JPS60203909A - Compound lens of distributed refractive index rod and homogeneous convex lens - Google Patents

Compound lens of distributed refractive index rod and homogeneous convex lens

Info

Publication number
JPS60203909A
JPS60203909A JP6015584A JP6015584A JPS60203909A JP S60203909 A JPS60203909 A JP S60203909A JP 6015584 A JP6015584 A JP 6015584A JP 6015584 A JP6015584 A JP 6015584A JP S60203909 A JPS60203909 A JP S60203909A
Authority
JP
Japan
Prior art keywords
lens
rod
refractive index
numerical aperture
homogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6015584A
Other languages
Japanese (ja)
Other versions
JPH0664229B2 (en
Inventor
Keisuke Kikuchi
啓介 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59060155A priority Critical patent/JPH0664229B2/en
Publication of JPS60203909A publication Critical patent/JPS60203909A/en
Publication of JPH0664229B2 publication Critical patent/JPH0664229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/02Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having one + component only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To facilitate control over the refractive index distribution of an axially symmetrical distributed refractive index rod and increase the product of operation distance and a numerical aperture while the rod diameter is held small by positioning the homogeneous convex lens at the high numerical aperture side of the rod. CONSTITUTION:The distributed refractive index rod 1 and homogeneous convex lens 2 are put together so that the lens 2 is positioned at the side of a disk 3, and a light source 4 is set so that the power is <=1. The light beam path curves gently through the rod 1 and sharply through the lens 2, so the beam diameter is large at a lens projection position, thereby increasing the product of the operation distance and numerical aperture. In this case, the rod 1 is provided with a wide-range distribution coefficient and the lens 2 have the spherical aberration and coma aberration compensated to easily control the refractive index distribution of the rod.

Description

【発明の詳細な説明】 本発明は、光デイスクピックアップシステムに用いる屈
折率分布型レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gradient index lens used in an optical disk pickup system.

光デイスクピックアップ対物レンズには、作動間lit
 (w :1〜211111を置いてディスクの厚さく
 d;14m)を通して裏側の記録面に高開口数(NA
zO,45)で集光しなければならず、レンズ径りはそ
れに応じた大きさが必要になる(全作動距離1gを/ 
t = w + d /rLL 、rL便はディスクの
屈折率、とするとD ’、 2 ・t2X NA/C害
W)。
The optical disk pickup objective lens has a lit during operation.
A high numerical aperture (NA
zO, 45), and the lens diameter must be sized accordingly (total working distance of 1 g /
t = w + d /rLL, rL is the refractive index of the disk, then D', 2 ・t2X NA/C harm W).

現在市販されている対物レンズは3〜4枚組の均質な球
面レンズであり、その径を必要なだけ大きくとれるのが
長所である。しかし、一方、球面数が多くなシ、従って
製作や組立の精度が厳しくなる等の欠点があった。
Currently commercially available objective lenses are homogeneous spherical lenses made up of three or four lenses, and their advantage is that their diameter can be made as large as necessary. However, on the other hand, there were drawbacks such as the large number of spherical surfaces, which made manufacturing and assembly precision difficult.

近年、屈折率分布型レンズを応用し、レンズ面数を減ら
し光学系を簡単にすることが提案されている。(例えば
、汎用レンズとして、(1) D、 T、 Moore
 and P、 J、 5ands、 U−S、 Pa
tent3.729,253 ピックアップ用として、
(2) K−Kikuchi et al−APpl、
 opt、19. 1076(19802(8) N、
 Yamamoto et al、 APPI−opt
、 21.1021(1982)(4) K、 Fuj
ii et al、 4th Topical Mee
ting on Gra−dient−3ndex 0
ptical Imaging Systems。
In recent years, it has been proposed to simplify the optical system by reducing the number of lens surfaces by applying gradient index lenses. (For example, as a general-purpose lens, (1) D, T, Moore
and P, J, 5ands, U-S, Pa
tent3.729,253 For pickup,
(2) K-Kikuchi et al-APpl,
opt, 19. 1076 (19802(8) N,
Yamamoto et al, APPI-opt
, 21.1021 (1982) (4) K, Fuji
ii et al, 4th Topical Mee
ting on Gra-dient-3ndex 0
optical imaging systems.

(5)前針 第44回応用物理学会学術講演会予稿集 
27pJ−7,、第10回微小光学研究会講演論文 V
ol、 1 11#13 0ctober、 1983
 (応用物理学会光学懇話会))。
(5) Front needle Proceedings of the 44th Japan Society of Applied Physics Academic Conference
27pJ-7, 10th Micro-Optics Research Conference Lecture Paper V
ol, 1 11#13 0ctober, 1983
(Society of Optics, Japan Society of Applied Physics).

しかし、ガラスロッドに屈折率分布を形成させる現実的
手段であるイオン交換を考えると、ガラスロッド径゛の
二乗に比例した時間を要し、また、長時間のイオン交換
でガラスが脆くなシ、亀裂が入シ易くなるなどガラスロ
ッド径を大きくするのは技術的困難を伴う。従って、ガ
ラスロッド径をできるだけ小さくして、ピックアップの
仕様を満足させるレンズ構成が望まれる。
However, considering ion exchange, which is a practical means of forming a refractive index distribution in a glass rod, it takes time proportional to the square of the glass rod diameter, and it is difficult to make the glass brittle with long-term ion exchange. Increasing the diameter of the glass rod is accompanied by technical difficulties, such as the possibility of cracking. Therefore, it is desired to have a lens structure that satisfies the specifications of the pickup by making the diameter of the glass rod as small as possible.

さて、上述の代表的な引例(1)、(6)によると、単
レンズで球面収差とコマ収差を補正した、所謂アプラナ
ートレンズは、光源が遠方にあるとき、光源にその凸を
向けたメニスカスの構成になる。
Now, according to the above-mentioned representative examples (1) and (6), the so-called aplanato lens, which corrects spherical aberration and coma with a single lens, has a convex lens that faces the light source when the light source is far away. It becomes a meniscus configuration.

第1図にメニスカスレンズと光線経路の概略を示してい
る。レンズパワーが第1面に集中しているため、第2面
を出射するビーム径は細くなシ、ロッド径の割には作動
距離!2×開口数NAが小さくなってしまう。すなわち
、ロッド径の大きさを有効に使っていないことになる。
Figure 1 shows an outline of the meniscus lens and the ray path. Since the lens power is concentrated on the first surface, the beam diameter emitted from the second surface is not small, and the working distance is short considering the rod diameter! 2×numerical aperture NA becomes small. In other words, the rod diameter is not used effectively.

本発明杜、以上の点に鑑み、従来の屈折率分布型レンズ
の欠点を解消する目的でなされたもので、軸対称屈折率
分布ロッド(以下屈折率分布ロッド、または単にロッド
という)と球面レンズを分離して、アプラナートを保持
しながらパワーの集中位置の移動をはかったものである
In view of the above points, the present invention has been made for the purpose of eliminating the drawbacks of conventional gradient index lenses. The idea is to separate the power and move the power concentration point while maintaining the apranath.

以下、本発明について説明する。The present invention will be explained below.

第2図は本発明の屈折率分布ロッド・均質凸複合レンズ
の構成概略図である。屈折率分布ロッド1と均質凸レン
ズ2を後者がディスク3側に位置するよう複合させ、光
源4は倍率1β1〈1になるよう遠くにおいている。ロ
ッドの屈折率分布n(r)は次式に与える。
FIG. 2 is a schematic diagram of the structure of the gradient index rod/homogeneous convex compound lens of the present invention. A gradient index rod 1 and a homogeneous convex lens 2 are combined so that the latter is located on the disk 3 side, and a light source 4 is placed far away so that the magnification is 1β1<1. The refractive index distribution n(r) of the rod is given by the following equation.

TL”(r)−n”(0)(1−(yr)”+A4(y
r)番十hk・(yr)” ) −−−−−=−−−(
1ここで、a(0)は中心軸の屈折率、!は集束パラメ
ータ、A4、Aよ、は4次、6次係数である。光線経路
はロッド1でゆつくシ曲がシ、均質凸レンズ2で急激に
曲がる。81図に示したメニスカスレンズに比べて、レ
ンズ出射位置でのビーム径が大きく、作動距離と開口数
の積を大きくできることがわかる。
TL"(r)-n"(0)(1-(yr)"+A4(y
r) number ten hk・(yr)” ) −−−−−=−−−(
1 Here, a(0) is the refractive index of the central axis, ! is a focusing parameter, and A4 and A are fourth-order and sixth-order coefficients. The ray path has a gradual curve at the rod 1 and sharply curves at the homogeneous convex lens 2. It can be seen that the beam diameter at the lens exit position is larger than that of the meniscus lens shown in FIG. 81, and the product of working distance and numerical aperture can be increased.

次に、本構成レンズの球面収差と正弦条件(コマ収差)
の補正について説明する。
Next, we will discuss the spherical aberration and sine conditions (coma aberration) of this lens configuration.
The correction will be explained below.

第3図(α)に示すように、均質凸レンズ2の球面収差
は、近軸光よル周辺光が手前に結ぶ、所謂負の収差であ
る。これと組み合わせて収差が補正されるためには屈折
率分布ロッド1は少なくとも正の収差になるものである
As shown in FIG. 3 (α), the spherical aberration of the homogeneous convex lens 2 is a so-called negative aberration in which paraxial light and peripheral light are brought together in front. In order to correct aberrations in combination with this, the gradient index rod 1 must have at least positive aberrations.

第3図(b)に屈折率分布ロッド内の光線経路の概略を
分布高次係数A4.46の大きさに対応させて示してい
る。ロッド1内の経路で云えば、A4 > A4゜、 
A6> h6o(AIAo−2/l、A6゜−−17/
15)のとき近軸光よシ周辺光が遠くに結ぶ。すなわち
、正の収差になる。この理由を定性的に述べると、ロッ
ド1の中心軸から周辺への屈折率勾配の主要項((1)
式をrで微分してoc y”r) が4次、6次係数A
4P、AI、の増加でその一部が打消され、しかも、中
心軸から遠い程その効果が大きいため、周辺光線の曲が
シが少くなるからである。
FIG. 3(b) shows an outline of the ray path within the gradient index rod in correspondence with the magnitude of the distribution high-order coefficient A4.46. In terms of the path inside rod 1, A4 > A4°,
A6> h6o (AIAo-2/l, A6゜--17/
15), the paraxial light connects further away from the peripheral light. In other words, it becomes a positive aberration. To explain the reason qualitatively, the main term of the refractive index gradient from the central axis of rod 1 to the periphery ((1)
Differentiating the formula with r, oc y”r) is the 4th and 6th order coefficient A
This is because an increase in 4P and AI cancels out a portion of this effect, and the farther from the central axis the greater the effect, which reduces the curve of the peripheral rays.

このような高次係数をもつロッドを選ぶことになるが、
実際の設計や製作においては大まかな制御のあと測定に
よって得られた屈折本分に応じて均質レンズの球面曲率
を決めることになる。
We will choose a rod with such a high-order coefficient, but
In actual design and manufacturing, the spherical curvature of the homogeneous lens is determined according to the refractive component obtained by measurement after rough control.

詳しくは後の数値計算による実施例で説明する。The details will be explained later in an example based on numerical calculation.

以上は球面収差の補正について述べたが、軸外に光源が
ある場合に生ずるコマ収差の補正も重要である。それは
ピックアップではトラック(b)、(C)、(d)に屈
折率分布ロッド1と均質球面レンズ2について、そのパ
ラメータの遣いによるコマ収差の出方を定性的に示しだ
。縦向の矢印はコマ収差の原因となる上下周辺光線の屈
折による方向変化の大きさのアンバランス分を示してい
る。規準は仮想的に考えた゛コマ収差の出ない方向変化
である。
The above has described correction of spherical aberration, but it is also important to correct coma aberration, which occurs when a light source is located off-axis. In the pickup, tracks (b), (C), and (d) qualitatively show how comatic aberration occurs due to the use of parameters for the gradient index rod 1 and the homogeneous spherical lens 2. The vertical arrows indicate the unbalance in the magnitude of direction change due to refraction of upper and lower peripheral rays, which causes coma aberration. The standard is a hypothetical directional change that does not produce coma aberration.

第4図Cb)は分布高次項が規準値よシ大きい場合で、
先の球面収差で説明したように、ロッド1のよシ周辺を
通る光線の方が方向変化が少なくなシ、主光線の外側に
二周辺光の交点ができる。すなわち、外向性コマ収差で
ある0第4図(α)は分布高次項が規準よシ小さい場合
で逆に内向性コ゛マ収差になっている。
Figure 4Cb) is the case where the higher-order terms of the distribution are larger than the standard value,
As explained above with respect to spherical aberration, the light ray passing around the periphery of the rod 1 has less direction change, and an intersection point of the two peripheral rays is formed outside the principal ray. That is, the outward coma aberration (α) in FIG. 4 becomes an inward coma aberration when the higher-order terms of the distribution are smaller than the standard.

第4図(C)、(d)は均質球面レンズ2とディスク3
を合わせた系で球面レンズの形状が、各々メ;□さて、
ロッドと球面レンズ、ディスクを合わせた系でコマ収差
を補正するには、第4図(α)、(C)に示した内向性
同志、同図(h)、(d)に示した外向性同志を継ぎ合
わせればよいことがわかる。
Figures 4(C) and 4(d) show the homogeneous spherical lens 2 and the disk 3.
The shape of the spherical lens in the system that combines
To correct comatic aberration using a system that combines a rod, a spherical lens, and a disk, the introverts shown in Figure 4 (α) and (C) and the extroverts shown in Figure 4 (h) and (d) are required. It turns out that all you have to do is connect like-minded people.

第4図(α)、(b)に示した像点を逆に点光源にする
よう周辺光の交点を主光線まで移すと対応する同図(C
)、(d)に示す交点も主光線に近づくからである。
If the image point shown in Figure 4 (α) and (b) is moved to the chief ray so that the image point is turned into a point light source, the corresponding figure (C
This is because the intersections shown in ) and (d) also approach the chief ray.

以上要するに、ロッドの高次項が小さい値から大きい値
になるにつれて、複合させるべき均質レンズはメニスカ
スから両凸レンズに移る。
In summary, as the higher-order term of the rod increases from a small value to a large value, the homogeneous lens to be compounded shifts from a meniscus to a biconvex lens.

次に、数値解析による実施例について説明する。第2図
に示す光学系で固定しておくパラメータを第1表のよう
におく。
Next, an example based on numerical analysis will be described. Parameters to be fixed in the optical system shown in FIG. 2 are set as shown in Table 1.

第 1 表 ロッド長!、レンズ面から光源までの距離11←)は第
1表で与えたパラメータと球面の曲率C1、′C2(各
々曲率半径r、、r、の逆数)から近軸光線の関係式を
用いてめられる。な゛お、(−)は計算上置の量として
扱うことを意味する。任意光の径路は与えられたロッド
の屈折率分布に対して、ロンド内では光線方程式の積分
、境界面ではスネルの屈折法則を適゛用してめられる。
Table 1: Rod length! , the distance from the lens surface to the light source 11←) can be determined using the relational expression for paraxial rays from the parameters given in Table 1 and the curvatures C1 and 'C2 of the spherical surface (reciprocals of the radii of curvature r, , r, respectively). It will be done. Note that (-) means that it is treated as a quantity for calculation. The path of arbitrary light can be determined by applying the integral of the ray equation within the Rondo and Snell's law of refraction at the boundary surface for a given refractive index distribution of the rod.

第5図は与えられた分布高次項に対してアプラナートに
する曲率の組を示した図で、仮に与えた屈折率分布の4
次、6次係数〜−0.8、A6−0.4に対して、像面
での横球面収差を±1μm内にする曲率C1、への範囲
を示している。また、壬の範囲の中の三点pl、 Pz
、P3について、横球面収差曲線と(2)式で定義され
る正弦条件不満足量SCRX 100% を図示した。
Figure 5 is a diagram showing a set of curvatures that are made into an aplanat for a given distribution higher-order term.
Next, for the sixth-order coefficient ~-0.8 and A6-0.4, the range of curvature C1 that makes the lateral spherical aberration at the image plane within ±1 μm is shown. Also, three points pl, Pz within the range of
, P3, the transverse spherical aberration curve and the sine condition unsatisfactory amount SCRX 100% defined by equation (2) are illustrated.

5CR−1(コム−β)−菰・・・・・・・・・・・・
・・・・・・・・・・・・・・・・(2)β ztnθ
o q ここで、SAは縦球面収差、qは射出瞳から゛像面への
距離とする。なお、子午面内光線のコマ収差はSCRと
像高の積で与えられる。従つ1て、例えば、SCRX 
100 (%)−〇。5偶)のときは、像高0.2鴎で
1μmのコマ収差が生じることになる(光源は軸外0.
2/lβ1slI)。22点に対応する曲率C1、CI
を選ぶことにより球面収差のみならずコマ収差を小さく
できることがわかる。所謂アプラナートレンズが可能で
ある。4次、6次係数A、 、 A6を他の値にとって
同様に曲率Ct、 C之を探がすことを行いアプラナー
トレンズが可能な4次、6次係数〜、h6の範囲をめた
のが第6図である。同図(α)は横球面収差が土1μm
内に、しかも、実線はSCRX 100%の残留値のピ
ークの等高線をなす。同図(b)は4次、6次係数A9
、h6 に対して選ぶべき曲率C+、Czを示している
。第4図を使って予想したように4次、6次係数に9、
h6が大きくなるに従ってメニス、カス(CI>0. 
Ct>O)から両凸(CI> 0 、 CI <0 )
になっている。
5CR-1 (COM-β)-菰・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(2) β ztnθ
o q Here, SA is the longitudinal spherical aberration, and q is the distance from the exit pupil to the image plane. Note that the comatic aberration of rays in the meridional plane is given by the product of SCR and image height. Therefore, for example, SCRX
100 (%) -〇. 5), a comatic aberration of 1 μm will occur at an image height of 0.2 (the light source is 0.2 off-axis).
2/lβ1slI). Curvature C1, CI corresponding to 22 points
It can be seen that by selecting , not only spherical aberration but also comatic aberration can be reduced. A so-called applanate lens is possible. Using other values for the 4th and 6th order coefficients A, , A6, we similarly searched for the curvatures Ct and C, and found the range of the 4th and 6th order coefficients to h6 that are possible with the Aplanato lens. is shown in Figure 6. In the same figure (α), the lateral spherical aberration is 1 μm.
Moreover, the solid line forms the contour line of the peak of the residual value of SCRX 100%. The same figure (b) shows the 4th and 6th order coefficients A9
, h6, the curvatures C+ and Cz to be selected are shown. As predicted using Figure 4, the 4th and 6th coefficients are 9,
As h6 increases, meniscus and cass (CI>0.
Ct>O) to biconvex (CI>0, CI<0)
It has become.

第7図は必要なロッド半径を第6図で説明した領域の中
心線上の点に対して示したものである。4次係数りやが
大きくなるにつれてロッド径は小さくなっている。
FIG. 7 shows the required rod radius relative to a point on the centerline of the area described in FIG. As the fourth-order coefficient increases, the rod diameter becomes smaller.

なお、比較のためロッドのみで同じ仕様を満たそうとし
たときに必要なロッド半径を点線で示した。
For comparison, the dotted line indicates the rod radius required when trying to meet the same specifications using only the rod.

また、一点鎖線は射出端でのビーム半径を示す。Furthermore, the dashed line indicates the beam radius at the exit end.

以上、詳細に説明したように、本発明の屈折率分布ロッ
ド・均質凸複合しンズ杜広範囲の分布係数のロッドに対
して球面収差とコマ収差を補正したレンズにできる。す
なわち、ロッドの屈折率分布の制御がよシ容易となシ、
かつ、小さいロッド径で作動距離と開口数の積をよシ大
きくすることができるという優れた効果を有するもので
ある。
As described above in detail, the gradient index rod/homogeneous convex composite lens of the present invention can be used to correct spherical aberration and coma for rods with a wide range of distribution coefficients. In other words, it is easier to control the refractive index distribution of the rod.
Moreover, it has the excellent effect that the product of working distance and numerical aperture can be greatly increased with a small rod diameter.

さらに、球面数の減少によシ構造が単純化し、価格の低
減のみならず装置の信頼性を向上することができる利点
がある。
Furthermore, the reduction in the number of spherical surfaces simplifies the structure, which has the advantage of not only reducing the cost but also improving the reliability of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来提案されているメニスカスレンズの図、第
2図は本発明の屈折率分布ロッド・均質凸複合レンズの
概略構成図、第3図線球面収差の補正原理図、第4図社
コマ収差の補正原理図、第5図は与えられた分布高次項
に対してアプラナートにする曲率の組を説明するための
図、第6図(−)はアプラナートにできる分布高次項の
範囲と残留正弦条件不満足量を説明するための図、第6
図(h)は高次項に対して選ぶべき曲率の組を説明する
ための図、第7図は必要なロッド径を説明するための図
である。 図中、1は屈折率分布ロッド、2は均質球面レンズ、3
はディスク、4社光源である〇第3図 h4> h4o + h6> hs。 第4図 #17 図 手続補正書(自発) 昭和59年 9月 73日 1事件の表示 昭和59年特許願mtoiss号 2発明の名称 屈折率分布ジッド・均質凸複合レンズ 3補正をする者 事件との関係 特許H5願人 東京都千代田区霞が関1丁目3番1号 114工業技術院長川田裕部 4指定代理人 (1) 明細書中、第≦頁第3行の「屈折重分」を「屈
折率分布」と訂正する。 (匂 同、第9頁下から2行の「QS(イ)」を「aコ
(イ)」と訂正する。 (3)同、第9頁最後の行のr / PmJを「au 
pm Jと訂正する。 (4)明細書中の計算精度を向上させた結果、第6図(
a)、(b)に誤差を含んでいることが判明したため、
第6図(→、 (b)を別紙の通り訂正する。
Figure 1 is a diagram of a conventionally proposed meniscus lens, Figure 2 is a schematic diagram of the gradient index rod/homogeneous convex compound lens of the present invention, Figure 3 is a diagram of the principle of correction of spherical aberration, and Figure 4 is a diagram of the correction principle of spherical aberration. A diagram of the principle of correction of coma aberration. Figure 5 is a diagram to explain the set of curvatures that can be made into an aplanat for a given higher-order term in the distribution. Figure 6 (-) is the range and residual of the higher-order term in the distribution that can be made into an aplanato. Diagram for explaining the amount of unsatisfactory sine condition, No. 6
FIG. 7(h) is a diagram for explaining a set of curvatures to be selected for higher-order terms, and FIG. 7 is a diagram for explaining the necessary rod diameter. In the figure, 1 is a gradient index rod, 2 is a homogeneous spherical lens, and 3 is a homogeneous spherical lens.
is a disk and a light source from 4 companies〇Figure 3 h4> h4o + h6> hs. Figure 4 #17 Written amendment to figure procedure (voluntary) September 73, 1980 1 Display of case 1988 Patent application mtoiss No. 2 Name of invention 3 Case of person who corrects refractive index distribution GID homogeneous convex compound lens 3 Relationship between Patent H5 applicant 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo 114 Director of the Agency of Industrial Science and Technology Hirobe Kawada 4 designated agent (1) In the specification, "refraction overlap" in the third line of page ≦ is replaced with "refraction overlap" corrected as "rate distribution". (Nou) Correct “QS (i)” in the bottom two lines of page 9 to “ako (i)”. (3) Correct “r/PmJ” in the last line of page 9 to “au”.
Correct it as pm J. (4) As a result of improving the calculation accuracy in the specification, Figure 6 (
It was found that a) and (b) contained errors, so
Figure 6 (→, (b) is corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] 屈折率が中心軸から周辺に向ってはソニ乗分布で減少す
る軸対称屈折率分布ロッドを用いた集光システムにおい
て、前記軸対称屈折率分布ロッドに均質凸レンズを高開
口数側に位置するよう複合させ、前記高開口数側の作動
距離をその限界値である前記軸対称屈折率分布ロソヒ半
径と前記高開口数の比に近づけ、な″らびに球面収差と
コマ収差を補正したことを特徴とする屈折率分布ロッド
・均質凸複合レンズ。
In a condensing system using an axisymmetric gradient index rod in which the refractive index decreases from the central axis to the periphery in a sonically distributed manner, a homogeneous convex lens is positioned on the high numerical aperture side of the axisymmetric gradient index rod. The working distance on the high numerical aperture side is brought close to its limit value, which is the ratio of the axisymmetric refractive index distribution Rosoch radius and the high numerical aperture, and spherical aberration and coma aberration are corrected. A gradient index rod/homogeneous convex compound lens.
JP59060155A 1984-03-28 1984-03-28 Gradient index rod / homogeneous convex compound lens Expired - Lifetime JPH0664229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060155A JPH0664229B2 (en) 1984-03-28 1984-03-28 Gradient index rod / homogeneous convex compound lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060155A JPH0664229B2 (en) 1984-03-28 1984-03-28 Gradient index rod / homogeneous convex compound lens

Publications (2)

Publication Number Publication Date
JPS60203909A true JPS60203909A (en) 1985-10-15
JPH0664229B2 JPH0664229B2 (en) 1994-08-22

Family

ID=13133975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060155A Expired - Lifetime JPH0664229B2 (en) 1984-03-28 1984-03-28 Gradient index rod / homogeneous convex compound lens

Country Status (1)

Country Link
JP (1) JPH0664229B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187314A (en) * 1986-02-13 1987-08-15 Nippon Sheet Glass Co Ltd Optical disk lens
US4852981A (en) * 1985-05-31 1989-08-01 Canon Kabushiki Kaisha Imaging lens system comprising a distributed index lens and a plano-convex lens
US5486951A (en) * 1993-12-16 1996-01-23 Eastman Kodak Company Gradial zone lens and method of fabrication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817407A (en) * 1981-07-23 1983-02-01 Nippon Sheet Glass Co Ltd Lens body and its manufacture
JPS5859420A (en) * 1981-10-05 1983-04-08 Nippon Sheet Glass Co Ltd Compound lens
JPS58184113A (en) * 1982-03-24 1983-10-27 ダイオニツクス・インコ−ポレ−テツド Optical system
JPS58205122A (en) * 1982-05-26 1983-11-30 Nippon Sheet Glass Co Ltd Compound lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817407A (en) * 1981-07-23 1983-02-01 Nippon Sheet Glass Co Ltd Lens body and its manufacture
JPS5859420A (en) * 1981-10-05 1983-04-08 Nippon Sheet Glass Co Ltd Compound lens
JPS58184113A (en) * 1982-03-24 1983-10-27 ダイオニツクス・インコ−ポレ−テツド Optical system
JPS58205122A (en) * 1982-05-26 1983-11-30 Nippon Sheet Glass Co Ltd Compound lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852981A (en) * 1985-05-31 1989-08-01 Canon Kabushiki Kaisha Imaging lens system comprising a distributed index lens and a plano-convex lens
JPS62187314A (en) * 1986-02-13 1987-08-15 Nippon Sheet Glass Co Ltd Optical disk lens
US5486951A (en) * 1993-12-16 1996-01-23 Eastman Kodak Company Gradial zone lens and method of fabrication
US5629800A (en) * 1993-12-16 1997-05-13 Eastman Kodak Company Gradial zone lens and method of fabrication

Also Published As

Publication number Publication date
JPH0664229B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JP2628627B2 (en) Aspheric objective lens for endoscope
JP2646350B2 (en) Endoscope objective lens
JP2991524B2 (en) Wide-angle lens
JPH0876014A (en) Zoom lens system
JP2003005068A (en) Bitelecentric objective lens
JP3010365B2 (en) Objective lens
JPS6243613A (en) Converter lens
JPS581117A (en) Photographic lens
JPS6125122B2 (en)
JPS60203909A (en) Compound lens of distributed refractive index rod and homogeneous convex lens
US4772105A (en) Graded refractive index lens system
JPS61194416A (en) Distributed index lens
JPS6190115A (en) Objective lens for forming image
JPS60159817A (en) Chromatic aberration compensating method
JPS5958414A (en) Semiconductor laser optical system
JPH05173067A (en) Large-diameter wide angle lens
JPS61277913A (en) Image forming lens
JPS6113723B2 (en)
JPS5811913A (en) Reflecting and refracting lens
JPS604963B2 (en) endoscope objective lens
JPH0132961B2 (en)
JP3743065B2 (en) Eyepiece
JPS6114492B2 (en)
JP3397703B2 (en) Eyepiece system
JPS6330609B2 (en)