JPS5859420A - Compound lens - Google Patents

Compound lens

Info

Publication number
JPS5859420A
JPS5859420A JP15828881A JP15828881A JPS5859420A JP S5859420 A JPS5859420 A JP S5859420A JP 15828881 A JP15828881 A JP 15828881A JP 15828881 A JP15828881 A JP 15828881A JP S5859420 A JPS5859420 A JP S5859420A
Authority
JP
Japan
Prior art keywords
lens
face
spherical
gradient index
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15828881A
Other languages
Japanese (ja)
Inventor
Hisami Nishi
壽巳 西
Minoru Toyama
遠山 実
Koichi Nishizawa
西沢 「こ」一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP15828881A priority Critical patent/JPS5859420A/en
Publication of JPS5859420A publication Critical patent/JPS5859420A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/02Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having one + component only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain a compound lens which is easy to produce and has less aberrations, by faying respective planes of a distributed index lens having both end faces of planes and a spherical lens having one end face of a plane which have aberrations opposite to each other. CONSTITUTION:Respective planes of a distributed index lens 10, where a light incidence end face 12 and a light exit end face 13 are formed to planes and the refractive index is changed internally, and a spherical lens 11, where one face 14 is formed to a concave or convex and the other face 15 is formed to a plane and the refractive index is uniform approximately, are fayed to each other. The distributed index lens 10 and the spherical lens 11 have aberrations opposite to each other.

Description

【発明の詳細な説明】 本発明は収差を低減するために複数のレンズを組み合せ
てなる組合せレンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combination lens formed by combining a plurality of lenses in order to reduce aberrations.

この種のレンズとして、従来、第1図に示Tように、屈
折率分布型レンズと球面レンズとを一体的に組み合せた
ものが知られている。図示の例においては、屈折率分布
型レンズ(1)の光の入射端面(2)が平面に構成きれ
、かつ光の出射端面(3)が凸状の球面となされている
。(4)は集光スポット位置であり、(5)は元軸であ
って屈折率分布型レンズ(1)の中心軸と一致している
。Iた(6)は出射端面(3)の自車中心である。
As this type of lens, a lens that integrally combines a gradient index lens and a spherical lens, as shown in FIG. 1, is conventionally known. In the illustrated example, the light entrance end surface (2) of the gradient index lens (1) is formed into a flat surface, and the light exit end surface (3) is formed into a convex spherical surface. (4) is the focused spot position, and (5) is the original axis, which coincides with the central axis of the gradient index lens (1). I (6) is the center of the emission end face (3) of the own vehicle.

な2屈折率分布型レンズとは透明なガラス又はプラスチ
ックからなる一種の円柱レンズであって、中心軸からの
距離の2乗に比例して屈折率が、小さく又は大きくなる
ように構成され、それ自体で凸レンズ又は凹レンズとし
ての機能を有している。
A dual refractive index gradient lens is a type of cylindrical lens made of transparent glass or plastic, and is constructed so that the refractive index becomes smaller or larger in proportion to the square of the distance from the central axis. It has the function of a convex lens or a concave lens by itself.

第1崗に示した組合せレンズの機能を説明Tると、入射
端面(2)から入射した光ビーム(7)は屈折率分布型
レンズ(11の内部を通過する間に光軸(5)に同かつ
て曲げられ、球面をなす出射端面(3)でさらに曲げら
れて集光位置(4)に集光される。この場合、屈折率分
布型レンズ(1)の元糊と出射端面(3)の球面の光軸
とは互いに一致していることが必要である。
Explaining the function of the combination lens shown in the first section, the light beam (7) incident from the entrance end face (2) changes to the optical axis (5) while passing through the inside of the gradient index lens (11). The light is bent at the same time and further bent by the spherical output end face (3) to be focused at the condensing position (4).In this case, the original glue of the gradient index lens (1) and the output end face (3) It is necessary that the optical axes of the spherical surfaces coincide with each other.

しかしながら屈折率分布型レンズと光軸を一致させて球
面を研磨することは、レンズ径が0.1〜5m/m程度
の微小なものであるため憂こ実際上極めて困難であり、
またレンズを一度に1つずつしか研磨することができず
、その生産性が極めて悪いという欠点があった。
However, it is extremely difficult in practice to polish a spherical surface while aligning the optical axis with a gradient index lens because the lens diameter is minute, about 0.1 to 5 m/m.
Another drawback is that lenses can only be polished one at a time, resulting in extremely poor productivity.

本発明はこのような問題点に鑑みてなされたものであっ
て、製造容易でかつ収差の少ない組合せレンズを提供し
ようとするものである。
The present invention has been made in view of these problems, and it is an object of the present invention to provide a combination lens that is easy to manufacture and has few aberrations.

以下本発明を実施例につき第2図〜第7図を参照して説
明■る。
The present invention will be explained below with reference to embodiments of the present invention with reference to FIGS. 2 to 7.

第2図に示すように、本例においては、上呂cの如く内
部において屈折率の変化している屈折率分布型レンズH
と、はシ一様な屈折率を有する球面レンズaυとを互い
に接合して組合せレンズを構成している。屈折率分布型
レンズa1は、光の入射端面0り及び出射端面(13)
が夫々平面に構成されている。
As shown in FIG.
and a spherical lens aυ having a uniform refractive index are joined together to form a combination lens. The gradient index lens a1 has a light incident end surface (0) and an exit end surface (13).
are each configured as a plane.

−万、球面レンズaυは、その出射端面Iが凸状の球面
に構成されるとともに入射端面Q9が平面に構成されて
おり、この入射端面Q暖と屈折率分布型レンズ四の出射
端面Q3とが互いに接着されている。
- The spherical lens aυ has an exit end surface I configured as a convex spherical surface and an entrance end surface Q9 as a flat surface. are glued together.

この組合せレンズの機能を説明Tると、入射端面α擾か
ら入射した光ビームαeは屈折率分布型レンズQO1内
で光軸aηに向かつて曲げられ、球面レンズ0υでざら
に曲げられて集光位置崗にスポットを結ぶ。平凸レンズ
である球面レンズαυは、一般に、第3図(a)及び(
b)に示すような負の軸上縦収差を有している。そこで
屈折率分布型レンズOIとして、184図(all及び
(b)に示Tように、上記負の収差を打ち消Tような正
の軸上縦収差を有Tるものを用い、これにより互いの収
差補正を行っている。
Explaining the function of this combination lens, the light beam αe incident from the entrance end face α is bent toward the optical axis aη in the gradient index lens QO1, and then roughly bent and focused by the spherical lens 0υ. Connect spots to locations. Generally, the spherical lens αυ, which is a plano-convex lens, is shown in Fig. 3(a) and (
It has negative longitudinal aberration as shown in b). Therefore, as a gradient index lens OI, as shown in Figure 184 (all and (b)), a lens with positive axial longitudinal aberration T that cancels out the above negative aberration is used. Aberrations are corrected.

このように本例に2いては、両端面が平面である屈折率
分布型レンズ四と球面レンズaυとを互いに接合して組
合せレンズを構成しているので、これらのレンズαOα
υを別々に製造した後、元軸を合せて互い憂こ固N″r
ればよい。そして球面レンズaυは、例えば所定曲率半
径のガラス球の多数を1つのヤトイ材番こバルサム等で
固定して研磨するなどの手段で簡単に量産Tることがで
きる。また屈折率分布型レンズ翰の万は両端面とも平面
なのでその研磨は極めて容易である。ざら沓こ光軸合せ
は単に両レンズGOIQυの外周を合せるだけでよいの
で、   ゛従来のように屈折率分布型レンズの端面に
球面加工を施す場合と比較して元軸が合せ”PT<、従
つて生産性に優れ、またレンズの組合せ範囲も広いとい
う利点がある。
In this way, in this example 2, the gradient index lens 4 whose both end surfaces are flat and the spherical lens aυ are joined together to form a combined lens, so that these lenses αOα
After manufacturing υ separately, align the base axes and make each other N″r
That's fine. The spherical lens aυ can be easily mass-produced by, for example, fixing a large number of glass spheres with a predetermined radius of curvature with one Yatoi balsam or the like and polishing them. Furthermore, since both end faces of the gradient index lens frame are flat, polishing is extremely easy. Since it is sufficient to simply align the outer circumferences of the GOIQυ of both lenses, it is possible to align the optical axes of both lenses by simply aligning the outer circumferences of the GOIQυ lenses. Therefore, it has the advantage of excellent productivity and a wide range of lens combinations.

しかも本例のような構成においては、屈折率分布型レン
ズQ(1のみならず球面レンズ負υにおいても光ビーム
(leが屈曲されるため、同一焦点距離を有する両端面
の平らな屈折率分布型レンズ単体のものに比べて高開口
数を有する。
Moreover, in a configuration like this example, the light beam (le) is bent not only in the gradient index lens Q (1) but also in the negative υ of the spherical lens, so that a flat refractive index distribution is achieved on both end faces having the same focal length. It has a higher numerical aperture than a single type lens.

例えば屈折率分布型レンズOIの屈折率分布n (rl
を、 ” 2(r) =”: (1(gr )” + h 4
 (gr )’ + ha (gr )’ )とする。
For example, the refractive index distribution n (rl
, “2(r) =”: (1(gr)” + h 4
(gr)' + ha (gr)').

但し、”Oはレンズ中心壷こおける屈折率、g%h4及
゛びh6は夫々分布定数である。ここで、n、=ts、
g=0.19、h4=0.7S、h、=−0,50とし
、第5図に示T屈折率分布型レンズQQ′における各大
きさを、z=5.6w、d=1.8−12rO=3.0
mmとすると、このレンズ(II’の開口数(レンズ最
周光の光線がスポット位置Qlにおいて光軸収ηとなす
角−の正弦)NAは、 レンズ熾面における光線 の入射位置(中心軸からの距離rBでの屈折率をn (
rt)、任意点(レンズ端面からの距離z1中心軸から
の距離r)での屈折率f ncr)として、の式及び前
記の屈折率n2(r)の式をもとに光線追跡法により求
めると、N A =sinθ=0.386となる。−万
、I46図に示すように、屈折率分布型レンズ0Iと、
屈折率n=i、ss、曲率牛径凡の球面レンズ0υとを
組み合せたレンズにおい工は、z′=4.4IlII1
1d=t8aun、 2r(1=3.0M% R=、!
1.011111とした場合、NA=0.52となる(
但し、このとき、h4=2.4.h6=95である)。
However, "O" is the refractive index at the center of the lens, and g%h4 and h6 are distribution constants, respectively.Here, n, = ts,
g=0.19, h4=0.7S, h,=-0,50, and the respective sizes of the T gradient index lens QQ' shown in FIG. 5 are z=5.6w, d=1. 8-12rO=3.0
mm, the numerical aperture (the sine of the angle that the ray of the most peripheral light of the lens makes with the optical axis convergence η at the spot position Ql) NA of this lens (II') is: The refractive index at the distance rB of n (
rt), the refractive index f ncr) at an arbitrary point (distance z1 from the lens end surface, distance r from the central axis) is determined by the ray tracing method based on the formula and the formula for the refractive index n2(r) above. Then, N A =sin θ=0.386. - 10,000, I46 As shown in figure, a gradient index lens 0I,
A lens odor that combines a spherical lens with a refractive index n = i, ss and a curvature of approximately 0υ is z' = 4.4IlII1
1d=t8aun, 2r(1=3.0M% R=,!
If it is set to 1.011111, NA=0.52 (
However, at this time, h4=2.4. h6=95).

曲率半径Rの球面レンズと上記屈折率分布型レンズとを
組み合せたときのNAの変化(但し、no=1.6、g
r、)=0.3)をI7図に示すが、このグラフから分
るように、曲率半径Rの小さな球面レンズを組み合せる
こと番こよりNAi増大させることが可能である。例え
ばR=−→R=3mmとTると、NA=0.38<S→
NA=0.52となる。また、光を絞っタトきのスポッ
ト径は、、2a = 0.82λ/NA(λ:光)波長
)で与えられ、上記の場合、λを6328Aとして2a
−1゜34s→1.OOμと、より小さく改善される。
Change in NA when a spherical lens with a radius of curvature R and the above gradient index lens are combined (however, no = 1.6, g
r, )=0.3) is shown in Figure I7, and as can be seen from this graph, it is possible to increase NAi by combining spherical lenses with a small radius of curvature R. For example, if R=-→R=3mm, NA=0.38<S→
NA=0.52. In addition, the spot diameter when narrowing down the light is given by 2a = 0.82λ/NA (λ: light) wavelength), and in the above case, assuming λ to be 6328A, 2a
-1°34s→1. It is improved to be smaller than OOμ.

以上本発明を一実施例につき説明したが、上記実施例は
本発明を限定するものでは決してなく、本発明の技術的
思想に基いて種々の変更が可能である。例えば上記実施
例においては、負の軸上収差を有する凸レンズ6υと正
の軸上収差を有する屈折率分布型レンズ顛とを互いに組
み合せたが、この正負の組合せは逆でもよく、例えば正
の軸上収差を有する凹レンズと負の軸上収差を有する屈
折率分布型レンズとを互いに組み合せてもよい。また屈
折率分布型レンズの両面に夫々球面レンズを固着するこ
ともできる。
Although the present invention has been described above with reference to one embodiment, the above embodiment does not limit the present invention in any way, and various changes can be made based on the technical idea of the present invention. For example, in the above embodiment, the convex lens 6υ having negative axial aberration and the gradient index lens element having positive axial aberration are combined with each other, but this positive/negative combination may be reversed; for example, the positive axial aberration A concave lens having upper aberration and a gradient index lens having negative axial aberration may be combined with each other. Furthermore, spherical lenses can be fixed to both surfaces of the gradient index lens.

以上説明したように、本発明においては、光の入射端面
及び出射端面が夫々平面に構成された屈折率分布型レン
ズと、−万の面が平面に構成されたはり一様な屈折率を
有する球面レンズとを夫々の平面において互いに接合す
ることにより組合せレンズを構成しているので、屈折率
分布型レンズに面倒な球面加工を施T必要がなく、従っ
てその製造が容易であって生産性多こ優れている。また
屈折率分布型レンズと球面レンズとの組合せを種々に変
更することにより、広範囲の組合せレンズを比較的容易
に得ることができる。
As explained above, in the present invention, there is provided a gradient index lens in which the light incident end face and the light exit end face are each formed into a flat surface, and a lens having a uniform refractive index in which the -10,000 surface is formed into a flat surface. Since the combined lens is constructed by bonding the spherical lens and the spherical lens to each other on their respective planes, there is no need to perform troublesome spherical processing on the gradient index lens, and therefore manufacturing is easy and productivity is high. This is excellent. Further, by variously changing the combination of the gradient index lens and the spherical lens, a wide range of combination lenses can be obtained relatively easily.

ざらに、互いに逆の収差を有する屈折率分布型レンズと
球面レンズとを組み合せて収差補正を行っているので、
収差の少ない組合せレンズを得ることができる。また球
面レンズとして凸レンズを用いた場合曇こは大巾な開口
数の増加を達成することができる。
Roughly speaking, aberration correction is performed by combining a gradient index lens and a spherical lens, which have opposite aberrations.
A combined lens with few aberrations can be obtained. Furthermore, when a convex lens is used as the spherical lens, a large increase in numerical aperture can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図′は従来め組合せレンズの概略断面図である。 FIG. 1' is a schematic cross-sectional view of a conventional combination lens.

Claims (1)

【特許請求の範囲】[Claims] 光の入射端面及び出射端面が夫々平面に構成されかつ内
部において屈折率が変化している屈折率分布型レンズと
、一方の面が凹面又は凸面に構成されかつ他方の面が平
面に構成されたはり一様な屈折率を有する球面レンズと
が夫々の平面において互いに接合され、その際前記屈折
率分布型レンズと前記球面レンズとが互いに逆の収差を
有していることを特徴とする組合せレンズ。
A gradient index lens in which the light entrance end face and light outgoing end face are each configured to be flat and the refractive index changes internally, and one surface is configured to be concave or convex and the other surface is configured to be flat. A combination lens characterized in that a spherical lens having a uniform refractive index is joined to each other in each plane, and in this case, the gradient index lens and the spherical lens have opposite aberrations. .
JP15828881A 1981-10-05 1981-10-05 Compound lens Pending JPS5859420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15828881A JPS5859420A (en) 1981-10-05 1981-10-05 Compound lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15828881A JPS5859420A (en) 1981-10-05 1981-10-05 Compound lens

Publications (1)

Publication Number Publication Date
JPS5859420A true JPS5859420A (en) 1983-04-08

Family

ID=15668316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15828881A Pending JPS5859420A (en) 1981-10-05 1981-10-05 Compound lens

Country Status (1)

Country Link
JP (1) JPS5859420A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149016A (en) * 1984-01-13 1985-08-06 Nippon Sheet Glass Co Ltd Element for recording and reproducing optical information
JPS60163015A (en) * 1984-02-03 1985-08-24 Canon Inc Correcting method of spherical aberration
JPS60189714A (en) * 1984-03-09 1985-09-27 Nippon Sheet Glass Co Ltd Light source and optical fiber coupler
JPS60203909A (en) * 1984-03-28 1985-10-15 Agency Of Ind Science & Technol Compound lens of distributed refractive index rod and homogeneous convex lens
JPS60225816A (en) * 1984-04-25 1985-11-11 Canon Inc Distributed refractive index type single lens
JPS61107206A (en) * 1984-10-30 1986-05-26 Nippon Sheet Glass Co Ltd Optical coupler
JPS61284718A (en) * 1985-06-10 1986-12-15 Canon Inc Variable focal length lens
JPS62115410A (en) * 1985-11-15 1987-05-27 Nippon Sheet Glass Co Ltd Lens for optical recording and reproducing device
JPS62144125A (en) * 1985-12-18 1987-06-27 Canon Inc Photographic lens
JPS62187314A (en) * 1986-02-13 1987-08-15 Nippon Sheet Glass Co Ltd Optical disk lens
US5995295A (en) * 1995-12-13 1999-11-30 Olympus Optical Co., Ltd. Lens system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492282A (en) * 1977-12-21 1979-07-21 Zeiss Stiftung Optical system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492282A (en) * 1977-12-21 1979-07-21 Zeiss Stiftung Optical system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570125B2 (en) * 1984-01-13 1993-10-04 Nippon Sheet Glass Co Ltd
JPS60149016A (en) * 1984-01-13 1985-08-06 Nippon Sheet Glass Co Ltd Element for recording and reproducing optical information
JPS60163015A (en) * 1984-02-03 1985-08-24 Canon Inc Correcting method of spherical aberration
JPS60189714A (en) * 1984-03-09 1985-09-27 Nippon Sheet Glass Co Ltd Light source and optical fiber coupler
JPH0572564B2 (en) * 1984-03-09 1993-10-12 Nippon Sheet Glass Co Ltd
JPS60203909A (en) * 1984-03-28 1985-10-15 Agency Of Ind Science & Technol Compound lens of distributed refractive index rod and homogeneous convex lens
JPS60225816A (en) * 1984-04-25 1985-11-11 Canon Inc Distributed refractive index type single lens
JPS61107206A (en) * 1984-10-30 1986-05-26 Nippon Sheet Glass Co Ltd Optical coupler
JPS61284718A (en) * 1985-06-10 1986-12-15 Canon Inc Variable focal length lens
JPS62115410A (en) * 1985-11-15 1987-05-27 Nippon Sheet Glass Co Ltd Lens for optical recording and reproducing device
JPS62144125A (en) * 1985-12-18 1987-06-27 Canon Inc Photographic lens
JPH0668571B2 (en) * 1985-12-18 1994-08-31 キヤノン株式会社 Shooting lens
JPS62187314A (en) * 1986-02-13 1987-08-15 Nippon Sheet Glass Co Ltd Optical disk lens
US5995295A (en) * 1995-12-13 1999-11-30 Olympus Optical Co., Ltd. Lens system

Similar Documents

Publication Publication Date Title
US3476463A (en) Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface
US5042928A (en) Parallel catadioptric optical element
JPS5859420A (en) Compound lens
CN205720742U (en) A kind of focusing obtains Diode laser Bessel-Gaussian beam novel optical lens
JPH02503131A (en) One-piece collimator
US2485345A (en) Reflecting telescopic objective of the cassegrainian type
US2492461A (en) Corrected schmidt type optical system
US5796525A (en) Quadaxial gradient index lens
US4867547A (en) Mirror objective and optical arrangement comprising two mirror objectives
JPS6058441B2 (en) Reflection-eliminating spherical optical array composed of tilted lens elements with cylindrical components
JPH04215610A (en) Element of single-hybrid reflecting and refracting optical system
US2499264A (en) Large aperture spherically corrected objective having two outer positive components and two inner negative meniscus components with one cemented surface
US3722979A (en) Optical system of the real image type for finders having aspheric surfaces
US3001446A (en) Optical systems comprising a spherical concave mirror and a meniscus lens
JP2001503161A (en) Axial gradient index coupler
JPS59200211A (en) Optical multibranching device
JPS58208717A (en) Apparatus for connecting light radient generator and light waveguide path
JPS5946616A (en) Processing method of optical fiber terminal
JPS58219507A (en) One-dimensional lens
JPS6142245B2 (en)
US3633985A (en) Concentration objective composed of four lenses
JPH0125046B2 (en)
JPS58205122A (en) Compound lens
US2627205A (en) Corrected four-unit photographic objective comprising two half systems enclosing thediaphragm
JPS5964547A (en) Preparation of lens having refractive index distribution in axial direction