニりム及び前蚘少なくずも皮の金属を含有する
盞が盞互の平均間隔が5000Å以䞋にお存圚するこ
ずを特城ずする氞久磁石。  重量癟分率で、20ないし30のセリりム、
ないしの銅、ないしのゞルコニりム、
及び10ないし30のマンガン、ニツケル及びクロ
ムからなる矀の少なくずも皮の金属ず鉄䜆し
鉄ず該少なくずも皮の金属の合蚈重量の80以
䞋を含たず該少なくずも皮の金属が存圚
するを含有し、残郚がコバルトからなり、垌土
類コバルトを䞻䜓ずする金属間化合物を含んでな
る氞久磁石においお、該金属間化合物結晶の面
に平行にゞルコニりム含有盞が盞互の平均間隔が
5000Å以䞋にお存圚するこずを特城ずする氞久磁
石。  重量癟分率で、20ないし30のセリりム、
ないしの銅、を越え以䞋のハフニり
ム、チタン、バナゞりム、ニオブ及びタンタルか
らなる第矀の少なくずも皮の金属ずゞルコニ
りム䜆し、ゞルコニりムは以䞊未満存
圚する、10ないし30のマンガン、ニツケル、
及びクロムからなる第矀の少なくずも皮の金
属ず鉄䜆し鉄ず該少なくずも皮の金属の合蚈
重量の80以䞋を含たず該少なくずも皮
の金属が存圚するを含有し、残郚がコバルトか
らなり、垌土類コバルトを䞻䜓ずする金属間化合
物を含んでなる氞久磁石においお、該金属間化合
物の結晶の面に平行にゞルコニりム及び前蚘第
矀の金属を含有する盞が盞互の平均間隔が5000
Å以䞋にお存圚するこずを特城ずする氞久磁石。  重量癟分率で、20ないし30のセリりム、及
びサマリりム䜆しセリりムずサマリりムの合蚈
重量の80以䞋を含たずサマリりムが存圚
する、ないしの銅、ないしのゞル
コニりム、10ないし30のマンガン、ニツケル及
びクロムからなる矀の少なくずも皮の金属ず鉄
䜆し鉄ず少なくずも該皮の金属の合蚈重量の
80以䞋を含たず該少なくずも皮の金属
が存圚するを含有し、残郚がコバルトからな
り、垌土類コバルトを䞻䜓ずする金属間化合物を
含んでなる氞久磁石においお、該金属間化合物の
結晶の面に平行にゞルコニりム含有盞が盞互の
平均間隔が5000Å以䞋にお存圚するこずを特城ず
する氞久磁石。  重量癟分率で、20ないし30のセリりム、及
びサマリりム䜆しセリりムずサマリりムの合蚈
重量の80以䞋を含たずサマリりムが存圚
する、ないしの銅、を越え以䞋
のハフニりム、チタン、バナゞりム、ニオブ及び
タンタルからなる第矀の少なくずも皮の金属
ずゞルコニりム䜆し、ゞルコニりムは以䞊
未満存圚する、及び10ないし30のマンガ
ン、ニツケル及びクロムからなる第矀の少なく
ずも皮の金属ず鉄䜆し鉄ず該皮の金属の合
蚈重量の80以䞋を含たず該皮の金属が
存圚するを含有し、残郚がコバルトからなり、
垌土類コバルトを䞻䜓ずする金属間化合物を含ん
でなる氞久磁石においお、該金属間化合物の結晶
の面に平行にゞルコニりム及び第矀の金属を
含有する盞が盞互の平均間隔が5000Å以䞋にお存
圚するこずを特城ずする氞久磁石。
[Claims] 1. 20 to 30% cerium by weight percentage, 3.
In a permanent magnet comprising an intermetallic compound containing 1 to 9% copper, 1 to 5% zirconium, and 10 to 30% iron, the balance being cobalt, the intermetallic compound mainly consisting of rare earth cobalt, the intermetallic compound A permanent magnet characterized in that zirconium-containing phases exist parallel to the c-plane of the crystal at an average spacing of 5000 Å or less. 2 20 to 30% cerium by weight percentage, 3
or 9% copper, more than 1% and less than 5% hafnium, at least one metal from the group consisting of titanium, vanadium, niobium and tantalum, and zirconium (provided that zirconium is present in 1% or more and less than 5%), and In a permanent magnet comprising an intermetallic compound containing 10 to 30% iron, the balance being cobalt, and mainly consisting of rare earth cobalt, zirconium and at least one of the above-mentioned A permanent magnet characterized in that phases containing certain metals exist at an average distance of 5000 Å or less. 3. In weight percentages, 20 to 30% cerium and samarium (with the exception that samarium is present at less than 80% (not including 0) of the total weight of cerium and samarium), 3 to 9% copper, 1 to 5% In a permanent magnet comprising an intermetallic compound containing zirconium and 10 to 30% iron, the balance being cobalt, the zirconium-containing phase is parallel to the c-plane of the crystal of the intermetallic compound. are present at an average distance of 5000 Å or less. 4 By weight percentage, 20 to 30% cerium and samarium (however samarium is present at less than 80% (not including 0) of the total weight of cerium and samarium), 3 to 9% copper, more than 1%5 % or less of at least one metal from the group consisting of hafnium, titanium, vanadium, niobium, and tantalum and zirconium (however, zirconium is 1% or more and 5%
present), and containing 10 to 30% iron;
In a permanent magnet comprising an intermetallic compound mainly composed of rare earth cobalt, the balance being cobalt, the phases containing zirconium and the at least one metal are mutually parallel to the c-plane of the crystal of the intermetallic compound. A permanent magnet characterized by an average spacing of 5000 Å or less. 5 cerium, 20 to 30% by weight, 3
9% copper, 1% to 5% zirconium,
and 10 to 30% of at least one metal from the group consisting of manganese, nickel, and chromium, and iron (but not more than 80% (excluding zero) of the total weight of iron and the at least one metal). In a permanent magnet comprising an intermetallic compound mainly composed of rare earth cobalt, the balance is cobalt, and the zirconium-containing phase is parallel to the c-plane of the intermetallic compound crystal, and the balance is cobalt. The interval is
A permanent magnet characterized by its existence at a thickness of 5000 Å or less. 6 20 to 30% cerium by weight percentage, 3
or 9% copper, more than 1% and less than 5% hafnium, at least one metal of the first group consisting of titanium, vanadium, niobium and tantalum, and zirconium (provided that zirconium is present in 1% or more and less than 5%) , 10 to 30% manganese, nickel,
and at least one metal of the second group consisting of chromium and iron (however, 80% or less (not including 0) of the total weight of iron and the at least one metal is present) However, in a permanent magnet comprising an intermetallic compound mainly composed of rare earth cobalt, with the remainder being cobalt, a phase containing zirconium and the metal of the first group is parallel to the c-plane of the crystal of the intermetallic compound. Average spacing between each other is 5000
A permanent magnet characterized by being present at Å or less. 7. In weight percentages, 20 to 30% cerium and samarium (with the exception that samarium is present at less than 80% (not including 0) of the total weight of cerium and samarium), 3 to 9% copper, 1 to 5% Zirconium, 10 to 30% of at least one metal from the group consisting of manganese, nickel and chromium, and iron (provided that the total weight of iron and at least one metal is
80% or less (excluding 0) of the at least one metal present), the balance being cobalt, and the permanent magnet comprising an intermetallic compound mainly composed of rare earth cobalt, the intermetallic compound A permanent magnet characterized in that zirconium-containing phases exist parallel to the c-plane of the crystal at an average spacing of 5000 Å or less. 8 By weight percentage, 20 to 30% cerium and samarium (however samarium is present at less than 80% (not including 0) of the total weight of cerium and samarium), 3 to 9% copper, more than 1%5 % or less of at least one metal of the first group consisting of hafnium, titanium, vanadium, niobium, and tantalum and zirconium (however, zirconium is present in an amount of 1% or more and less than 5%), and 10 to 30% of manganese, nickel, and Contains at least one metal of the second group consisting of chromium and iron (however, 80% or less (not including 0) of the total weight of iron and the one metal is present), with the balance being is made of cobalt,
In a permanent magnet comprising an intermetallic compound mainly composed of rare earth cobalt, the phases containing zirconium and the first group metal are arranged parallel to the c-plane of the crystal of the intermetallic compound with an average spacing of 5000 Å or less. Permanent magnet characterized by the presence of.
JP56164826A 1981-10-15 1981-10-15 Permanent magnet Granted JPS5866305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164826A JPS5866305A (en) 1981-10-15 1981-10-15 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164826A JPS5866305A (en) 1981-10-15 1981-10-15 Permanent magnet

Publications (2)

Publication Number Publication Date
JPS5866305A JPS5866305A (en) 1983-04-20
JPH0252413B2 true JPH0252413B2 (en) 1990-11-13

Family

ID=15800648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164826A Granted JPS5866305A (en) 1981-10-15 1981-10-15 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS5866305A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225101A (en) * 1988-03-04 1989-09-08 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP5504233B2 (en) * 2011-09-27 2014-05-28 株匏䌚瀟東芝 PERMANENT MAGNET AND ITS MANUFACTURING METHOD, AND MOTOR AND GENERATOR USING THE SAME
JP5710818B2 (en) * 2014-03-14 2015-04-30 株匏䌚瀟東芝 Permanent magnet, motor and generator using the same

Also Published As

Publication number Publication date
JPS5866305A (en) 1983-04-20

Similar Documents

Publication Publication Date Title
US5041172A (en) Permanent magnet having good thermal stability and method for manufacturing same
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
JPH0789521B2 (en) Rare earth iron permanent magnet
JP2015023285A (en) R-t-m-b-based sintered magnet and production method therefor
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JPH0574618A (en) Manufacture of rare earth permanent magnet
JP2720040B2 (en) Sintered permanent magnet material and its manufacturing method
JP4900085B2 (en) Rare earth magnet manufacturing method
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPH1070023A (en) Permanent magnet and manufacture thereof
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPH1092617A (en) Permanent magnet and its manufacture
JPH0252413B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0146575B2 (en)
JPH0146574B2 (en)
JPH06302419A (en) Rare earth permanent magnet and its manufacture
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH045737B2 (en)
JPH045738B2 (en)
WO2022124344A1 (en) Permanent magnet, method for manufacturing same, and device
JP3202830B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3562138B2 (en) Raw material alloy for manufacturing rare earth magnet powder